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L’Enseignement Mathématique (2) 52 (2006), 267-293

DEVELOPPEMENTS LIMITES ET REVERSION DES SERIES

par Roland BACHER et Bodo 1.ASs

RESUME. Nous étudions quelques propriétés nouvelles liées aux développements
limités et a la transformée de Hankel. Nous les démontrons en utilisant 1’approche
combinatoire de la réversion des séries et des fractions continues.

1. INTRODUCTION

Le but de cet article est de décrire quelques interactions entre combinatoire
et algebre. Plus précisément, nous étudions certains liens entre la réversion des
séries (formelles) et les matrices de Hankel. T.es deux sujets sont classiques : la
plupart des fonctions importantes, par exemple exp, sin ou tan, possédent en
effet des fonctions inverses (log, arcsin, arctan dans notre cas) et un théoreme
célebre de Lagrange relie le développement en série d'une fonction analytique
au développement en série de sa fonction inverse (pour la composition).
Du c6té de la combinatoire, inverser des séries génératrices est une technique
standard, par exemple pour la résolution de problémes d’énumération, voir [8].
La formule de Lagrange-Biirmann est également utile dans 1’étude de certains
aspects des formes modulaires, voir [15]. Les matrices de Hankel apparaissent
naturellement lorsqu’on considere les moments d’une mesure de probabilité
convenable sur R et sont étroitement reliées aux polynomes orthogonaux et
a certaines {ractions continues. Un traitement combinatoire de ces matrices a
été donné par exemple par Flajolet dans [5] ou par Viennot dans [19] et [20].
Les références [11] et [18] contiennent également quelques informations
historiques.

Notre article est organisé comme suit.

Pour la commodité du lecteur, nous rappelons le théor¢eme de lagrange
(concernant la réversion des séries) et une preuve classique au début du
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chapitre 2. Dans le reste du chapitre, nous énoncons notre résultat principal,
un lien entre le théoréeme de Lagrange et une suite de développements limités.

Le chapitre 3 relie la suite associée aux développements limités a la
“transformée inverse”.

Le chapitre 4 contient deux exemples illustrant les résultats ¢noncés.

Le chapitre 5, indépendant du reste, décrit une déformation continue
naturelle qui permet d’interpoler entre I'inversion J% et la réversion (xf){~U
dune série formelle f € 1 + xC[[x]].

Nous discutons ensuite quelques jolies propriétés de la matrice de Hankel
associée a la suite obtenue par des développements limités, au chapitre ©.

Le chapitre 7 rappelle une interprétation combinatoire classique qui fait
le lien entre les matrices de Hankel et divers objets combinatoires (chemins,
mots de Fukasiewicz). Ces ingrédients sont ensuite utilisés pour prouver une
partie de nos résultats. Ce chapitre contient également des preuves succinctes
de résultats classiques (a 1’exception de la proposition 2 qui est peut-€tre
moins connue) ainsi qu’une digression décrivant une action du groupe diédral
mfini sur les mots de fukasiewicz.

Le chapitre final contient des résultats concernant les déterminants de
matrices de Hankel ainsi que les preuves des résultats non démontrés
antérieurement.

Dans la suite, nous travaillerons toujours sur un corps de caractéristique
zéro.

2. LE THEOREME D’INVERSION DE LAGRANGE

L’ensemble des séries formelles du type p(x) = > ° ax" telles que
o # 0 (pour un corps de base fixé une fois pour toutes) constitue un groupe
pour la composition. I'inverse g(x) d’une telle série p(x) est uniquement
défimi par I’équation ¢ o p(x) = x, et d’ailleurs aussi par po g(x) = x. Le
passage de p & ¢, qui est ce que nous appelons ici la réversion des séries,
est 1’objet d’un théoreme célebre de Lagrange, qui semble avoir son origine
historique dans I'article [13].

Pour la commodité du lecteur, nous indiquons d’abord au théoréme 1
une démonstration du théoréeme de Lagrange sans doute assez proche de
Poriginal, en suivant le joli article de Henrict [11]. Par ailleurs, le chapitre 7
contient une autre démonstration classique, basée sur la combinatoire des
mots de Fukasiewicz. Il existe de nombreuses autres présentations, dont [2],
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pages 158-161, [8], pages 15-18, [9], pages 129-133, [16], pages 145-149,
[18], pages 38-39 et [21], pages 128-136.

I’ensemble des séries formelles du type s(x) = >~ 5,x" telles que so #£ 0
constitue un autre groupe pour la multiplication. Le passage de s(x) a 1/s(x)
est ce que nous appelons ici inversion des séries, €t nous y revenons aux
chapitres 3 et 5. Il faut néanmoins prendre garde au fait que de nombreux
auteurs utilisent le terme “inversion” dans le contexte du théoréme de Iagrange.

Soit g(x) = > -y 7nX" une série de Laurent formelle a une indéterminée,
ot N € Z et ol les coefficients ~y, sont dans le corps de base; on pose ~, = 0
pour n < N. Pour tout n € Z, nous écrivons [x*](g(x)) le n-itme coefficient
v, de g(x). Le théoreme de Lagrange, ou de Lagrange-Biirmann, établit une

relation enire les coefficients [x*](g(x)) et les coefficients [x"!] ((ﬁ)n)

pour g(x) la réversion d’une série p(x) = Z;; anx™ avec ay # 0.

THEOREME 1. Soient p(x) = > ° | anxX une série formelle sans terme
constant telle que oy # 0, et q(x) la série du méme type telle que

qgop(x) =pogx) =x. Alors

nlx"] (¢09) = k"] (( a ))

)
pour tous n,k € L.

Démonstration (d’apres [11]). Considérons une série de Laurent formelle
g(x) et la série de Laurent

gogl) =) .
2N
Nous obtenons d’abord
gogqop) =gy = Y _ %'
iZN
en composant avec p(x) a la source, puis, pour n € Z arbitraire,

NACR

) 90

= P )

JZN

en multipliant par p’(x)/p"t!(x).
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Nous allons appliquer deux regles de calcul tres simples pour le calcul des
résidus. La premitre concerne les dérivées: [x~!](A'(x)) = 0 pour toute série
de Laurent formelle h(x); en particulier,

. d pI="(x
M*Mwﬂ*uWhﬂ—mfﬂ(Ef.())—o
X j—n
pour j # n. La seconde concerne les dérivées logarithmiques : [x_l](z ((xx))) =1

pour toute série de puissance de la forme A(x) = Efil §ix/ avee &y # 0.
En égalant les résidus des deux membres de (), nous trouvons donc

1 p'(x) )_ —1 ( p’(x)) _
(%) [x™] (g(x)pn ) B i P Yn -
Comme le résidu de la série de Laurent l(g/p_")’(x) _ W gpr® est
n np*(x)  prti(x)

nul, nous avons aussi

(12 10 g0 =, — 11 (5.

En particulier, lorsque g(x) = 2%, nous avons

k=1 o
—1 o n—k
“](wm)‘“ %wm)

et le théoreme résulte de ce cas de 'égalité (xxx). [

REMARQUES. (1) Plus généralement, la formule (##x) fournit le z-1eme
terme de la série de Laurent g o g(x) pour tout n # 0, et la formule (xx)
pour 1 =0 s’écrit

/
_ (0
ﬁwwﬂmzhﬂ@mi—.
p(x)
(i1) Si les coefficients sont complexes et si le rayon de convergence de la
série p(x) est strictement positif, alors il en est de méme de celm de ¢(x).

(iii) D un point de vue numérique, la série de von Neumann (7 —H)\~" =
J+Ho(J+Ho(J +...)) permet de calculer efficacement la réciproque
(7 —FD<_1> d’une perturbation H d’ordre > 1 de I'identité¢ .7 en un nombre
quelconque de variables. Cette formule est 1’analogue compositionelle de la
regle de Homer: 1+ H(1+H(1+...)) =Y~ H" qui converge vers ﬁ

pour H petit.
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EXEMPLES. lLe théoreme 1 ne s’applique bien au calcul des coefficients

de g que s’1l est facile de déterminer les coefficients de (I%x))n

1) S1 p(x) = %ﬂ , alors !%x) = 1+x etle théoreme 1 implique [x"](g(x)) =1

pour tout n > 1, en accord avec les €galité€s g(x) = = = > &, (Notons

que les deux séries p(x) et g(x) convergent dans le disque unité.)

o gt
n=1 n!

X

(i) Si p(x) = xe™™, on obtient sans peine g(x) = > x". (Notons
que, dans ce cas, le rayon de convergence de p(x) est infinmi et celui de g est
n—1
e T D)
€=M mrie?

3 R
(iii) De manitre analogue, p(x) = xe=* domne g(x) = ¥ Jio %xzf“.
(Le rayon de convergence de p(x) est de nouveau infini tandis que la série

de ¢(x) converge absolument pour |x| < 1/+/2e.)

(iv) Comme déja mentionné, la formule d’inversion de Lagrange-Biirmann
n’est que rarement utile pour la réversion d’une série formelle. Des méthodes
différentes sont généralement beaucoup plus simples. Un tel exemple est la
fonction p(x?) = (sinx)? ; voir la page 130 de [21]. Nous ne savons pas utiliser
la formule de Lagrange pour prouver que la réversion de p(x) est donnée par

, j
la fonction hypergéométrique g(x) = »*, 2%~! Y. Un calcul facile montre

7(?)
cependant que g(x) est une solution (formelle) de 1’équation différentielle
@ -0y @ 2 42 =0
2 2 '
En dérivant g(sin?(/z)) = z par rapport & z et en posant x = sin® \/z, nous
trouvons
arcsin/x
g (x) = 7\/_
V(1 —x)
et ensuite

fmz—i—(ua—m

arcsiny/x
2x(1 — x) '

Vx(l —x)
Cecl montre que ¢g(x) est également solution de I'équation différentielle ci-
dessus. Un développement a 1’ordre deux des deux séries permet de conclure.

Les deux théoremes qui suivent fournissent d’autres paires du type
(p(x), g(x)). L'aspect peut-étre original de notre exposition consiste a faire
Jouer un r0le mmportant aux polynomes £; (et plus bas aux polynomes Q;),
que nous voyons comme des développements limités des séries correspondantes.
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Si os(x) = Zfio six/ est une série entiere et & un entier positif, nous notons
|sG)]x = s0 +s1x+ -+ -+ 5t_1x*"1 son développement limité a I’ordre k — 1.
Considérons une série formelle s(x) = > .7 s/ telle que so # 0.
Définissons successivement
* les polyndmes
Pi(x) =s0, Pa(x) = s+ sos1x,
P3(x) = sy + (5351 + S08150)x + (5552 + so570%, ...
définis récursivement par Py(x) = |Pr—1(0)s(x) ]« ;

* les constantes 0,(0) = [x*!]P,(x), n > 1, obtenues en considérant les
coefficients de plus hauts degrés dans les polyndmes Pj(x), P2(x), ..., ol
P,(x) est considéré comme étant de degré n — 1

* la série génératrice

gty =Y 00"
n=1

des nombres Q,(0).

THEOREME 2. La série formelle q(t) associée comme ci-dessus a
o ; P
s(x) = Q=g sx) vérifie

q(t) = ts(q(1)) .

En posant p(x) = x/s(x), on retrouve deux séries p(x), ¢(x) telles que

W n@e)
PAO) = @y ~ sq)

Avec ces nouvelles notations, le théoreme 1 s’écrit comme suit:

THEOREME 3. Si g(t) = s(q(1)), alors

o~ k1
k+1 H —k—1 n
gt = Y T (s)")
n=k-+1
pour tout k € {0,1,2, ...} et, en particulier,

o

a0 = > ST ()

n=1

Nous offrons au chapitre 7 une autre preuve des théorémes 2 et 3 (bien
que ce dernier ne soit rien d’autre qu’une reformulation du théoréeme 1). Cette
preuve, de nature combinatoire, n’est pas nouvelle. Elle consiste a interpréter
les mots de F.ukasiewicz comme des arbres plans enracinés.
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3. L.A TRANSFORMEE INVERSE

Le but de ce chapitre est de décrire quelques aspects du groupe multiplicatuf
constitué des séries formelles du type > 5,0 avec so # 0. Rappelons
quune telle série définit une suite de polyndmes Pi(x) = sg, ..., Pi(x) =
| Pr_1(x)s(X) ]|z, ..., ol Pi(x) est le développement limité a 'ordre & — 1 de
la série formelle P,_(x)s(x). Introduisons maintenant les polyndémes miroir
Q,(x) = X"~ 'P,(1/x) et désignons par ¢(r) = > | Q,(0) " la série génératrice
associée a la suite des évaluations Q1(0), Q2(0), ....

Le résultat suivant exprime la série génératrice compléte Q(x) =
> Qu(x) 1" en fonction de ¢(7):

THEOREME 4. On a

q(t)
ZQn(x)r mrt

Ce théoreme sera démontré au chapitre 7. La preuve consiste a identifier les
mondmes contribuant aux coefficients de g(r) avec les mots de F.ukasiewicz.

Nous décrivons maintenant une interprétation en termes de “transformée
inverse continue” de cette égalité. Cette interprétation suggere une jolie pro-
priété des transformées de Hankel (décalées) de la série Q(x), Qz(x), ..., qui
sera énoncée au chapitre 6 et qui constitue le résultat principal dans cet article.

Soit a(t) = ag + ait + apt* + a3 + asr* + -+ une série génératrice.
Introduisons 1’application [[a(?)] = a(r)/ (1 + ta(t)) appellée transformée
inverse puisque (1 + ta(t)) (1 —tf [a(t)]) = 1. Par itération, on obtient
la(t)] = a(r)/ (1 + xta(t)) , ce qui permet d’interpoler les itérées

Fa@) =) L) ¢
k=0

de la transformée inverse. LLe k—i¢me terme I (x) de la suite

I()(x) = o, Il(x) = a1 — a%x, Iz(x) = day — 2(10611X—|— agxz,

est alors un polyndome de degré k en x.

(l)

Posons a(f) = 2 =1 Zn L @n(0)". Le théoréme 4 s’énonce aussi sous
la forme
x40 1 490
I e » i
2] - e = i e

Autrement dit, on a: # I"[r'Q(0)] = Q(—x) pour Q(x) = 3.7 Qu(x) 1".
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REMARQUE. On aurait tout aussi bien pu définir la transformée de Hankel
de a(r) par la formule I[a(t)] = at)/(1 — ta(t)) = —I[—a(t)].

REMARQUE. Un phénomeéne similaire d’interpolation continue se produit
également pour la composition itérée X = fofo---of dune série
formelle f(f) = ¢+ >_.", a;#* dont le développement & ’ordre 1 est 'identité;
ceci se généralise d’ailleurs facilement & un d-uplet de séries formelles
F(ty, ...,t)) = (filty, - . 1), ... fulty, ..., 1)). 1l existe alors une suite

Ci(x) = 1, Cax) = apx, C3(x) = (az(x — 1) + as)x,
Cax) = (2x — 3)(13 + Sapaz)(x — 1) + 2a4)x/2, e

avec Cy(x) un polyndme de degré < n—1 en x tel que f(7) = >_.°, Ci(x)F .
Pour le démontrer on peut considérer la diftérence finie

o o6 4
Culk + 1) — Cy(k) = coefficient de * dans » " a; (Z cj(k)rf) ,
i=2 j=1
qui est un polyndéme de degré au plus n—2 en k (par récurrence sur zn). On
peut également le déduire en utilisant un isomorphisme de monoides entre le
monoide des séries formelles sans terme constant (avec la composition des
séries comme produit) et un groupe de matrices triangulaires supérieures. Un

tel isomorphisme peut €tre donné par

ti1 d1p2 d13 di4

" dya dz23 24
Zanx 0 0 a3 az4

oil fik arxd = (5o, anx”)k ; voir par exemple le théoréme 1.7a dans [10].

4. EXEMPLES
Revenons aux exemples (1) et (i1) du chapitre 2.

EXEMPLE TRIVIAL. Considérons la série formelle s définie par le polynome
1 4 x. On vérifie facilement que P,(x) = Q,(x) = (1 + x)"' et g(t) =
Z;ﬁll‘” = ﬁ Les théoremes 1, 2 et 3 se réduisent alors a des identités
triviales et au théoréme binomial, a savoir
t /(-0 t/ -1
l—t(14+x) 1—xt/(1—8" 141/(1—1)
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k+1 oC ']
t k+1 n n
= . § : = z : tn—|—1 )
(1 - t) n (k—l— 1) . (k)

n=k+1 =k

et

La transformée inverse de ¢(f)/t est donnée par [/ (@) =

!
¢t nous avons

(A9 _ 1/1-n 1
t ) 14xt/(1—1 1—-#1-x

1/(1—1) -1
1+:/1—0n —

= (1 -0 = % > 0.y,
n=1 n=1

en accord avec les résultats du chapitre 3.

o at
n=0 n!

L’EXEMPLE DE L'EXPONENTIELLE. Pour la série s(x) = ¢ = >
définissant I’ exponentielle, nous avons

1 < J
P = = =
j=0 '

En effet, cette formule donne bien P; = 1 et le calcul
1< J

n 1
5 2D = g (e D = nk@ o+ D)

=0

(n+ 1)
k!

1
= ——@m+1—k
T )

du coefficient x*, 0 < k < n dans P,(x)¢* la montre par récurrence. Nous

obtenons ainsi
n . }Cj—l
0u0) =Y j n' 1
; (n—))!

et
o0

< R = S L S § )%
q(t)—;Qn(O)t _§n (n— 1! _Zln n!

n=

en accord avec le théoreme 3. Le théoreme 4 implique les égalités

k

mm—l—k n—m n—m—1
m) (1~ m)

n

n—1
(k+ D — " = kY (”:
m=k




276 R. BACHER ET B. LASS

pour tous les entiers 7,k tels que n > k > 1. Pour finir, mentionnons la jolie
évaluation

1 i _f i j —1 _f n
Pa(l) = Qul)) = D= =D =D =
j=0 =0

j=0

5. INTERPOLATION ENTRE INVERSION ET REVERSION D’UNE SERIE FORMELLE

L’anncau C[[x]] des séries formelles est un anneau commutatif local dont
I'idéal maximal m = xC|[[x]] est I'ensemble des séries formelles sans terme
constant. Notons

U=C[x]]\m=C"+m

le groupe muluplicatif formé des éléments inversibles de C[[x]] et SU =
1 +m C U le sous-groupe des séries formelles de coefficient constant 1.
Notons

D=m\m?= {Z il € Clillar £ 0}

=1

le groupe non-commutatif des séries formelles pour la composition. On a
D = xU en tant qu'ensemble et SD = xSU = x + m? peut &tre interprété
comme le sous-groupe des “difféomorphismes locaux formels tangents a
I'identité¢ en 07,

Le but de ce chapitre est de décrire une déformation naturelle continue
(qui est holomorphe pour des séries holomorphes) entre le groupe multiplicatif
commutatif SU et le groupe non-commutatif ST (identifié a SU via la
bijection ensembliste A — xA de SU sur SD).

L’action naturelle oo - A = Ao de o € D sur un élément A € C[[x]]
agit par automorphismes sur I et SU et on peut donc former le produit
semi-direct Z =1U x D qu est un groupe pour la loi de composition

A, a)B,5) = (C,7) =(ABoa),foa)
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oit C = A(Boa) est le produit de la série A avec la série Bo «. élément
inverse (A, o)~ ! de (A, ) est donné par

1
-1 _ -1
(A, )™ = (maa< >)7

ol la réversion (ou série réciproque) o{~" de « € D est définie par 1'identité
aoal™ = al=V oo = x. On a les homomorphismes A — (4,x) et
(A, @) — « (avec section o — (1, «)) provenant de la suite exacte scindée
évidente

0 —U—=>T=UXD—D—1.

Notons &7 = SU « 8D le noyau Ker(/) de I’homomorphisme de groupes
YT — C* x C* défimi par (A, ) = (A(0), o/ (0)).

REMARQUE. (1) Le groupe Z peut se généraliser facilement en considérant
le produit semi-direct U x D ou U est un groupe de germes de fonctions
mversibles au voisinage d’'un point P € X avec X un espace topologique et
oi D est un groupe de germes d’homéomorphismes avec point fixe X. En
particulier, on peut, au moins formellement, remplacer le groupe multiplicatif
U par le groupe multiplicatif des séries de Laurent non-nulles.

(i1) Le noyau 87 = Ker(y’) = SU x SD est contractile pour une topologie
raisonnable sur C[[x]] (obtenue par exemple en considérant la convergence
coefficient par coefficient). On a donc m(Z) = m(C* x C*) = Z* pour le
groupe fondamental 71(Z) et on peut considérer 1’extension centrale

0—2Z> 7 T —1

définissant le revétement universel Z de T , obtenu en relevant I'extrémité des
chemins continus issus du neutre (1,x) € Z ou, de mamere équivalente, en
considérant des relevements réels des arguments de A(0), o/(0) € C* pour
(A,a) e L.

(ii1) Le groupe abstrait 7 est isomorphe a un “sous-groupe de Lie” dans
les matrices triangulaires inférieures infinies, voir [1].

Pour la description de Dinterpolation entre le groupe multiplicatif f
et le groupe non-commutatif D il faut soit se restreindre au sous-groupe
ST = SU x 8D = Ker(yy) quon pourrait appeller le groupe d’interpolation
spécial, soit travailler dans un groupe intermédiaire entre 7 et son revétement
universel Z. Nous allons décrire en détail le premier cas. Le deuxieme cas
est traité brievement dans [1].
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Pour 7 € C, introduisons le sous-ensemble
SG(T) = {(A,xA7) | A e SU =1+ xC[[x]]} C ST

ou 'on choisit 'unique détermination “continue” du logarithme des séries
formelles de maniére a avoir A™ = 7184 ¢ SUf = 14+ xC[[x]] pour A € SU.

PROPOSITION 1. (1) L’ensemble SG(T) est un sous-groupe pour tout
-k =3 B

(11) Le groupe SG(0) est isomorphe au groupe commutatif SU .
(i11) Pour 7 # 0 les groupes SG(T) sont tous isomorphes au groupe non-

commutatif SD. Un isomorphisme est donné par o — ((%)I/T, a) € 8G(1)
pour o € 8D.

COROLLAIRE 1. Pour 7 € [0, 1], lapplication

1

T Ao AT

est une déformation continue reliant ’inverse multiplicatif % de Ae€ SU a
= (A de (xA) € SD.

la série réciproque m

ldée de la preuve de la proposition 1. 1. assertion (ii) est évidente. Un petit

x

calcul montre que I'application (A, a) — (A (;) * . a) est un automorphisme

de SZ. En considérant A = 77!, on démontre facilement 1’assertion (iii).
[affirmation (i) est maintenant triviale. [ ]

REMARQUE. Une deuxi¢me bijection naturelle entre I/ et D est donnée
par o« € D+— o' € U. Dapplication

1
Ao (fyam) Y

(provenant de 1’automorphisme (A, o) — (A(e/), ) de ST) permet

d’interpoler entre 1 et la série réciproque

(fo“‘y_l) - /W

de foA € 8§D associée a cette deuxieme bijection, voir [1].
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6. I[.A TRANSFORMEE DE HANKEL

Ce chapitre contient notre résultat principal, suggéré par le théoreme 4 du
chapitre 3.

La n-1i¢me matrice de Hankel H(n) d’une suite s = (5o, 51,52, ...) est la
matrice symétrique dont les coefficients #;;, 0 < i,j < n ne dépendent que
de la somme 74 des indices et sont donnés par #;; = s;1;. La matrice H(n)
dépend donc seulement de sg, s, ..., S2,—2. La transformée de Hankel de s
est alors définie comme étant la suite

det(H(D) = so, det(TI(2)) = sos2 — 52, det(T(3)), ...

N

des déterminants des matrices de Hankel d’ordre 1,2,3, ... associées a s.

Une formule de Hadamard (voir [7], page 30, voir aussi [14]) implique
que deux suites a et b = I(a) dont les séries génératrices sont reliées
par la transformation inverse Y.~ but" = (3= ant") / (1+137 ant"),
ont méme transformée de Hankel. Comme les polyndémes [,(x) interpolent
les itérées de la transformée inverse, la transformée de Hankel de la suite
I’(a) = (Ip(x), [1(x), I(x), ...) ne dépend pas de x.

Pour un entier & > 0, définissons la k-ieme transformée de Hankel de
s = (8o, 51, ...) comme la suite

(din = det(Hy (), _, , = (k86862 = Sigrs -+ )

ot Hy(n) = (Siyj+i)o<ijen €st la matrice de Hankel de taille n x n associée
a la suite décalée sy, siy1, Siy2, --- -

THEOREME 5. (i) La suite

( det ((Ii+j+k(x))0§iJ<n))

de la k-ieme transformée de Hankel de 1*(a) = (Io(x), I1(x), ...) ne contient
que des polynomes de degré < k en x.

n=1,23, ...

(i1) Le déterminant

det((Q14i/(®o<ijn) »

pour Qy, Oa, ... associés a s(x) = so + 51X + 0252 + ... comme dans le
chapitre 3, ne dépend pas de s, .

REMARQUE. [identité de condensation de Dodgson (cf. [12]) montre que
les déterminants di, vérifient I’égalité

2
di—1p4+1 dir1 1 = di—10 et — dic




280 R. BACHER ET B. LASS
ot I'on a posé dro = 1 pour tout k. Cette identit¢ est parfois utile pour

calculer récursivement la transformée de Hankel (dor”)nzl " a partir de
dk‘1 = Sk . o

7. MOTS DE LUKASIEWICZ ET REVERSION DES SERIES (LAGRANGE)
Ce chapitre est dévolu a I'étude des mots de tukasiewicz. Les propriétés

de ces mots sont ensuite exploitées pour démontrer les théoremes 2, 3 et 4.
Nous commencons par démontrer le théoreme 4, qui équivaut a I'identité

1D~ 0uo)" = qo) .

n=1
Soit
o0
s(x) = 50 + Z spx
=1
une séric formelle dont les coefficients sg, s1,52,... sont des lettres qui ne

commutent qu’avec la variable x. Comme au début, nous associons a s(x) la
suite des polyndomes

Pi(x) = 59, Pa(x) = s§ + 081,

Ps(x) = 5(3) + (s%sl + 505150)Xx + (s%sz + sos%)xz, ..

définie de fagon récursive par Py(x) = |Pr_1(x)s(x)]¢. Notons [x*]P,(x) le
coefficient de x* du polyndme P,(x). On a une bijection entre les mondmes
de [x*]P,(x) et les chemins sur N x N de (0,0) a (n,k) ne traversant pas la
diagonale y = x et qui n’utilisent que des pas (1,0), (0, 1) orientés vers le
nord ou vers I'est. En effet, associons a s;,s;,8; ...s;, le chemin

iy %0, D+, 0)+i2 x (0, HY+(1,0)+i3 x (0, )+ (1,0)+- - -+, x (0, 1)+(1, 0)

(on a toujours i{; = 0). En particulier, le nombre de tels mondémes contribuant
au coefficient [x"~1]P,(x) de plus haut degré est donné par le nombre de
Catalan C,—y = (**"")1. Posons Q,(x) = ¥"~'P,(1/x) olt P,(x) est obtenu
en lisant & 1’envers les mondmes contribuant aux coefficients x°, x', ... x"!

de P,(x):

Qi1(x) = 59, Q2(x) = 55 + 5150,

Os(x) = sgxz + (sls% + 505150)x + szs% + S%So, R
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Munissons la lettre s; du poids w(s;) = i — 1 et posons
WSt S0y Siy - - - 85,) = W) + wlsi,) + wlsy) + -+ + w(s;,)

pour un mot s;S,s;, ...5;, de longueur n. Représentons un mot s; ...s;
apparaissant dans Q,(x) par le chemin de sommets

n

0,0), (1,s;, = 1), 255, + 5, = 2), ..oy (m,—n+ > i) = (m,w(s;, ... 53,)
j=1

obtenu en concaténant les pas (1,w(s;)) = (1,4—1) associ€s & s, §j,, -, S, -

n

FIGURE 1

Le chemin associé au mot sgs;sgsgs3sg (dans Pg(x))
et A son miroir sgs3sgsps1sy (dans QOg(x)).

Les mots qui apparaissent dans Q,(0) = [x°]Q.(x) sont les mots
de tukasiewicz (voir [3]). Leur série génératrice est donnée par ¢(r) =
S 0,(0)". Remarquons que les mots de fukasiewicz de Q,41(0) sont
en bijection avec les parenthésages de longueur 2n comportant # parentheses
ouvrantes et fermantes. Pour le voir on commence par supprimer la derniere
lettre 59 d’un mot de f.ukasiewicz et on remplace ensuite une lettre s; par le
mot de longueur k4 1 consistant en & parenthéses ouvrantes “((... ((" suivi
d’'une parenthése fermante *)”. Pour le mot de Fukasiewicz s,50515252505050

on obtient ainsi
§2 S0 §1 S22 $2 S0 So

© )y 0 © © ) )

LEMME 1. Le coefficient [x*1Q,(x) de Q,(x) est la somme de tous les
mots sy S, ...s;, de longueur n et de poids

n

WSSyt - -8,) = 3 i —n=—(k+1)

=1

tels que w(s; s, S ...8;,) > —k pour tout h < n.
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Preuve. Le coefficient [x"]Pn(x) est constitué de tous les mots s;, ...s; ,
Zle I = k, qui vérifient les inégalités Zj:1 X i—1 pout I = 1, ...,8.

Le miroir s;,...s;, de poids w(s;, ...5,) = > (4 — 1) = —(n— k) d’un
tel mot contribue au coefficient [x*~'*]Q,(x). Nous avons

n n—h
w(Sin...S,‘n_'_l_h):—h—F E lji—h—Fk—le
J=n+1—h =1
o ) ’ —h. . 3
En utlisant la majoration Zf:1 ij < n—h—1 rencontrée ci-dessus, nous
avons pour h < n

ws;, .. .S, ) > —h+k—m—-1-h)>—-@n-k . L[]

Preuve du théoreme 4. Soit s; ...s; un mot de longueur n et de poids
WS 5 5 88 ] = Zf:1 Ij —n = —(k+ 1) contribuant au coefficient [x%]10.(x) de
Q.. Un tel mot s’écrit de maniere unique sous la forme s; ...s5; = /lo...J on
les mots Iy, ..., Iy sont des mots de fukasiewicz en sg, 51, 52, ... (voIr la
remarque ci-dessous pour un exemple). En effet, soit a > 1 le plus petit indice
tel que w(s; ...s;) = —1. Le mot ly = s; ...s; satsfait alors les conditions
du lemme 1 avec & = 0. C’est donc un mot de Fukasiewicz. De plus, c’est
le seul sous-mot initial de s; ...s; qui soit de fukasiewicz car un sous-mot
initial de la forme s; ...s;, avec b < a est de poids w(s;, ...s;) > 0. D autre
part, un tel mot avec b > a ne peut a la fois étre de poids —1 et vénfier les
conditions du lemme 1.

Si k=0, le lemme 1 implique que a =n. Pour X >0, 0on a a < n et
le complément s;,_, ...s;, est un mot de poids —k vérifiant de nouveau les
conditions du lemme 1. Par récurrence sur k, on a alors s; ., ...5;, — 1 ... 1
avec [y, ..., Iy des mots de tukasiewicz. Ceci montre que ’ensemble des
mots formant le coefficient [x*]Q,(x) est I’ensemble des mots de longueur
1 en Sg, S1, ... obtenus en concaténant (k 4+ 1) mots de f.ukasiewicz. On a
donc 1’égalité [x*]Q,(x) = ["lgO)*T'. [

REMARQUE. La factorisation s; ...s5;, = lgp...[x d’un mot de poids
—(k+1) satisfaisant les conditions du lemme 1 en (k+1) mots de f.ukasiewicz
est bien visible sur la représentation graphique introduite ci-dessus. Ainsi, pour
le mot 55385050515 contribuant au coefficient x>~ ©@+H3+0+0+H1+0 — 5 de Qg (w),
on obtient Iy = s¢ et | = 8350505150 -

Preuve du théoreme 2. Soit s 8;,8; ...5;, un mot de bukasiewicz. Si
n =1, alors le mot est égal a so. St n > 2, alors iy > 1 et s;,5;, ...5;, estun
mondme de [x171]Q,_1(x). 1l se factorise donc en i; facteurs de Fukasiewicz.
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Ceci suggere de considérer la bijection suivante entre les mots de
t ukasiewicz et les arbres plans enracinés : Au mot de Lukasiewicz s; s;,5;, . .. S;,
on fait correspondre 1’arbre plan de »# sommets mum d’une racine de
degré ;. Les i; fils de la racine correspondent récursivement aux i; facteurs
de Lukasiewicz du mot s;,s; ...s; . Cette bijection se traduit par 1'identité
q(t) = ts(g(r)) pour les séries génératrices. [

FIGURE 2

Le mot sgsps1sasososssg, rendu cyclique.

Preuve du théoréme 3. Le coefficient [x"~*~1]s(x)" compte tous les mots
. . R .

$i8i, - 8, de longueur n qui sont de poids w(sysy, ...8,) =) ij —n=
(n—k—1)—n=—(k+ 1). Ainsi le mot s¢s051525050835¢ apparaissant dans
[x°]s(x)® est de longueur 8 et de poids —2 et illustre le cas particulier
n=38 et k=1. Associons a un tel mot la suite n-périodique (bi-infinie) de
lettres ...s5;_,8;_ SiSiSiy - - 50,80, 5,,, --- avec s, = §;, pour tout h € Z.
Regardons la représentation graphique, c’est-a-dire la suite infinie de points

o (22, —wlsis 8q)), (=1, —w(sp)), (0,0), (1, wisy ),
(2, WSH S5 s « o , (WS S, « <281, ) = (1, —(k 4= 1)),
(n+ Lw(ssi--.5,.,)) =0+ 1, —k+ 1) +wis,)),

(n+2,wis s, ... 8,0 = @+ 2, —(k+ 1) +wis;sy,)), --.

La suite des produits scalaires de ces points avec le vecteur (kK + 1,n1) est
périodique et la longueur de la période est un diviseur de n. Supposons
que la valeur minimale de ces produits scalaires est prise sur le point
(h,w(sysy, .. .s;)) avec h € {1,2, ..., n}. Par ailleurs, & est unique (mo-
dulo n) si k = 0. De toute fagon, le mot s;,.s;,_, -..58;5,5;,...5; apparait
dans [x*]Q,(x). On appelle ce mot un réarrangement cyclique de s;s;, ...s; .

n
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D’apres la démonstration du théoreme 1, ce réarrangement cyclique a une fac-
torisation canonique en k41 mots de Fukasiewicz. Parmi les n réarrangements
cycliques possibles de s;s8;,...5, 1l y en a donc exactement (kK + 1) qui
apparaissent dans [x*]Q,(x): les (k + 1) réarrangements cycliques des fac-
teurs de Fukasiewicz de s; 21 8pq -+« S BBy - oy B effet, si 'on choisit
un réarrangement cyclique dont la premiere lettre n’est pas la premiere lettre
d’un facteur de t.ukasiewicz, alors I'inégalité nécessaire pour 1’appartenance
a [xF]Q,(x) n’est pas satisfaite pour le mot qui va jusqu’a la derniere lettre
du facteur précédent.

Ainsi, pour notre exemple S$oSoS18250505350 représenté par la figure ci-
dessus, les facteurs de F.ukasiewicz du mot cyclique bi-infini sont délimités
par les intersections du graphe représentant ce mot avec la droite 4y = —6—ux,
représentée en pointillé. Ses deux facteurs de Fukasiewicz sont donc 515285080
et $350505g. Parmi les huit réarrangements circulaires du mot $45¢515250505350 »
il n'y a donc que s152505053505050 €l S380505051525050 ui apparaissent dans
[x'10s(x).

Dans le cas général, on obtient ainsi une bijection

mots en Sg, §1, .-
{1, ..., k+ 1} x ¢ de longueur n et de
poids —(k + 1)

produits de (k + 1) mots
— {l,...,n} x { de Lukasiewicz de longueur
totale n en sq,5¢, ...

(', mot) — (', luk),

ot luk est le réarrangement cyclique de mot qui appartient a [x*]Q,(x) et qui
fait apparaitre la premicre lettre de mot dans le &' -itme facteur de Fukasiewicz
de Iuk (n' correspond a la nouvelle place de la premiere lettre de mor). Cette
bijection implique 1’égalité

(k+ 1D [ s = n [Mlg0) . [
REMARQUE. Dans le contexte d’une variable ¢ ne commutant pas avec

les variables s;, 1l faudrait introduire la variable ¢ devant chaque lettre, 1.e.

q(t) = tso + tsitso + ts2(ts0)* + (ts1)*ts0
+ t53(t50)° + toatsi (tso)® + tsatsotsitsg + tsisa(tso)® + (Es1)tso + - -
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La dernicre lettre d’'un mot de fukasiewicz s, s;,5;, ...5;, est toujours la
lettre sq (i.e. i, = 0). Comme w(s;) = 0, le mot en les letires sg, 53, S5, - ..
obtenu par suppression de toutes les letires s; dans un mot de f.ukasiewicz
est encore un mot de fukasiewicz. Appelons-le mot réduit de t.ukasiewicz
et notons g, —o(#) la série génératrice des mots réduits de Fukasiewicz. Nous
avons alors le résultat suivant, utile au chapitre 8.

PROPOSITION 2.  On a l’égalité entre séries génératrices

g = g —o((L —ts)7" 7).

Preuve. Un mot de Lukasiewicz [ = s; 5,5, ...5;, qui ne contient pas la
lettre sy, est le mot réduit de f.ukasiewicz pour tous les mots de f.ukasiewicz
de la forme s’{ls,»ls?s[-zs’fs,é ---S]{"Sin avec ki, ky, ks, ..., k, € {0,1,2, ... }.

Le mot réduit / intervient avec une contribution de fs;1s;ts;, ... 1s;
dans la série génératrice ¢g;—o(f) des mots réduits. I'ensemble de tous
les mots de F.ukasiewicz dont [ est le mot réduit contribue donc avec
(1 —#sy) sy (1 — ts) " Uesy, ... (1 — #sy) " 'ts; & la série génératrice g(r) de
tous les mots de F.ukasiewicz. L]

7.1 DIGRESSION: ARBRES BINAIRES REGULIERS, ARBRES PLANS ENRACINES
ET MOTS DE LUKASIEWICZ

Un arbre binaire régulier est un arbre plan enraciné (modulo la relation
d’équivalence évidente) dont tous les sommets ont zéro ou deux enfants.
Notons B, l’ensemble des arbres binaires réguliers avec n + 1 feuilles (et
2n + 1 sommets, 2n arétes) et 7, D’ensemble des arbres plans enracinés
ayant n + 1 sommets (et n arétes). Les deux ensembles I5,, 7, ont méme
cardinalité, donnée par le n—ie¢me nombre de Catalan (2nn) J/(n—+ 1) (cf. par
exemple 1’exercice 6.19d,e dans [18]). Une bijection entre ces deux ensembles
finis peut étre décrite comme suit: Un arbre binaire régulier B € 13, possede
exactement n arétes gauches (orientées NO) et n arétes droites (orientées
NE). En contractant toutes les arétes gauches (respectivement droites) de B
on obtient un arbre planaire enraciné C;(B) (respectivement Cg(B)) dans 7,
et on vérifie facilement que les deux applications C;,Cg : B, — 7, sont
bijectives.

Désignons par X 1’arbre “miroir” obtenu en réflechissant un arbre X € B,
ou X € 7, par rapport a une droite verticale. On montre facilement 1'identité
Cg(B) = C.(B). En conjuguant I'involution 7 — T sur 7, par les bijections
Cgr,Cr, on obtient ainsi deux involutions tz(B) = C;l(m) = CL_l(CR(B))
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C1(B) B Cr(B)

FIGURE 3

Les deux arbres Cp(B), Cr(B) associés a un arbre binaire B.

et 1 (B) = C;HCL(B) = CxY(CL(B)) sur B,. Une construction analogue,

a savoir g = CR(CR_l(T)) et I = CL(CL_I(T)), définit deux involutions
Ig, &y, sur T,. Il serait intéressant de comprendre les orbites dans B,
(respectivement 7,) sous l'action du groupe diédral de générateurs ig, ¢/,
(respectivement iy, i; ). En particulier, les points fixes de :x (ou les points
fixes de ¢; ) sont en bijection avec les arbres “symétriques” de 7, qui satisfont
T =T (au nombre de (Ln72 J)) tandis que les points fixes de i (ou les points
fixes de 7; ) correspondent bijectivement aux arbres symétriques binaires de B,,.
Le nombre d’arbres symétriques binaires réguliers est donné par le nombre
de Catalan (2?;") J/(m+ 1) pour n = 2m+ 1 impair. Pour # > 0 pair de tels
arbres n’existent pas.

Pour terminer cette digression, mentionnons encore le fait (déja rencontré
dans la preuve du théor¢me 2) que la suite iy, ..., i, des valences des
n—+ 1 sommets rencontrés pour la premiere fois lorsqu’on contourne un arbre
T € 7, en partant de sa racine définit bijectivement un mot de f.ukasiewicz

Si, ++-8;,, de longueur n+ 1.

8. DETERMINANTS DE HANKEL

Le but de ce chapitre est la preuve du théoreme 5. Pour cela, nous intro-
duisons les mots de Motzkin et rappelons quelques-unes de leurs propriétés.
Des études plus completes sont contenues par exemple dans [5] et [19], voir
aussi [20].
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Un chemin de Motzkin de longueur n est un chemin dans le premier
quadrant x,y > 0 qui relie 'origine (0,0) au point (n,0) en utilisant n pas
de la forme (1,—1), (1,0) ou (1,1).

FIGURE 4

Un chemin de Motzkin de longueur 21 et ses © facteurs premiers.

Notons I'(n) I’ensemble des chemins de Motzkin de longueur n. Chaque
v € I'(n) est affecté d’un poids w(y) défini comme le produit des poids
des différents arcs qui le constituent: un palier ((i, %), (i + 1,k)) situé a la
hauteur /i est affecté du poids p(#); une descente ((i,h+ 1),(i+ 1,4)) de
la hauteur 4+ 1 a la hauteur s est affectée du poids ¢g(h); enfin, chaque
montée ((i,h),(i + 1,h + 1)) est affectée du poids 1. Le poids w(y) est
ainsi un mondme en les variables (commutatives) p(0), p(1), p(2), ...et
q(0), g(1), g(2), ... et on peut former la série génératrice

c(u) = l—l—Zun Z w(y)

n=1 yel'(n)
= 1+ p(O)u + (PO + g0 + (P(0)* + 2p(0)q(0) + p(Dg(Ous’ + - --

des chemins de Motzkin. Le chemin de Motzkin de longueur 21 représenté
ci-dessus contribue ainsi pour

p(0) 1 1 q(1) p(1) 1 p(2) 1 g(2) q(1) g(0) 1 g(0) p(0) p(0) 1 1 g(1) 1 g(1) q(0)
= p(0Y p(Lp(2)q(0)* g(1)*q(2)

au coefficient [u?!]c(u).

Un chemin de Motzkin est premier $'1l n’intersecte la droite horizontale
discrete Z x {0} qu’en ses extrémités (0,0) et (n,0). I est clair que tout
chemin de Motzkin premier est soit un palier a la hauteur 0 (valué p(0)), soit
commence avec une montée de la hauteur 0 a la hauteur 1, continue avec un
chemin de Motzkin (éventuellement vide) allant de la hauteur 1 a la hauteur 1
et se termine avec une descente de la hauteur 1 a la hauteur 0 (valuée ¢(0)).
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De plus, tout chemin de Motzkin non vide se factorise de maniere unique en
produit de chemins de Motzkin premiers (il suffit de considérer les sommets
situés a la hauteur 0). En itérant, on obtient immédiatement le théoréme
suivant (voir [5]):

THEOREME 6. Soit
C(M)—l‘l‘zcnu —1+Z Zw(’Y)
n=1 ~el(n)

la fonction génératrice des chemins de Motzkin. Alors

1

o = 2Oy
gD

1 —p2)u —

1 —pOu —

1 —p(Hu —

q2)u*

On appelle le développement du théoreme précédent fraction continue de
Jacobi, ou encore J-fraction. 11 permet d’exprimer les coefficients ¢, d’une
série formelle a I’aide de chemins (de Motzkin). En fait, on a la généralisation
suivante. Soit

A —dy + 3 b = do cw)
0 n q(O)uz 0
=t 1 — p(Oyu —
g(Du*

—p(Du —

et soit D = (diyj)o<ij<oc la matrice de Hankel (infinie) associée a la suite
do, dy, dy, ... de série génératrice d(u). Nous dirons qu'un mineur de D estun

déterminant de Hankel. Un tel mineur sera noté D( a g; ﬁk) en désignant

parO0<aog<a; < - <o et0<Gy<f << B lesmdlcesrespecufs
des lignes et colonnes du mineur extrait. Le coefficient m;; de la sous-matrice
associée a D(ﬁ0 . g:) est donc donné par my;; = do, 45, pour 0 <i,j<k.
Regardons, pour 0 < i < k, les poimnts A; = (—«;,0) et B, = (5,,0).
La somme des valuations (relativement aux variables p(0), p(1), p(2),... et
q(0), g(1), g(2), ... ) des chemins de Motzkin allant de A; & B, est ¢y, 15,
le terme (i,7) du déterminant C( i %‘11;“) ol C = (ci+j)o<ijcoc €St la
matrice de Hankel associée a la série génératrice c(u). On peut donc énoncer

le théoreme suivant (voir [19], chapitres IV et V, [20] ou [6]):
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THEOREME 7. On a
Qp, X1, - .., O k41 o, X, ..., Of
507517"'76/( /6)07ﬁ17"'7ﬁk
k+1 i
=dgt' Y ()M Pulewtn) - wi),
(o; YOs YLy ees 'Yk)
ou la sommation est étendue aux paires formées par une permutation o € Sp.q

et une configuration (Yo, ¥i, ---, W) de k+ 1 chemins de Motzkin sans
sommets communs avec vy; reliant A; a Bggy pour tour 0 < i <k.

REMARQUE. Dans le théoreme précédent, deux chemins de Motzkin ~; et

L 1y (de tels points

~; peuvent s’intersecter en des points de la forme Z?> + (55

ne sont pas considérés comme étant des sommets).

Preuve. En omettant la condition “sans sommets communs”, on voit que
la somme est C (%‘(’) ([;11 g’:) par définition du déterminant. Cependant, si deux
chemins +; # - ont un sommet commun, alors on peut continuer, a partir
du premier sommet commun rencontré, le premier chemin sur le second et
le second sur le premier. Il est évident que les contributions de ces deux

configurations s’annulent. [ ]

Le théoreme précédent permet de calculer le déterminant de certaines
matrices. On dénombre pour cela des chemins de Motzkin convenablement
pondérés.

THEOREME 8. On a

g, QU v vny QU Qg, Qi1 «vny Ok
degp(O)D( o )Zdegp«»C( oo ) < (ap—k)+(B—k)

ﬁo:ﬁla"'aﬂk 607515"'7/8/6
et
0 o+ h—2k D(@OJ Qpy ey ak) _ dk—H 0 ap+h—2k C(Oé(), Ol 5 2 55 Oék)
[p() ] /607617"'76’( . [p() ] /60,61,...,/3](
_ dk+lB (Oéo, 105 PER ak—l)
° Bo, By -, Be—1
avec B = (bH—j)OSi;j(oo et
- 0
b0+2bnu”: Q() 1 7
= 1 — p(tyu — — 9D
q(2u?

1 —p(2u —
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En particulier,

0,1,....k _ .
D(O 1 k) = dy "0 q()" g2 7" gk — 2)qlk — 1)

ne dépend pas de p(0), p(1), p(2), ...

Preuve. Pour que le degré

QOy Ay -y O oy Oy ey
deng(ﬂi, 5 ﬁ:) B degp(")C(ﬁZ, G /3:)
en la variable p(0) devienne maximal, il faut (et il suffit) que les configura-
tons (Yo, 11, --., ) satisfassent aux conditions suivantes: Le chemin -y,
relie Ay a By et reste touyjours a la hauteur O (ceci donne une con-
tribution de p(0)y»+*). Te chemin ~ commencant & A; = (—¢,0),
i e {1,2,...,k}, reste & la hauteur O jusqua (—a;—; — 1,0) et monte
a (—aj_1,1) ensuite (ceci domne une contribution de p(0)*~%-1=1) De
mani¢re analogue, le chemin qui se termine & B; = (3;,,0), i € {1,2, ..., k},
descend de (5;_1,1) vers (Bi_; + 1,0) et reste ensuite jusqua B; a
la hauteur O (ceci donne ume contribution de g(O)p(0)*—Fi-1—1) (e
qu n’a pas encore été considéré n’est rien d’autre qu’une configuration
de k chemins de Motzkin (translatés par le vecteur (0,1)) deux a deux
disjoints qui relient les sommets (—ayg, 1), (—ay, 1), ..., (—ag_1, 1) aux som-

mets (ﬁOa 1)7 (617 1)7 ik (Bk—la 1) L

Preuve de Uassertion (i) du théoréme 5. Soit a(u) = ag + aiu + aru* +
asu® + aqu’ + -+ une série génératrice. Comme les termes de la suite
(det((li+j+k(x))OSi,j<n))nzljz,g; _ dépendent polynomialement de x et des
coefficients ag, ay, ..., 1l suffit d’étudier le cas générique ag # 0. Considérons
la transformée inverse continue *[a(u)] = a(u)/ (1 + xua(u)). On a alors

do do

Ila(w)] = —
[a(u)] aty + aoux 1—(ﬂ—a0x)u—(i—&_ ag )uz

et on remarque que

1 ay do dody, — a% " a%a3 — 2apaay + a?l’ 1
—_—— = = U+ ...
u?>  apu  a(u)u? a’ a;

n’a pas de pdle en 0. On cherche a calculer le degré en x de D(k_ k(—)|1117 o ’]:_:1_1)

o D est comme ci-dessus. Le théoreme 8 montre que ce degré est
<(mn—1D)—(m—1D+k+n—1—(m—1)=k ce qui prouve l’assertion (i) du
théoreme 5. [ ]
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REMARQUE. Soit A, la matrice de Hankel associée a la série I¥[a(u)].
Le théoreme 8 montre 1’égalité

[xak+ﬁk—2k]Ax (0501 QL ey ak) _ a/(;—kl(_ao)(xk—i—ﬁk—ZkA\ (Oéo, ST O‘k—1>
ﬁ07ﬁ17"'7ﬁk 607/817"'7676—1
¢ 5 ; v & | a a s o
oll A est la matrice de Hankel associée a la série — — — — ———  L’identité
u?  aou  a(uyu®

0,1,...,k 0,1,.... %
A_x ? ? 7 e szo ) ? ?
0,1,...,k 0,1,..., %
est d’ailleurs une illustration de la derni¢re partie du théoréme 8.

Preuve de l'assertion (ii) du théoreme 5. En appliquant I’assertion (i) du
théoreme 5 a I'identité 77[2 3" Q,(0)"] = 1 37 | Q,(—x)", nous pouvons
supposer x = 0. On a maintenant le développement

_ 2. o8 B @ 4 3.2y,5
G5, =o(U) = Sou + S5S2u° + Sos3u” + (Sg84 + 2558)u” 4+ -

u
= SO
0 2
g(1u
1 — p(Lu .
| — pyu — q2u
S083 S8S4 s%s%
avec p(0) =0, g(0) = sos2, p(l) = ; , q(1) = sgs2 + K — 2 Ta
2
proposition 2 du chapitre 7 implique donc
u
4 = g0 (1 _ M)
et nous avons
() = “
1— - z
sy 1_ (S1 —|—p(0))u _ g(O)u L
1— (51 4 p(1))u — g

2
L= (51 + p@)u — 2"

L’assertion (i1) découle maintenant de la dermiere partie du théoreme 8. [

REMARQUE. L’identité

4 " = k tl—n k-1
(1—tx) _kz (n—l)ﬂ !

=n—1
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montre qu’on a

1 £\ [k .y
(1—xt)a(l—xz‘)_z(n)anx '

n.k

pour a(t) = Z;io a,t". La suite formée des coefficients by = Z’;:O (fl)an

est la transformée binomiale (de parametre x) de la suite a = (ag, a, ...).
I1 découle de la preuve ci-dessus que deux suites reliées par une transformation
binomiale possédent la méme transformée de Hankel.

Les auteurs remercient Pierre de la Harpe et Frédéric Chapoton pour des
remarques et discussions intéressantes ainsi que le Fonds National Suisse de
la Rechercher Scientifique pour un soutien financier.
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