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L’Enseignement Mathématique (2) 52 (2006), 295-317

HYPERBOLIC POLYGONS AND SIMPLE CLOSED GEODESICS

by Hugo PARLIER *)

ABSTRACT. On a closed hyperbolic Riemann surface § of genus g > 1, we
study the existence of a universal constant related to simple closed geodesics. For a
simple closed geodesic v on S, we give elementary proofs of the following facts:
there is always a simply connected disk of radius r, > % In3 imbedded in §\ v, and
conversely, for any surface S, the infimum of the values r., (for all simple closed
geodesics ~ on §) is always equal to %ln?;. The proofs are based on the relationship
between right-angled hyperbolic polygons and simple closed geodesics.

1. INTRODUCTION

The main goal of this article is to give an elementary proof of the following
fact:

THEOREM 1.1. Let S be a closed Riemann surface of genus g > 1,
endowed with a metric of constant curvature —1. Let v be a simple closed
geodesic on S. The set S\ 7 contains 49 — 4 closed disks of radius %1113.
Conversely, if p > %ln3 is a given constant, there exists a simple closed
geodesic v, on S such that the set S\ v, does not contain any open disks
of radius p.

For specialists in the area, this can be deduced from well-known results
concerning laminations, and in particular maximal laminations, and their
relationship to simple closed geodesics. The goal here is to give a step by step

*) The author was supported by the Swiss National Science Foundation grants 21-57251.99,
20-68181.02 and PBEIL.2-106180.
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proof. The different steps have an interest in their own right, and the process
allows us to get a feeling for some of the fundamental aspects of negatively
curved surfaces. Through examples and a careful study of hyperbolic polygons,
one can hope to get a feeling for why this theorem is true, and subsequently
some insight into the nature of laminations.

The standpoint 1s close in nature to that of other articles concerning the
size of embedded disks on hyperbolic Riemann surfaces, namely an article
by Yamada [10] and another by Bavard [1]. In the first article, a sharp lower
bound on the maximal injectivity radius of a compact hyperbolic surface is
given. This gives an exact value for the Margulis constant in dimension 2,
sometimes called Marden’s universal constant for Fuchsian groups [9]. In the
second article, for any given genus ¢, a sharp upper bound on the maximal
mjectivity radius of a surface of genus g 1s obtained. However, in both articles,
the sharp bounds are reached by specific surfaces. In contrast, the surprising
part of the result presented here is the universality of the constant %lnB, as
it depends neither on the genus nor on a specific choice of surface.

The remainder of the paper i1s divided into five sections. After a standard
section dedicated to definitions, notations and known results, the first subject
treated 1s a detailed study of hyperbolic right-angled polygons. Following this,
the existence of a disk of radius %1113 on the complement of a geodesic is
proved. The penultimate section deals with the optimality of the constant, firstly
by constructing specific examples of surfaces and simple closed geodesics,
and secondly by a construction of a simple closed geodesic on an arbitrary
surface. The final section 1s about the relationship of the constant with Marden’s
universal constant for Fuchsian groups.

2. PRELIMINARIES

Here a surface will generally be a compact Riemann surface equipped
with a metric of constant curvature —1, with or without boundary. Such a
surface 1s always locally 1sometric to the hyperbolic plane H. A surface will
generally be represented by S, and distance on S (between points, curves or
other subsets) by ds(-, ). If the surface is closed (without boundary) then its
genus will generally be g and otherwise its signature will be (g, n), where n
designates the number of boundary curves. All boundary curves are assumed
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to be smooth simple closed geodesics, although much of what is said about
surfaces with boundary also holds for surfaces with cusps.

The Euler characteristic for a surface § of signature (g,n) is x(S) =
2 — 2g — n. Notice that x(S) < O 1n our case. A surface of signature (0,3)
i1s called a Y-piece or a pair of pants and will generally be represented
by Y or Y.. A surface of signature (0,4) is sometimes referred to as an
X-piece. The Teichmiiller space for closed surfaces of genus g 1s denoted
by 7,. For this article, the Teichmiiller space can be thought of as the space
parametrized by the Fenchel-Nielsen length and twist parameters (see for
mstance [4]).

A curve, unless specifically mentioned, will always be non-oriented.
A closed curve will be considered primitive, meaning that it cannot be written
as the k-fold iterate of another closed curve. A non-trivial curve on § is
a curve which 1s not {reely homotopic to a poimt. A closed curve on § is
called simple if 1t has no self-intersections. Closed curves (geodesic or not)
will generally be represented by Greek letters (o, 3, v and ~; etc.) whereas
paths (geodesic or not) will generally be represented by lower-case letters
(a, b etc). The geometric intersection number between two distinct curves
« and 3 will be denoted mt(c, J). Unless otherwise specified, a geodesic
is a simple closed geodesic curve. The set of all simple closed geodesics
on S will be denoted by G(S). A non-separating closed curve is a closed
curve -y such that the set §\ v is connected. Otherwise a closed curve is
called separating. A set of disjoint simple closed geodesics that decompose the
surface into Y -pieces is called a partition and shall generally be denoted by P.
(A partition i1s often called the set of pants decomposition geodesics.) The
function that associates to a finite path or curve its length will be represented
by £(-), although generally a path or a curve’s name and its length will not
be distinguished.

We will readily make use of the following fact. Let S be a surface with a
given partiion 7 and suppose that v € P. The geodesic v 1s the boundary
of either one (case 1) or two (case 2) distinct Y-pieces in P. In case 1,
~ 1s the interior geodesic of a surface of signature (1,1). In case 2, v 1s the
interior geodesic of a surface of signature (0,4). Let 6 € G(S) such that ~ is
the only geodesic in P that intersects ¢. Furthermore, § can be chosen such
that int(y,d) = 1 in case 1 and int(y,d) = 2 in case 2. Let kK € Z and let
the result of k& Dehn twists around & on ~ be denoted by Dy s(vy). Notice
that for any k, P’ = {P\ v} UD; s(7) is a partition on §. The convexity of
geodesic length functions along earthquake paths [8] implies that k£ can be so
chosen that ¢(Dy 5()) is arbitrarily large.
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DEFINITIONS. Iet § be a compact surface. I.et v be a simple closed
geodesic on § and xp € §. We define :

(1) D(xq,r) = {x € § | ds(xp,x) < r}. This should be seen as a distance set
(i.e., it 1s not necessarily an embedded hyperbolic disk).

(2) rs.x = sup{r | D(x,r) is homeomorphic to a disk and D(x,r)N~ = @}.
This is the maximal radius for an open disk centered in x that does not
mtersect .

(3) rs~ = sup{rs~r | x € S}. For a given geodesic ~, this is the maximal
radius for an open disk on § that does not intersect ~.

4 rs=inf{rs, | v € G(S)}.
(3) rg =inf{rs | S T,}.

As a prelude we consider the sphere S and the torus T?, equipped with
their standard metrics of constant curvature 1 and 0, and determine the above
values for these surfaces. On S? the (simple) closed geodesics are great circles.
It is easy to see that re = 7/2 and thus ro = /2. For T? the situation is
even more radical. Here rp2 = r; = 0. This is of course because for a given
€ > 0, there exists a geodesic v on T? such that there are no embedded
disks of radius ¢ on T? that do not intersect ~.

&=

FIGURE 1
The 82 and T? cases

In the hyperbolic case with § a surface of genus g > 2, the result of
Birman and Series on the non-density of simple closed geodesics [3] implies
that for a given § with ¢ > 2, rg > 0, but this does not give any information
on r,. Using these notations, the mam result of the paper gives explicit values
to both rg and r,.
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3. PROPERTIES OF RIGHT-ANGLED POLYGONS

The decomposition of Y -pieces into two isometric right-angled hyperbolic
hexagons encourages a detailed study of hyperbolic polygons. Unless other-
wise specified, an n-gon will always be considered to be right-angled and
hyperbolic. We will use the following well-known propositions (for proofs see

[2]. [4], or [7]):

PROPOSITION 3.1. Let P be a pentagon with adjacent edges a and b.
Let ¢ be the only remaining edge adjacent neither to a nor to b. Then

sinha sinhb = coshe.

PROPOSITION 3.2. Let H be a hexagon with a, b and c¢ non-adjacent
edges. Let ¢ be the edge adjacent to a and b. Then

coshc = sinha sinh b cosh¢é — cosha coshb.
From Proposition 3.1 the following is easily deducted.

LEMMA 3.3. On any pentagon P there exists a pair of adjacent edges
a, b with sinha > 1, sinhb > 1.

The 1dea 1s now to place a disk tangent to two adjacent edges of lengths
a,b with sinha > 1 and sinhb > 1.

(V2—12%i

V2-1D? /

HGURE 2
The hyperbolic triangle with vertices 0, 1 and i

Let T be the generalized triangle with vertices O, 1,/ m the umit disk
model of H. The three edges of the iriangle are the segment [0, 1], the
segment [0,i[ and the segment ]i, 1] as in Figure 2. The disk tangent to
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all three segments is well-defined and the tangent points are (v2 — 1)2,
i(v2—1)* and (v/2—1)e'% . One can deduce the Euclidean radius of the disk
as (V2 — 1)%, and the hyperbolic radius %ln(#ﬂ) which we shall denote

by p,.

(o] o
PROPOSITION 3.4.  Let P be a pentagon and P its interior. P contains a
closed disk of radius p,. Conversely, for p > p, there exists a pentagon ()
o

such that no open disk of radius p is contained in Q.

FIGURE 3

A hyperbolic pentagon

Proof. By Lemma 3.3, P always has two adjacent edges a,b such that
sinha > 1 and sinhb > 1. Place P such that the intersection of a and b 1s
at the origin, and such that a is on the positive real axis, and b 1s on the
positive imaginary axis. The remaining edges shall be denoted ¢, d and e as
in Figure 3. Place a disk A centered on the x = y axis tangent to a and
b of radius p,. The disk does not touch the edges ¢ and e because both
a, b > arcsinh 1. Let f denote the hyperbolic line which passes through i
and 1. By comparing edge ¢ with f it is easy to see that ¢ is further away
from the origin than f. Because the edge of the disk touches only a and b
one can easily slide the center along the x = y axis to obtain a closed disk

contained in lg To show the sharpness of the constant p, we shall construct
a pentagon which contains no disk of radius p > p,. Let p—p, = €. Let p
be the point on the x =y axis at a distance €¢/4 further away from O than
(v2 — 1)e'T, as in Figure 4.
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oY

{

FIGURE 4

The [-pentagon

The geodesic axis x = y admits a unique geodesic ~ perpendicular at p.
There is a unique pentagon with edges on both the real and imaginary axes
and on ~. This pentagon does not contain an open disk of radius p in its
iterior. [

REMARK 3.5. The example constructed in the proof will be called the
[ -pentagon. It has two adjacent edges with hyperbolic length /-arbitrarily long
and equal, and thus a third edge which is defined by Proposition 3.1. The two
remaining edges have lengths that decrease towards O as [ increases. These
edges will be referred to as the short edges. This pentagon has one degree of
freedom / > arcsinh 1 being the equal length of the first two adjacent edges.

The following proposition shows that the example of /-pentagons is not
1solated.

PROPOSITION 3.6. Let P be a pentagon with edges labelled as in Figure 3.
For € > 0, there exists x. such that for a,b > x., we have d,e < €.

Proof. 'The values a, b and c¢ verily
sinha sinhb = coshc.
Also d, ¢ and a venfy
sinh ¢ sinhd = cosha.
Notice that for # € R, sinh& > cosh@® — 1. Thus:

cosha cosh a B cosha
sithc — coshe—1  sinha sinhb—1°

sinhd =
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For a given e, a and b can thus be chosen sufficiently large so that
sinhd 1s less than sinhe. This gives us a condition a,b > x;. The same
procedure applied to ¢ gives a condition a,b > x,. We can now choose
Xe = max{xg,x.}t. LI

COROLLARY 3.7. For € > 0 there exists x. so that the following is true.
All pentagons (with edges labeled as in Figure 3) with a,b > x. contain no
disks of radius p, + € in their interior.  []

All n-gons with 1 > 5 can be cut along perpendicular geodesic lines to
certain edges to obtain a pasting of n —4 pentagons. As a consequence n — 4
disjomt closed disks of radius p, are always contained in the interior of an
n-gon. This constant remains sharp for the n-gon, and this is proved by the
following example: take n — 4 isometric /-pentagons and paste them along
the short edges (Figure 5).

FIGURE 5
n —4 I-pentagons pasted along short edges

The result obtamed i1s an n-gon. Let p > p, be a constant. [ can be
increased so that none of the n — 4 pentagons contain an open disk of
radius p. Since the pasting was done along the short edges, it 1s not possible
to put a disk centered on the common border between two pentagons. Thus
there exists an n-gon which does not contain any disk of radius p in its
interior. This proves the following:

PrROPOSITION 3.8.  All n-gons, n > 5, contain n—4 disjoint closed disks
of radius p,. Conversely, for p > p,, there exists an n-gon which does not
contain a disk of radius p in its interior. [
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4. THE DISK OF RADIUS %ln3

This section leads to the first main step towards answering the initial
question. It will be shown that on a closed Riemann surface § of genus
g > 2, for a given simple closed geodesic -y, there 1s always a disk of radius
P = %ln?) left untouched by ~.

A given simple closed geodesic ~+ can always be completed into a partition
that decomposes S mto Y -pieces. A Y-piece can always be decomposed into
two isometric hexagons, and then further into four pentagons, each pentagon
isometric to at least one other. Proposition 3.4 proves that there is always a
closed disk of radius p, on S that leaves v untouched. The symmetry of a
Y -piece allows for even larger disks.

FIGURE 6
The disk of radius ps

The constant p, = %1113 is obtained on a hexagon as in Figure 6. The
hexagon 1s obtained by gluing two pentagons along edges of equal length.
The pasting is along the real axis in Figure 6. Of course, p; is the radius of
the maximally embedded open disk in an ideal hyperbolic triangle.

LEMMA 4.1. In order to insert a closed disk of radius ps (centered on
the real axis) into the interior of the hexagon, the following conditions are
sufficient :

(1) a >1In3,

(2) b, b > In1tY5,

Proof. The first condition is obvious, and the second is the result of a
straightforward calculation. [ ]
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In fact, the conditions of the above lemma are necessary as well, if’ one
1s concerned about where the center of the disk should be.

As mentioned before, we will frequently make use of properties of right-
angled polvgons and, in particular, that consecutive edges of pentagons verify
the equality of Proposition 3.1. This implies the following result (for any right-
angled polygon although we will use it only for pentagons and hexagons).

LEMMA 4.2, If r and s are consecutive edges of a right-angled polygon,
then

1
r<Iln3 — s>§1n3 (>ln

1++/5
2 2
1

rgiln?v — s>1n3. L]

There are other sufficient conditions for the embedding of a disk of radius
ps which we shall also use. These make use of geodesic paths which we
shall call heights, which are the three paths that separate a hexagon into two
right-angled pentagons. These three paths join opposite edges of a hexagon.
For example, path a in Figure 6 1s a height. These paths share properties with
the usual notion of heights of a triangle, such as the fact that they intersect
m a single point.

LEMMA 43. Let H be a hexagon with two consecutive edges a and b
that verify a, b > In3 and suppose that the two heights h, and hy, that
intersect a and b also verify h,, by > In3. Then H has an embedded closed
disk of radius p;.

Proof. Consider a disk of radius p;, centered on the bisector of ¢ and b,
tangent to both @ and b. If this disk touches any of the remaining edges
then at least one of the lengths a, b, h, or h; i1s of length less or equal
to In3. [

LEMMA 44. Let H be a hexagon whose heights hy, (k € {1,2,3}) satisfy
he >1n3. Then H has an embedded closed disk of radius p;.

Proof. By the previous lemma, if H has two consecutive edges of length
superior to In3, then H contains such a disk. Denote by a, b and ¢ three
non-adjacent edges of H, and by &, b and ¢ the three edges diametrically
opposite. Thus we may suppose that ¢ < In3. One of the two arcs of a
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separated by a height is of length less than %ln3 , which implies that one of
the edges adjacent to a has length strictly greater than In3 (by Lemma 4.2).
Iet us suppose that this edge is ». The other edge adjacent to b is c. Now
il ¢ > In3 the previous lemma guarantees the existence of the embedded
disk. If however ¢ < In3, consider the two arcs of b, say by and b,. By
Lemma 4.2, both b, and b, are of length stricily greater than %ln3. By
Lemma 4.1, there 1s thus a disk on the height leaving from &#. []

As seen in the previous section, not all hexagons have embedded disks
of radius p,, so this condition on heights is not always true. However, the
following is.

LEMMA 4.5. Let H be a hexagon with a height hy < 1n3. Then the two
remaining heights hy, and hs verify hy, hs > In3.

Proof. Notice that each height separates the hexagon into pentagons.
Suppose that two heights, say &y and h,, both verify hy, iy < 1In3. Consider
the two pentagons P; and P, that are separated by h;. One arc of h,, say
N1, 18 found on P; and the other one /y, 1s found on P,. One of them,
say hy;, has length less than %ln3. This 1mplies that one of the edges of
Py adjacent to h; must be of length less than %ln3, which is impossible by
Lemma 4.2. [

We are now well equipped to prove the following

PROPOSITION 4.6. Let Y be a Y-piece and «,[3,7 its three geodesic
boundary curves. There are always two closed disks of radius ps; on
Y\ (U BU~A). For p > ps there exists a Y -piece that does not contain an
open disk of radius p in its interior.

Proof. Consider the decomposition of Y into two isometric hexagons H
and H obtained by cutting along simple geodesic perpendicular paths between
the boundary curves. Denote by a (resp. b, ¢) the perpendicular path between
G and ~ (resp. between « and +, between o and ).

If the heights of these hexagons verily the conditions of L.emma 4.4, then
both H and I contain an embedded disk of radius ps. and the result is
verified. Thus we must suppose that a height of H, say the height /4, between
¢ and ~, has length /4. < In3. It follows from L.emma 4.2 that ¢ > In3.
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From Lemma 4.5, it follows that the two remaining heights of H, say A, and
hy, satsty h,, by > In3. (The notations h, and h, are as in Figure 7. The
three corresponding heights for H will be denoted by #,, etc.)

P

FicureE 7
Y and certain paths

Denote the paths ~y; as in Figure 8. Because of the symmetry of the
Y-piece, 11 = 21 and 72 = 7v2,. Again, because h, < In3, Lemma 4.2
implies that ~v; > 1In3 for all i,j € {1,2}.

22
B2

B
12

HIGURE 8
A pair of pants viewed by a topologist

Now suppose a, b > In3. Lemma 4.1 now implies that there are two
disjoint closed disks on ), one centered on path a and the other on path 5.

Suppose that a > In3 and b < In3. By cutting ) along paths };, Uk, and
b one obtains two (in general non-isometric) hexagons. Consider the notations
of Figure 8. The paths «; and «, verify oy, ay > %ln?). By Lemma 4.1,
the hexagon containing ¢ contains a closed disk of radius p; centered on ¢
because ¢ > In3, and aq,00 > %1113. Similarly, the hexagon containing «
contains a closed disk of radius p; centered on a because ~, v, > %ln3.
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The remaining case to be considered is when both a and b venfy
a, b <1n3. In this case, cut along a and b in order to obtain an octagon.
On this octagon consider a simple geodesic perpendicular path between one
of the copies of a and one of the copies of b, as in Figure 9.

a b

FIGURE 9
‘When a and b are both short

By cutting along this path one obtains two (in general non-isometric)
hexagons. Now by applying L.emma 4.2 to the heights of these hexagons, it
1s not too difficult to see that all the heights /& verify 4 > 1n3. By once again
applying Lemma 4.3, both of these hexagons contain the required disks, and
the last case 1s established.

To show the sharpness of the constant p; on the Y-piece, an example
must be constructed that does not allow any disk of radius p > p,. The
example is constructed by pasting two hexagons identical to the one portrayed
m Figure 10.

FiGUre 10

A hexagon used to obtain a ¥-piece containing the smallest possible disk

To construct a hexagon of this type one must take two [-pentagons and
paste them as in Figure 11. The Y -piece is obtained by gluing this hexagon to
its mirror image along the edges A, B and C. The boundary edges «, 8 and
~ are of lengths (respectively) 4/, 2arccosh(sinh®/) and 2 arccosh(sinh?® /).
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For p > p; there exists a constant L such that for ! > L, no disk is
contained in the Y -piece. Such objects will be called /-pants. The lemma 1s
now proved. [

FiGUre 11

An [-pants

The example in the previous proof, as for the [-pentagon, can be
generalized. This is the object of the following proposition.

PROPOSITION 4.7. For € > 0 there exists a value x. such that for any
a, B > x. there exists another value X, . 5 such that for any v > X,

a Y-piece with boundary geodesics of lengths «, B, v contains no disk of
radius ps+ €.

Note that the value x., 5 does depend on the choice of o and j.

Proof. 'The proof 1s essentially constructive. Consider the symmetric ideal
pentagon P (with 4 right angles and the remaining angle 0) as in the following
figure.

3=

(ST

FiGUure 12

A symmetric ideal pentagon
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x. can be so chosen that for all x > x. there are no disks of radius
ps + € contained in the interior of P. Now consider the Y-piece obtained
with lengths «, 3 > x.. This Y-piece can be represented as an octagon with
lengths as in Figure 13. Notice that, due to the symmetry of ¥Y-pieces, o and
(3 are separated by [, into two segments of equal length.

FiGURrE 13

A Y-piece cut along two common perpendiculars

Now a value x., g can be chosen large enough so that for all v > x , g
the two hexagons separated by h., are as close as necessary to the situation
represented in Figure 12. This completes the proof. [

There 1s an immediate corollary to Proposition 4.6.
COROLLARY 4.8. For S with genus g >2, rs > 31n3. [l
Proposition 4.6 is also the central part of the proof of the following

THEOREM 4.9. Let S be a closed Riemann surface of genus g > 2.
Let vi,...,73¢—3 be disjoint simple closed geodesics on S. There exist at
least 4g — 4 disjoint closed disks of radius %ln3 on § such that there is no
intersection between the disks and any of the closed geodesics. Conversely,
for a given p > %ln?) and a genus g > 2 it is possible to find a closed
Riemann surface of genus g with a partition such that a disk of radius p

always intersects the partition.

Proof. § can be decomposed into 2g — 2 Y-pieces. By the previous
lemma on each Y -piece there exists at least one disk of radius p, and this
proves the first part of the theorem. The construction of a closed Riemann
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surface of genus g which does not admit any open disks of radius p for
p > ps can be done with long /-pants, as in the proof of the previous lemma.
By taking 2¢ — 2 isometric /-pants it 1s possible to construct a surface of
genus ¢ as in Figure 14.

FIGURE 14

A surface obtained by pasting !-pants

The 3g — 3 geodesics are the boundary geodesics of the Y-pieces. [

5. THE EXPLICIT VALUES OF rg AND Fgq

We have shown that our bound for the radius of a disk left untouched
by 3¢9 — 3 non mtersecting geodesics 1s sharp, but what can be said if we
look at the bound of one simple closed geodesic ? Furthermore the sharpness
has been proved within the category of closed surfaces of genus g, but the
sharpness 1s not proved for a given individual surface.

FIGURE 15

Genus 2
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The next step i1s to prove, with an example, that r, = %ln3. The idea is
to construct a surface S and a single geodesic ~ that allows only small disks
on S\ . The example for genus 2 is constructed as follows.

Take eight copies of an /-pentagon (with [/ large) and paste them together
as indicated in Figure 15. What 1s obtained is an X -piece. Paste together the
oriented edges a and & such that p is pasted to p’. Do the same with § and
3 such that g is pasted to ¢'. Then ~ is the geodesic indicated in Figure 16
by a bold curve, following the pasting scheme of Figure 15. For the same
reasons as in all previous examples, it is possible for p > p; to find a surface
of this type with no disks of radius p having no intersection with ~.

FIGURE 16

The winning geodesic for genus 2

In the same spirit we can construct an example for arbitrary genus g. Take
g — 1 copies of the previously constructed X-piece. Then paste them as in
Figure 17.

FiGure 17

Genus ¢

All arrows indicate a pasting with half twists including the pasting of the
four boundary geodesics. The geodesic « is as indicated in Figure 18 and the
surface fulfills our requirements.
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e AR s s orpagnes ooty

__..__ __...‘

FIGURE 18

A

The winning geodesic for genus g

This example proves the sharpness of the constant for one closed geodesic
within the category of surfaces.

PROPOSITION 5.1. For g >2, p, = 1In3. [

The final step 1s to prove, for any surface §, that rg = %1113. This 1s done
by proving the existence of a simple closed geodesic v on any surface S so
that disks on §'\ v have maximal radii arbitrarily close to p;. The proof is
contained in two lemmas. The first shows that for a given number of disjoint
closed simple geodesics, it is possible to construct a simple closed geodesic
that imitates all of them, i.e., for an € > 0, it 1s possible to find a new geodesic
~v with d(v,p) < € for all p on the union of the initial geodesics. We have
previously seen that we can construct a genus g surface with a partition with
each Y-piece having a maximal radius arbitrarily close to %1113. The second
lemma proves that a partition of this type exists on all surfaces.

LEMMA 5.2, Let vy,...,%:, be simple closed non-intersecting geodesics
on §. For € > 0 there exists a simple closed geodesic v such that for all

peEMU...Uv, dp,7) <e.

Proof. First complete the set of ;s into a partition P = {71,...,V34-3}
(if necessary). Let v be a simple closed geodesic such that int(vy, ;) # 0
for all i € 1,...,3¢g—3. It is a quick topological exercise (o see that such
a curve always exists, regardless of the nature of the partition. Let X, be
the X -piece around ~+; whose boundary curves are elements of 7P, when such
an X -piece exists. (The other case to consider is when ~; 1s found inside a
one holed torus where the boudary curve is an element of 7. The proof in
this second case is truly identical, and will be left to the dedicated reader.)
v M A, 1s the union of at least 2 disjoint geodesic arcs. At least one of these
paths crosses ;.
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FiGURE 19
X'Yi

Let ¢ be one of the two paths. Performing positive Dehn twists around ~;
will eventually increase the length of Dy ..(v). In particular the length of the
paths ¢, the image of ¢ by k Dehn twists, will increase as well (¢; denotes
a path in Dy, (y) N A, that crosses ;). Let dy = maxye, d., (%, Dy ~,(7))-
Let g; be an intersection point of ¢; and ~;. In the following figure, multiple
copies of A, , each represented by 4 hexagons, are portrayed, so as to see
how ¢, evolves when & increases. Notice that the following procedure works
for any geodesic path from “start” (the boundary curve through which ¢ enters
X)) to “finish” (the boundary curve through which ¢ leaves) as shown in the
figure. The top hexagons are all isometric, as are the bottom ones. #; is the
angle between ¢; and ;. In Figure 20, /gy 1s the distance {rom the “entry
point” of ¢; on A&, and ~;, and h; 1s the distance from the “exit point” of
ce on X, and ;.

f

Oy

Figure 20

Xy, seen 3 times

Observe the right-angled triangle with vertex g, and edge hy. (Observing
the nght-angled triangle with /; instead works as well.) The value for Ay is
always bounded, but the distance between ¢, and hy grows without bound.
This shows that 0, tends to O as k increases. It is then easy to see that
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dr > max,c-, ds(ck,x) also tends to 0 as k increases. Choose k; so that for
all k > k;, dg(cy, ) < € for any geodesic path ¢, from start to finish.

The process can then be repeated by performing Dehn twists on all the
other 7;’s. Choose k. = max;cyy, . 34-3} k. Il we start with ; and finish
with ~3,_3, the result obtained is the following simple closed geodesic:

76 = Dké Y3g-3 = DkE:PYSg—!l +- 0 Dké:'—yl (")/) .

Such Dehn twists do not change the nature of the original geodesic (number
of intersection points with each ~; etc.) and the geodesic obtained meets the
requirement of the lemma. [ ]

There 1s an immediate and interesting corollary to this lemma.

COROLLARY 5.3. Let S be a closed surface of genus g. For any € > 0
there exists a simple closed geodesic o. such that for any simple closed
geodesic v we have dg(y,6.) < €.

Proof. Tt is easy to see that the geodesics of a partition P intersect all
simple closed geodesics of the surface. For ¢ > 0, the lemma proves the
existence of a simple closed geodesic o, that 1s of distance inferior to ¢ to all
points of the geodesics of the partiion. For a given ~« let p be an intersection
point with the geodesics of P. Thus . 1s of distance inferior to ¢ from p,
and we can conclude that dg(d.,v) <e. [l

REMARK 54. If § is a surface of signature (g,n), then the previous
corollary is not true. This is because a boundary geodesic « is not intersected
by another simple closed geodesic, and thus all other simple closed geodesics
are of distance superior to arcsinh(l/sinh ¢). However, with the same
arguments, the following is true: for given ¢ > 0 and (g,n), there exists
Se of signature (g,n) and 0. a simple closed geodesic on S, with the
property of the lemma.

The next lemma shows that it 1s possible to find 3g — 3 non intersecting
geodesics such that § contains disks which do not intersect these geodesics
with maximal radius as close as possible to %lnb’.

LEMMA 5.5. For a given S and € > 0 it is possible to find a partition
of § such that each Y -piece in the decomposition contains disks of maximal
radius smaller than %ln3 + €.
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Proof. 'The proof of this lemma imitates that of Proposition 4.7. Let P
be a partition of S and let ) € P. In the first section, it was shown that a
boundary element of ) can be replaced by a new arbitrarily long boundary
geodesic. Using Proposition 4.7, Y can be replaced by a Y-piece )’ which
does not contain any disk of radius p; + €. Applying this process to each
Y-piece in P completes the proof. [

The previous two lemmas and Theorem 4.9 yield the final result.

THEOREM 5.6. Let S be a closed Riemann surface of genus g > 1,
endowed with a metric of constant curvature —1. Let v be a simple closed
geodesic on S. The set S\ 7 contains 49 — 4 closed disks of radius %1113.
Conversely, if p > %ln3 is a given constant, there exists a simple closed
geodesic 7y, on S such that the set S\ v, does not contain any open disk of
radius p. This implies that rg =ry = £In3.  []

REMARK 5.7.  As mentioned in the introduction, this result can be proved
using well-known results concerning laminations, see for example [5] or [6].
A lamination is a disjoint union of complete simple geodesics (not necessarily
closed) and 1s thus a generalization of a disjoint union of simple closed
geodesics. The first part of the theorem can be deduced from the result that
a lamination can be completed into a maximal lamination, i.e., a lamination
whose complement is a set of ideal hyperbolic triangles. The second part could
be proved by using iterations of a simple closed geodesic by a pseudo-Anosov
map, but once again, the intent of the author is to give an elementary proof
of these facts without the use of lamination machinery.

6. MARDEN’S UNIVERSAL CONSTANT

Compact surfaces with constant negative curvature seem to be endowed
with a certain number of natural universal constants. In [9], Marden proved a
result for Fuchsian groups that is equivalent to the following

THEOREM 6.1. There exists r > 0 with the following property. Let S be
a hyperbolic Riemann surface without boundary. There exists a point x € §
such that D(x,r) is simply connected.
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In [10], A. Yamada proved that r > In 24’—\;7 with equality occurring when
S is the thrice punctured sphere (which proves that Yamada’s lower bound is
sharp). Interestingly, ln% = arcsinh(%) and %ln?) = arccosh(%). The
link is stronger than this apparent coincidence.

First of all, a thrice punctured sphere can be constructed by pasting two
ideal hyperbolic triangles along all three edges. The three punctures are the
points at infinity. The value %lnS was also obtained using this triangle as
the maximal radius of an inscribed disk. Theorem 5.6, seen in the light of

Theorem 6.1, reads as follows :

THEOREM 6.2. Let § be a hyperbolic Riemann surface of signature (g,n).
There exists a point x € § such that D(x, %ln?)) is simply connected. The
value 11n3 is sharp. ]

Notice that in contrast to Theorem 5.6, the value %1113 is sharp for the set
of surfaces with boundary but not for any individual surface. Surfaces with
boundary play an important role in a variety of subjects, including the study
of Klein surfaces (orientable or non-orientable hyperbolic surfaces). In other
words, a Klein surface is either a hyperbolic Riemann surface, or the quotient
of a closed hyperbolic Riemann surface by an orientation reversing involution
(whose fixed point set is a set of disjoint simple closed geodesics). In terms
of Klein surfaces, Theorem 5.6 implies the following corollary, where again
the adjective “sharp” means sharp for the set of Klein surfaces.

COROLLARY 6.3. Let S be a hyperbolic Klein surface. There exists a
point x € § such that D(x, %1113) is simply connected. The value %ln3 is
sharp.
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