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L'Enseignement Mathématique (2) 52 (2006), 267-293

DÉVELOPPEMENTS LIMITÉS ET RÉVERSION DES SÉRIES

par Roland Bacher et Bodo Lass

RÉSUMÉ, Nous étudions quelques propriétés nouvelles liées aux développements
limités et à la transformée de Hankel. Nous les démontrons en utilisant l'approche
combinatoire de la réversion des séries et des fractions continues.

1. Introduction

Le but de cet article est de décrire quelques interactions entre combinatoire

et algèbre. Plus précisément, nous étudions certains liens entre la réversion des

séries (formelles) et les matrices de Hankel. Les deux sujets sont classiques : la

plupart des fonctions importantes, par exemple exp, sin ou tan, possèdent en
effet des fonctions inverses (log, arcsin, arctan dans notre cas) et un théorème

célèbre de Lagrange relie le développement en série d'une fonction analytique
au développement en série de sa fonction inverse (pour la composition).
Du côté de la combinatoire, inverser des séries génératrices est une technique
standard, par exemple pour la résolution de problèmes d'énumération, voir |8|.
La formule de Lagrange-Bünnami est également utile dans l'étude de certains

aspects des formes modulaires, voir [15]. Les matrices de Hankel apparaissent
naturellement lorsqu'on considère les moments d'une mesure de probabilité
convenable sur R et sont étroitement reliées aux polynômes orthogonaux et
à certaines fractions continues. Un traitement combinatoire de ces matrices a

été donné par exemple par Flajolet dans [5] ou par Vieimot dans [19] et [20].
Les références [11] et [18] contiennent également quelques informations

historiques.
Notre article est organisé comme suit.

Pour la commodité du lecteur, nous rappelons le théorème de Lagrange

(concernant la réversion des séries) et une preuve classique au début du
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chapitre 2. Dans le reste du chapitre, nous énonçons notre résultat principal,
un lien entre le théorème de Lagrange et une suite de développements limités.

Le chapitre 3 relie la suite associée aux développements limités à la

"transformée inverse".

Le chapitre 4 contient deux exemples illustrant les résultats énoncés.

Le chapitre 5, indépendant du reste, décrit une déformation continue
naturelle qui permet d'interpoler entre l'inversion j et la réversion (xf)'~l;
d'une série formelle / 1 + vC[|.v| |.

Nous discutons ensuite quelques jolies propriétés de la matrice de Hankel
associée à la suite obtenue par des développements limités, au chapitre 6.

Le chapitre 7 rappelle une interprétation combinatoire classique qui fait
le lien entre les matrices de Hankel et divers objets combinatoires (chemins,

mots de Lukasiewicz). Ces ingrédients sont ensuite utilisés pour prouver une

partie de nos résultats. Ce chapitre contient également des preuves succinctes

de résultats classiques (à l'exception de la proposition 2 qui est peut-être
moins comme) ainsi qu'une digression décrivant une action du groupe diédral

infini sur les mots de Lukasiewicz.

Le chapitre final contient des résultats concernant les déterminants de

matrices de Hankel ainsi que les preuves des résultats non démontrés

antérieurement.

Dans la suite, nous travaillerons toujours sur un corps de caractéristique
zéro.

2. Le théorème d'inversion de Lagrange

L'ensemble des séries formelles du type p(x) — V o:„x" telles que
O i / 0 (pour un corps de base fixé une fois pour toutes) constitue un groupe

pour la composition. L'inverse q(x) d'une telle série p(x) est uniquement
défini par l'équation q o p(x) — x, et d'ailleurs aussi par p o q(x) — x. Le

passage de p à q, qui est ce que nous appelons ici la réversion des séries,
est l'objet d'un théorème célèbre de Lagrange, qui semble avoir son origine
historique dans l'article [13].

Pour la coimnodité du lecteur, nous indiquons d'abord au théorème 1

une démonstration du théorème de Lagrange sans doute assez proche de

l'original, en suivant le joli article de Henrici [11]. Par ailleurs, le chapitre 7

contient une autre démonstration classique, basée sur la combinatoire des

mots de Lukasiewicz. Il existe de nombreuses autres présentations, dont [2],
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pages 158-161, [8], pages 15-18, [9], pages 129-133, [16], pages 145-149,

[18], pages 38-39 et [21], pages 128-136.

L'ensemble des séries formelles du type ,v(.v) — ,V"A" telles que .v(l / 0

constiUie un autre groupe pour la multiplication. Le passage de .v(.v) à I /s(x)
est ce que nous appelons ici l'inversion des séries, et nous y revenons aux

chapitres 3 et 5. Il faut néanmoins prendre garde au fait que de nombreux

auteurs utilisent le tenne "inversion" dans le contexte du théorème de Lagrange.

Soit g(x) 7„x" une série de Laurent formelle à une indéterminée,
où IV G Z et où les coefficients sont dans le corps de base; on pose 7,, — 0

pour n < N. Pour tout n G Z, nous écrivons |.v" |(y(.v}) le «-ième coefficient

7„ de g(y). Le théorème de Lagrange, ou de Lagrange-Bünnaim, établit une

relation entre les coefficients |x" |(V/(.v)) et les coefficients [.v"' ' ]

pour q(x) la réversion d'une série p(x) — avec on / 0.

THÉORÈME 1. Soient p(x) i CriV" une série formelle sans tenne

constant telle que aq 7^ 0, et q(x) la série du même type telle que

q o p(x) — p o q(x) — x. Alors

pour tous n,k G Z.

Démonstration (d'après [11]). Considérons une série de Laurent formelle

g(x) et la série de Laurent

g o q{x) 22 7jXJ

j>N

Nous obtenons d'abord

go qo p(x) - g(x) 22 AjP'ix)
j>N

en composant avec p(x) à la source, puis, pour n G Z arbitraire,

<•» mJÊÊx\ ^2"'p' " l(v)//(v)

en multipliant par p'(x)/p"+1(x).
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Nous allons appliquer deux règles de calcul très simples pour le calcul des

résidus. La première concerne les dérivées: jjg-"' \(li'(x)) - 0 pour toute série

de Laurent formelle //(.v) ; en particulier,

| V ]\(p' ' '( v)//(.v)) |.v 11 o

1pour j / «. La seconde concerne les dérivées logaritluniques : [v 11 ——^
V «(.vi /

pour toute série de puissance de la forme h(x) — J * öjX^ avec pfiff.
En égalant les résidus des deux membres de (*), nous trouvons donc

w iv-'i [sto-ßü) -e-'j(7,^) %

Comme le résidu de la série de Laurent -(g/p~")'(x) — — 9(X)P W
cs(

« np"(x) p"+1(.v)
nul, nous avons aussi

(***) "I-*"" I (g O q(.v» njn [A--1]
\p"(x)

En particulier, lorsque g{x) — xJ', nous avons

et le théorème résulte de ce cas de l'égalité (*"**).

REMARQUES, (i) Plus généralement, la formule (***) fournit le «-ièrne

tenue de la série de Laurent g o q(x) pour tout il / 0, et la fonnule (**)
pour « —- 0 s'écrit

I v"|<r/ o q(x)) [A"1] ^ gix)1'^

(ii) Si les eoefficients sont complexes et si le rayon de convergence de la

série p(x) est strictement positif, alors il en est de même de celui de q(x).

(iii) D'un point de vue numérique, la série de von Neumann (J //) 1

—

J — II o (J A- II o (J + pennet de calculer efficacement la réciproque

(J — 77)^!) d'une perturbation II d'ordre > 1 de l'identité J en un nombre

quelconque de variables. Cette fonnule est l'analogue compositionelle de la

règle de Homer : 1 + H(l + H(l + n
H'1 qui converge vers

'

pour H petit.
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EXEMPLES. Le théorème 1 ne s'applique bien au calcul des coefficients

de q que s'il est facile de déterminer les coefficients de ——
\p(x)

(i) Si p(x) - alors — l+,v et le théorème 1 implique [v"](g(v:)) 1

pour tout n > 1, en accord avec les égalités q(x) — — Y i
x" (Notons

que les deux séries p(x) et q(x) convergent dans le disque unité.)

(ii) Si p(x) — xe~x, on obtient sans peine q(x) — V,7 (Notons

que, dans ce cas, le rayon de convergence de p(x) est infini et celui de q est

_i ,•
n"'1 (n + 1)1

e hm — —
n—yoo n\ (n + 1]

(iii) De manière analogue, p(x) — xe~x2 donne q(x) — ^jr—v2j+1,
(Le rayon de convergence de p(x) est de nouveau infini tandis que la série

de q(x) converge absolument pour ..v < 1 / \/2c.

(iv) Coimne déjà mentionné, la formule d'inversion de Lagrange-Bürmann
n'est que rarement utile pour la réversion d'une série formelle. Des méthodes

différentes sont généralement beaucoup plus simples, I n tel exemple est la
fonction p(x2) — (sin.v)2 ; voir la page 130 de [21]. Nous ne savons pas utiliser
la formule de Lagrange pour prouver que la réversion de p(x) est donnée par

i L
la fonction hypergéométrique q(X) Y2j=l-i 22-,~1

,nj
l n calcul facile montre

f \j
cependant que q(x) est une solution (fonnelle) de l'équation différentielle

(v2 - x)y" + (x - i)/ + i 0.

En dérivant ç(sin2(y/i)) — z par rapport à z et en posant .v — sin2 %Jz, nous

trouvons
arcsin^/x

et ensuite
1 /. arcsinvv

q w ' '/5TT3,
Ceci montre que q(x) est également solution de l'équation différentielle ci-
dessus. LTn développement à l'ordre deux des deux séries pennet de conclure.

Les deux théorèmes qui suivent fournissent d'autres paires du type

(p(x). q(x)). L'aspect peut-être original de notre exposition consiste à faire

jouer un rôle important aux polynômes /', (et plus bas aux polynômes Q,

que nous voyons comme des développements limités des séries correspondantes.



272 R. BACHER ET B. LASS

Si .V(.V) 1= Y,'jZ0 SjA'j est une série entière et k un entier positif, nous notons

[s(x)\k — so "f-ip'+ * • • + At-i-*'4-1 son développement limité à l'ordre k— 1.

Considérons une série formelle .v(.v) — le"c <lue Ai / 0.

Définissons successivement

• les polynômes

Pilx) — so, Pity) So + soSiv,

P3(e) Sq + (SqS] + S0SxSo)v + (SqS2 + Sos|)A"2,

définis récursivement par PK(.v) — !\ \ (.v)s(.v) \ ;

• les constantes Q„(0) pe" \l'H(x), n > 1, obtenues en considérant les

coefficients de plus hauts degrés dans les polynômes Pfix), Pz(x). où

P„(x) est considéré coimne étant de degré n — 1 ;

• la série génératrice
OG

?(o 5ZÔ»(0)r"
n— 1

des nombres Q„(0).

THÉORÈME 2. La série formelle q(t) associée comme ci-dessus à

s(x) V; o SjXJ vérifie
q(t) ts(q(t)).

En posant p(x) — x/s(x), on retrouve deux séries p(x), q(x) telles que

q(t) ts(q(t))
K#)) - 7 o» ^?

s(<?(0) K#))
Avec ces nouvelles notations, le théorème 1 s'écrit comme suit:

Théorème 3. Si q(t) ts(q(t)), alors
oo 7. 1

q(t)k+1 ^ f—

ponr font A" £ {0,1,2, } ef, en particulier,
°°

<7(0
;

l v'; 'I K1)")
n—1

Nous offrons au chapitre 7 une autre preuve des théorèmes 2 et 3 (bien

que ce dernier ne soit rien d'autre qu'une reformulation du théorème 1). Cette

preuve, de nature combinatoire, n'est pas nouvelle. Elle consiste à interpréter
les mots de Lukasiewicz comme des arbres plans enracinés,
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3. La transformée inverse

Le but de ce chapitre est de décrire quelques aspects du groupe multiplicatif
constitué des séries formelles du type y].;x_0 sHx" avec .v() / 0. Rappelons

qu'une telle série définit une suite de polynômes P\ (.v) - s0., l\(x)
L-Pi_j(x) où Pk(x) est le développement limité à l'ordre k — 1 de

la série formelle l'i, - \ v) .v(.v). Introduisons maintenant les polynômes miroir
Q„(x) /x) et désignons par q(t) ~ YlT=i Ö«fÖ| t" la série génératrice
associée à la suite des évaluations Qi(0), Q2,(0),

Le résultat suivant exprime la série génératrice complète Q(x)

£«li Qn(x)f en fonction de q(t) :

Théorème 4. On a

Ce tliéorème sera démontré au chapitre 7. La preuve consiste à identifier les

monômes contribuant aux coefficients de q(t) avec les mots de Lukasiewicz.
Nous décrivons maintenant une interprétation en termes de "transformée

inverse continue" de cette égalité. Cette interprétation suggère une jolie
propriété des transfonnées de Hankel (décalées) de la série Q \ (x). Q2(*;) qui
sera énoncée au chapitre 6 et qui constitue le résultat principal dans cet article.

Soit a(t) oo + <h' + a212 + fl313 + fl4t4 + • • • une série génératrice.
Introduisons l'application l\ci(t) \ — a(r)/(l + fa(f)) appellée transformée
inverse puisque (1 + to(f))(l — r/[o(f)]) - 1. Par itération, on obtient

/r[o(r)] o(f)/(l ' xru(l)), ce qui pennet d'interpoler les itérées

OO

Ix(a(t)) Y I>M
it=0

de la transfonnée inverse. Le k— ième tenue fix) de la suite

Io(x) — flo, h v) fli — h(x) — Ü2 — 2aoaiX + UqV2,

est alors un polynôme de degré k en y.
Posons o(r) =3 — — 7 ôn(0)f" • Le tliéorème 4 s'énonce aussi sous

la fonne

t t 1 + xq(t) t

Autrement dit, on a: t l x\t~1 Q(0)| Q(—x) pour Q(x) — Qn(x)t".
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Remarque. On aurait tout aussi bien pu définir la transformée de Hankel
de a(t) par la formule l\ti(t)\ — a(t)/( 1 — ta(t)) ~ —/[—o(f)].

REMARQUÉS Un phénomène similaire d'interpolation continue se produit
également pour la composition itérée / — / o / o i / d'une série

fonnelle f(t) r + X^:=2flir' dont 'c développement à l'ordre 1 est l'identité;
ceci se généralise d'ailleurs facilement à un c/ uplct de séries formelles

F(tu td),... ,fd(ti, td)). Il existe alors une suite

Ci(v) 1, C2(x) - a2x, C,(.v) — (a|(jg — 1) + a3)x,

C+Qv) =; (((2A- — 3)a| + Süiogföx: — 1) + 2Û4)x/2,

avec C„(x) un polynôme de degré < n — 1 en x tel que f 'x(t) — <(* )?' •

Pour le démontrer on peut considérer la différence finie
OG /OC \ 1

C„(k T 1) — C„(k) — coefficient de f dans Cj(k)tj\
/=2 \j= 1 /

qui est un polynôme de degré au plus n — 2 en k (par récurrence sur n). On

peut également le déduire en utilisant un isomorphisme de monoïdes entre le

monoïde des séries formelles sans tenue constant (avec la composition des

séries comme produit) et un groupe de matrices triangulaires supérieures. Un
tel isomorphism© peut être donné par

/fll.l "1.2 "1.3 "1.4 > \
0 "2,2 "2,3 "2,4
0 0 "3,3 "3,4£<

v /
où yyjkt aï.,/XJ — anx")k ; voir par exemple le tliéorème 1.7a dans [10].

4. Exemples

Revenons aux exemples (i) et (ii) du chapitre 2.

EXEMPLE trivial. Considérons la série fonnelle v définie par le polynôme
1 4- x. On vérifie facilement que P„(x) — Q„(x) t= (1 + v)"-1 et q(t) —

f" A. Les tliéorèmes 1, 2 et 3 se réduisent alors à des identités
Uiviales et au théorème binomial, à savoir

f
_ t/d - t) t/( 1 - 0 _

1 - f(l + x) 1 - xt/( 1 - tf 1 + f/(l - t)
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et
£+1 oo

\ " " ] f« \ " (,l
1 -t) 2— n ll+li ^ \kn—k-\-1 n—k

tn+i
^

La transformée inverse de q(t)/t est donnée par / i ^ _ 1/(1—0 _i+t/a-o
et nous avons

1/(1-0
t J 1 +xt/( 1 — 0 1 — r(l —-0

oo 1 oo

t
n— 1 n— 1

en accord avec les résultats du chapitre 3.

L'exemple de l'exponentielle. Pour la série |j|| ex — E,^o if
définissant l'exponentielle, nous avons

(nx)j
P"W ~ E(wn z' în *—* j)

i=ö J

Eli effet, cette formule domie bien Pi — l et le calcul

- 5> ~^T7T—v TT ("(" + ^ ~ fifcf« + 1)*_1)
j\ (k — j)\ n k'. 7

1 -<B+1-*)<»+*
n -f- 1 A'!

du coefficient à1, 0 < k < n dans P„(x)e:' la montre par récurrence. Nous
obtenons ainsi

n :

-iQ„(X) «= Yl.j n" 1

¥-M
et

1 (nt)n
m E En"2Ettïï E -(n — 1)! n n\

n— 1 n— 1 «—1

en accord avec le théorème 3. Le théorème 4 implique les égalités

ri—1

(k + l)(n — k)nn 2 k kS^ (n ^\mm 1 k(n — m)z—' \n — m)
m—k

ri—m—1



276 R. BACHER ET B. LASS

pour tous les entiers n, k tels que n > k > 1. Pour finir, mentionnons la jolie
évaluation

5. Interpolation entre inversion ;et réversion d'kne série formelle

L'anneau C[ |.v11 des séries formelles est un anneau commutatif local dont
l'idéal maximal m — .vC[j v| | est l'ensemble des séries formelles sans terme

constant. Notons

le groupe multiplicatif formé des éléments inversibles de C[[.v| | et SU —

1 — m C U le sous-groupe des séries fonnelles de coefficient constant 1.

Notons

le groupe non-commutatif des séries formelles pour la composition. On a

V — xU en tant qu'ensemble et S'D — xSU — x — m2 peut être interprété

comme le sous-groupe des "difféomorphismes locaux formels tangents à

l'identité en 0".

Le but de ce chapitre est de décrire une défonnation naturelle continue

(qui est holomorphe pour des séries holomorphes) entre le groupe multiplicatif
commutatif SU et le groupe non-commutatif S'D (identifié à SU via la

bijection ensembliste A —¥ xA de SU sur S'D

L'action naturelle a A A o a de o C D sur un élément A G C[[.v||
agit par automorphismes sur U et SU et on peut donc former le produit
semi-direct I — U x D qui est un groupe pour la loi de composition

1 n ' n-* rri n"
^«(1) •= QdX) " Y](n -J)— } .f - y T -r.n /! ' /! il ni

j=o J j=o J j=o J

U - C[[x]] \ m - C* + m

oo

(A, a)(B, ß) - (C, -) - (A(H oa),ßo a)



DÉVELOPPEMENTS LIMITÉS ET RÉVERSION DES SÉRIES 277

où C — A(B o a) est le produit de la série A avec la série Boa. L'élément
inverse (A, a)-1 de (A, a) est donné par

(A'a)
1

(.1
• ci

1

'
'

où la réversion (ou série réciproque) rr~'' de a g V est définie par l'identité
a. o rr ~1 ' oq - x. On a les homomorphismes A i—i- (A. x) et

(A, a) i—> a (avec section a f—I (1, Ö-) provenant de la suite exacte scindée

évidente

0 —>U —>X-U »V —>V —» 1.

Notons SX — SU x SV le noyau Ker(L) de 1 'homomorphismc de groupes
4' : 2 —» C* x C* défini par ip{A, a) (A(0),a'(0)).

REMARQUE, (i) Le groupe I peut se généraliser facilement en considérant
le produit semi-direct l! x D où U est un groupe de gennes de fonctions
inversibles au voisinage d'un point P g X avec X un espace topologique et

où D est un groupe de gennes d'homéomorphismes avec point fixe X. En

particulier, on peut, au moins fonnellement, remplacer le groupe multiplicatif
U par le groupe multiplicatif des séries de Laurent non-nulles.

(ii) Le noyau SI — KcrQ;) — SU x SV est contractile pour une topologie
raisonnable sur C[[.v|| (obtenue par exemple en considérant la convergence
coefficient par coefficient). On a donc -, (I) — ~| (C x C Z2 pour le

groupe fondamental ~j(J) et on peut considérer l'extension centrale

0 —^Z2 —>ï —>1 —t \

définissant le revêtement universel I de X, obtenu en relevant l'extrémité des

chemins continus issus du neutre 1. x) g X ou, de manière équivalente, en

considérant des relèvements réels des arguments de A(0), <a'(0) g C* pour
(A, a) g X.

(iii) Le groupe abstrait X est isomorphe à un "sous-groupe de Lie" dans

les matrices triangulaires inférieures infinies, voir [1].

Pour la description de l'interpolation entre le groupe multiplicatif U
et le groupe non-commutatif V il faut soit se restreindre au sous-groupe
SX — SU x SV — Ker(g) qu'on pourrait appeller le groupe d'interpolation
spécial, soit travailler dans un groupe intermédiaire entre X et son revêtement

universel X. Nous allons décrire en détail le premier cas. Le deuxième cas

est traité brièvement dans [lf.
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Pour r G C, introduisons le sous-ensemble

sg(r) {(A,aAt) I AeSU= 1 + aC[[a]]} c SX

où l'on choisit l'unique détermination "continue" du logarithme des séries

formelles de manière à avoir AT - eTlogA G SU — 1 A vC[ [a | | pour A G SU.

PROPOSITION 1. (i) L'ensemble SÇ(T) est un sous-groupe pour tout

t G C.

(ii) Le groupe SÇ(0) est isomorphe au groupe commutât if SU.

(iii) Pour r 0 les groupes SQ(t) sont tous isomorphes au groupe non-

commutatif S'TD. Un isomorphisme est donné par a i—» ((cO^r®) ^ SQ(t)
pour a G SU.

COROLLAIRE 1. Pour r G [0,1], l'application

1

A o („vÂT)i _1)

est une déformation continue reliant l'inverse multiplicatif A de A G SU à

la série réciproque —- (aA)'-1^ de (xA) G SU.
Ao(.rA)(_1)

Idée de la preuve de la proposition 1. L'assertion (ii) est évidente. Un petit
calcul montre que l'application (A, à) i—» (ä (7)A est un automorphisme

de SI. En considérant À - r-1, on démontre facilement l'assertion (iii).
L'affirmation (i) est maintenant triviale.

REMARQUE. Une deuxième bijection naturelle entre LI et V est donnée

par o G 'D 1—f a' G U. L'application

1

TW^{J0A-)<"1>

(provenant de l'automorphisme (A, a) 1—> (A(a')x,a) de SX) pennet
d'interpoler entre A et la série réciproque

(fA'-'Sf—'\J0 / Jo A o (/0 A)

de JqA G SU associée à cette deuxième bijection, voir [1].
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6. La transformée de Hankel

Ce chapitre contient notre résultat principal, suggéré par le théorème 4 du

chapitre 3.

La «-ième matrice de Hankel H(n) d'une suite 5 (vo,5i,52, • est la

matrice symétrique dont les coefficients 0 < ij < n ne dépendent que
de la somme i +j des indices et sont donnés par hu — sj+s. La matrice Il(n)
dépend donc seulement de 5o,M, • La transformée de Hankel de 5

est alors définie comme étant la suite

det(Z/(l)) 5o, dct(/J(2)) s0s2 - vj. det(H(3)),

des déterminants des matrices de Hankel d'ordre 1,2,3, associées à s.
LTne fonnule de Hadamard (voir [7], page 30, voir aussi [14]) implique

que deux suites a et b 1(a) dont les séries génératrices sont reliées

par la transformation inverse ^2^L0b„f - °"f") / (* + >

ont même transformée de Hankel. Comme les polynômes /„(x) interpolent
les itérées de la transformée inverse, la transfonnée de Hankel de la suite

Ix(a) — (70(a-), /1 (a h(x), ne dépend pas de x.
Pour un entier k > 0, définissons la A--ième transformée de Hankel de

.v (.v0. ,V|. comme la suite

(dk.n det(//x.(//)))K j 2 ^k^k+2 — R-pl, • •

où //;(«) (Vi+j+i)ogi.i<H est la matrice de Hankel de taille « X « associée

à la suite décalée Sk, Vt+i, Rt+2,

Théorème 5. (i) La suite

det ((Ii+j+k(x))o<i.j<n)^^
^ ^ 3

de la k-ième transformée de Hankel de Ix(a) — (Io(x), /i(x), ne contient

que des polynômes de degré < k en x.
(ii) Le déterminant

det ((Q\ —/+/(v))o<Oy,';,7

pour Q\. Qi, associés à s(x) — so + ria + ria2 + comme dans le

chapitre 3, ne dépend pas de ij»

Remarqué., L'identité de condensation de Dodgson (cf. [12]) montre que
les déterminants d/,:JI vériûent l'égalité

dk—i,n+i dk • i./i i — fft—t.n dk+iji d^ n
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où l'on a posé dk.o — 1 pour tout k. Cette identité est parfois utile pour
calculer récursivement la transformée de Hankel (r%.n)n_12 à partir de

I — Ù •

7. Mots de Lukasiewicz et réversion des séries (Lagrange)

Ce chapitre est dévolu à l'étude des mots de Lukasiewicz, Les propriétés
de ces mots sont ensuite exploitées pour démontrer les théorèmes 2, 3 et 4.

Nous commençons par démontrer le théorème 4, qui équivaut à l'identité

OG

\xk I ^2 Q»W'= <?(f)i+1 •

n— 1

Soit
oo

v(v) Au • SjXJ

j= 1

une série formelle dont les coefficients Sj, sont des lettres qui ne

commutent qu'avec la variable .v. Comme au début, nous associons à \(x) la

suite des polynômes

Pl(X) : A'u. F24f)' 4 +

^(v) AQ "b (44.1 + AoACo)v + (4%: • •

définie de façon recursive par l\ (x) — _Pi,-i(x)s(x)\i,:. Notons P„(x) le

coefficient de i du polynôme P„(x). On a une bijection entre les monômes
de [x]P„(x) et les chemins sur N x N de (0,0) à (n. k) ne traversant pas la

diagonale y — x et qui n'utilisent que des pas (1,0), (0,1) orientés vers le

nord ou vers l'est. En effet, associons à s^s^s^ le chemin

ilX(0,l)+(l,0) + /2x(0,1) + (1,0)+i3 x (0,1) + (1,0)+ • • • +/'„ K (0,1) + (1,0)

(on a toujours i\ — 0). En particulier, le nombre de tels monômes contribuant

au coefficient [.v"-1]P„(x) de plus haut degré est donné par le nombre de

Catalan C„_i C'n-iïn* P°sons Ô«W — x"~1P„(l/x) où P„(X) est obtenu

en lisant à l'envers les monômes contribuant aux coefficients je je y • * • y
Je

de P„(x) :

Ql(.x) So, Qi(x) six + AjAo,

Qx(x) — A'u-W + (A i 4 + AqAiAoE" + SSSq "E iS§40>| • • •
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Munissons la lettre .v, du poids •«•( v,- i 1 et posons

w(skshsh SiJ «afe,3 + + tP{%) -( h

pour un mot sqs^s^ Sin de longueur n. Représentons un mot sq.-.s^
apparaissant dans Q„(x) par le chemin de sommets

n

(0, 0), - 1), (2, sh 4 Âit ~ 2), (n, -n + ^ ij) (h, • • %))
M

obtenu en concaténant les pas 1, — 1 associés à s,,, s,2,

FIGURE I

Le chemin associé au mot vos i.vq.vqv jsy) (dans /Wv))
et à son miroir jfjs§ssgpjjïi|«s0 (dans ßg(M)-

Les mots qui apparaissent dans Q„(0) — [a |Q«(v) sont les mots

de Lukasiewicz (voir [3]). Leur série génératrice est donnée par q(t) —

Qn(0)t" Remarquons que les mots de Lukasiewicz de ß„+i(0) sont

en bijection avec les parenthésages de longueur 2n comportant n parenthèses

ouvrantes et fermantes. Pour le voir on commence par supprimer la dernière

lettre Bß d'un mot de Lukasiewicz et on remplace ensuite une lettre s,t par le

mot de longueur k + 1 consistant en k parenthèses ouvrantes "(( • ((" suivi
d'une parenthèse fermante Pour le mot de Lukasiewicz SzMVilfcfeJiihJis

on obtient ainsi
S2 .So M V2 S2 So Sq

(0 0 (0 (0

LeMME 1- Le coefficient [a ]ß«(v) de Q„(x) est la somme de tous les

mots sqsq Sjk de longueur n et de poids
n

tr{Sj.\j:\j. sin) =• ^2 ij - n - (k + 1)

j= i

tels que wis^sqs^ - SiJ > —k pour tout h < n.
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Preuve. Le coefficient [L |/J„(v) est constitué de tous les mots s,; »

v;=1/y — k, qui vérifient les inégalités ^ =l I < 1 — 1 pour l =i 1, ...,«.
Le miroir J| .Sit de poids ïv(Sin - -ïfj) — V* |(/, — 1) — — (« — k) d'un

tel mot contribue au coefficient (.v"
1 Nous avons

n n—h

w(sin sin+1_h) -h + ]T ij ^ -h + k~Y^ ij
j=n+\-h j= 1

En utilisant la majoration i b —
11 ~ ^ ~ WOContrée ci-dessus, nous

avons pour h < n

w(sjn Sin+l_h) > —h + k — (n — 1 — h) > —(« — k)

Preuve du théorème 4. Soit .v,', • • % un mot de longueur n et de poids

w(sn .Sin) — b ~n — ~(k+ 1) contribuant au coefficient [L |0„(v) de

Q„ Un tel mot s'écrit de manière unique sous la forme % où
les mots /o, sont des mots de Lukasiewicz en .v(). ,V|, .v2, (voir la

remarque ci-dessous pour un exemple). En effet, soit a > 1 le plus petit indice
tel que SSjJsjj:... — 1t. Le mot Iq v(1 satisfait alors les conditions
du icmme 1 avec k - 0. C'est donc un mot de Lukasiewicz, De plus, c'est
le seul sous-mot initial de stl Sin qui soit de Lukasiewicz car un sous-mot

initial de la forme \ sib avec b < a est de poids ..sib) > 0. D'autre

part, un tel mot avec h > a ne peut à la fois être de poids —1 et vérifier les

conditions du lemme 1.

Si k — 0, le lemme 1 implique que a — n. Pour k > 0, on a a < n et

le complément .v,_i+ .v,i: est un mot de poids —k vérifiant de nouveau les

conditions du lemme L Par récurrence sur k, on a alors ,v(u+ fe - /1 ...//,
avec li, Iii des mots de Lukasiewicz. Ceci montre que l'ensemble des

mots formant le coefficient [v*]Q„(x) est l'ensemble des mots de longueur
« en so, 8%, obtenus en concaténant (k -!- 1) mots de Lukasiewicz. On a

donc l'égalité [a1]Q„(x) - |C |(/(/)"":
1

•

Remarque. La factorisation Sin /o - h d'un mot de poids
—(A +1 satisfaisant les conditions du lexmne 1 en (k— 1 mots de Lukasiewicz
est bien visible sur la représentation graphique introduite ci-dessus. Ainsi, pour
le mot .V().v3.V().V().v, .vq contribuant au coefficient 35_(0+3+()+0+1+0) - ,v de Q(,(x),

on obtient l0 — Vo h r3SoSoriro-

Preuve du théorème 2. Soit flrifW'B 1% un m°t de Lukasiewicz. Si

n — 1, alors le mot est égal à ,v(1. Si n > 2, alors > 1 et .v,2 s-,, s-,n est un
monôme de [.v'1 ~1 |Q,,_ i (.v). Il se factorise donc en 4 facteurs de Lukasiewicz.
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Ceci suggère de considérer la bijection suivante entre les mots de

Lukasiewicz et les arbres plans enracinés : Au mot de Lukasiewicz Sj. Vrv(, • V,:

on fait correspondre l'arbre plan de n sommets muni d'une racine de

degré /,. Les /) fils de la racine correspondent récursivement aux q facteurs

de Lukasiewicz du mot ,v/,,v/3 .v,n. Cette bijection se traduit par l'identité
q(t) — ts(q(t)) pour les séries génératrices.

è
/: N

/ : v

\
T

Figure 2

Le mot sgsosiïaSQ^oôsô. rendu cyclique.

Preuve du théorème 3. Le coefficient compte tous les mots

sin de longueur n qui sont de poids w(Si1Si2 Sjn) — Yl'Li h — " —

(h — k — 1) — h - —(le — 1 Ainsi le mot .vo.vo.viM.vo.voO.vo apparaissant dans

[x6|.v(.v)8 est de longueur 8 et de poids —2 et illustre le cas particulier
n — 8 et k — 1. Associons à un tel mot la suite «-périodique (bi-infinie) de

lettres ». avec sih pour tout h G Z.
Regardons la représentation graphique, c'est-à-dire la suite infinie de points

(-2, -wCri_AIO», (-l,-ttJfe0)), (0,0), (!.«<(*},)).

(2, w(Sj.sh)). (n, w(shsh sin)) - (n, -(k + 1)),

(« + 1. <r(.v,..v;, sin+l (« • 1. ~(k + 1) + W{sij%

(n + 2;w(shsh sin+2)) (« + 2, -(k •§- 1) + iu(si,viz)),

La suite des produits scalaires de ces points avec le vecteur (k -T 1,«) est

périodique et la longueur de la période est un diviseur de «. Supposons

que la valeur minimale de ces produits scalaires est prise sur le point
(h, Sjh)) avec h G {1, 2, ...,«}. Par ailleurs, h est unique (modulo

«) si k — 0. De toute façon, le mot Sih+lSik+2 SqSqSq sih apparaît
dans [ri' \Qn(x). On appelle ce mot un réarrangement cyclique de sqsq .sv...
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D'après la démonstration du théorème 1, ce réarrangement cyclique a une
factorisation canonique en k 4 l mots de Lukasiewicz. Parmi les n réarrangements

cycliques possibles de %,%•.% il y en a donc exactement (k — 1) qui
apparaissent dans [.ri lô„(.v) : les (k + 1) réarrangements cycliques des

facteurs de Lukasiewicz de Sih+1Sih+2 v/,. En effet, si l'on choisit

un réarrangement cyclique dont la première lettre n'est pas la première lettre

d'un facteur de Lukasiewicz, alors l'inégalité nécessaire pour l'appartenance
à [jri]Q„(x) n'est pas satisfaite pour le mot qui va jusqu'à la dernière lettre
du facteur précédent.

Ainsi, pour notre exemple .vo.vo.vi.savo.vo.sas'o représenté par la figure ci-
dessus, les facteurs de Lukasiewicz du mot cyclique bi-infiui sont délimités

par les intersections du graphe représentant ce mot avec la droite 4v - —6—x,

représentée en pointillé. Ses deux facteurs de Lukasiewicz sont donc v 1 vo.vo.v'o

et V3.V0.V0.V0. Parmi les huit réarrangements circulaires du mot V0V0.V1.V2.V0.V0.V3.V0,

il n'y a donc que vj V2.V0V0V3V0V0.V0 et .v3.vo.vo.vo.v1.v2.vo.vo qui apparaissent dans

Iv'ICVv).
Dans le cas général, on obtient ainsi une bijection

{mots
en s0, v 1. j

de longueur n et de >

poids — (k + 1) J

{produits
de (k +1) mots j

de Lukasiewicz de longueur >

totale n en s0, J

(k',mot) t—§ («', luk),

où luk est le réarrangement cyclique de mot qui appartient à [.ri |Q„(.v) et qui
fait apparaître la première lettre de mot dans le k' -ième facteur de Lukasiewicz
de luk («' correspond à la nouvelle place de la première lettre de mot). Cette

bijection implique l'égalité

(k + 1) n [f]q(t)k+1.

REMARQUE, Dans le contexte d'une variable t ne commutant pas avec
les variables v, il faudrait introduire la variable t devant chaque lettre, i.e.

q{t) tso + tsitso + fV2(Ao)2 + (tsi)2ts0

+ tSlitSoï' + ts2tsi(ts0)2 + ts2ts0tsits0 + tsits2(ts0)2 + (tVl)3fVo + • • •
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La dernière lettre d'un mot de Lukasiewicz sqsqs^ ..v,„ est toujours la

lettre ,v0 (i.e. i„ 0). Comme ir(\t - 0, le mot eu les lettres ,v0. s2, S3,

obtenu par suppression de toutes les lettres §3 dans un mot de Lukasiewicz
est encore un mot de Lukasiewicz. Appelons-le mot réduit de Lukasiewicz
et notons qSl=o(t) la série génératrice des mots réduits de Lukasiewicz. Nous

avons alors le résultat suivant, utile au chapitre 8

PROPOSITION 2. On a l'égalité entre séries génératrices

q(t) ?Sl=o((l - Ai)"1 t).

Preuve. Un mot de Lukasiewicz l — Si.Si,Si, .Sin qui ne contient pas la

lettre .v,, est le mot réduit de Lukasiewicz pour tous les mots de Lukasiewicz
de la forme .v, v,..vl'.v,..v| .v,; .s{sin avec k%s k2, A3, k„ e {0,1,2, }.

Le mot réduit l intervient avec une contribution de tsu tsi2 ts/, tsii:

dans la série génératrice qSl=o(t) des mots réduits. L'ensemble de tous

les mots de Lukasiewicz dont / est le mot réduit contribue donc avec

(1 — LsrUUvijll — tsi)~1tsi2... (1 — r.V|)~1 r.v,;u à la série génératrice q(t) de

tous les mots de Lukasiewicz.

7.1 Digression: Arbres binaires réguliers, arbres plans enracines
et mots de Lukasiewicz

LTn arbre binaire régulier est un arbre plan enraciné (modulo la relation

d'équivalence évidente) dont tous les sommets ont zéro ou deux enfants.

Notons Bn l'ensemble des arbres binaires réguliers avec n + 1 feuilles (et
2n + 1 sommets, 2n arêtes) et T„ l'ensemble des arbres plans enracinés

ayant n + 1 sommets (et n arêtes). Les deux ensembles B„, Tn ont même

cardinality!, donnée par le n— ième nombre de Catalan (2")/(n+ 1) (cf. par
exemple l'exercice 6.19d,e dans [18]). lue bijection entre ces deux ensembles

finis peut être décrite coimne suit: Un arbre binaire régulier B B„ possède

exactement n arêtes gauches (orientées NO) et n arêtes droites (orientées

NE). En contractant toutes les arêtes gauches (respectivement droites) de B

on obtient un arbre planaire enraciné Cl(B) (respectivement Cr(B)) dans T„
et on vérifie facilement que les deux applications Cr, Cr : B„ —> T„ sont

bijectives.

Désignons par X l'arbre "miroir" obtenu en réfléchissant un arbre X G B„
ou X G Tn par rapport à une droite verticale. On montre facilement l'identité
Cr(B) — C/ (B). En conjuguant 1'involution T 1—» T sur % par les bijections

Cr, Cr, 011 obtient ainsi deux involutions ir(B) — Cr1(Cr(B)) — C,"1 (Cr(B))
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Figure 3

Les deux arbres Ci(B), Cr(B) associés à un arbre binaire B.

et ll(B) — CL '(C/ iB)) — Cr1(Cl(B)) sur Bn. Une construction analogue,

à savoir ÏR — CR(CRl(T)) et i'i — C/(CR
' ('/ définit deux involutions

lr, li sur Il serait intéressant de comprendre les orbites dans B„
(respectivement T„ sous l'action du groupe diédral de générateurs i/>. //
(respectivement ÏR, 1/ En particulier, les points fixes de i,R (ou les points
fixes de // sont en bijection avec les arbres "symétriques" de T„ qui satisfont

T — T (au nombre de (l„/2|) tandis que les points fixes de îR (ou les points
fixes de {jj correspondent bijectivement aux arbres symétriques binaires de B„.
Le nombre d'arbres symétriques binaires réguliers est donné par le nombre
de Catalan /{m +1) pour n — 2m + 1 impair. Pour n > 0 pair de tels

arbres n'existent pas.

Pour terminer cette digression, mentionnons encore le fait (déjà rencontré
dans la preuve du théorème 2) que la suite /). in+1 des valences des

« + 1 sommets rencontrés pour la première fois lorsqu'on contourne un arbre

7" A 'T„ en partant de sa racine définit bijectivement un mot de Lukasiewicz

Sit • • .v,i:+ de longueur n + 1.

8. DÉTERMINANTS DE IlANKI.L

Le but de ce chapitre est la preuve du théorème 5. Pour cela, nous
introduisons les mots de Motzkin et rappelons quelques-unes de leurs propriétés.
Des études plus complètes sont contenues par exemple dans [5] et [19], voir
aussi [20].
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tJn chemin de Motzkin de longueur n est un chemin dans le premier
quadrant x. y > 0 qui relie l'origine (0,0) au point («, 0) en utilisant S pas
de la tonne (1,-1), (1,0) ou (1,1).

Figure 4

Un chemin de Motzkin de longueur 21 et ses 6: facteurs premiers.

Notons F(«) l'ensemble des chemins de Motzkin de longueur n. Chaque

7 T(n) est affecté d'un poids ?/•(-, défini comme le produit des poids
des différents arcs qui le constituent: un palier ((/', h), (i + 1,/;)) situé à la

hauteur h est affecté du poids p(h) ; une descente ((/'. h + 1 (i + 1, h)) de

la hauteur h + 1 à la hauteur h est affectée du poids q{h) ; enfin, chaque
montée ((/. h), (i — 1. h + 1)) est affectée du poids 1. Le poids m(';) est

ainsi un monôme en les variables (commutatives) p(0), /;( 1 p(2), ...et
q(0), q( 1 q(2), et on peut former la série génératrice

OC

c(u) =14* £«" £ "'<7)
n— 1 7GT(n)

1 + p(0)u + (p(0f + q(0))u2 + (p(0f + 2p(0)q(0) + p(l)q(0))u3 +

des chemins de Motzkin. Le chemin de Motzkin de longueur 21 représenté
ci-dessus contribue ainsi pour

p{0) 1 1 <7(1) p{ 1) 1 p(2) 1 q{2) <7(1) <7(0) 1 <7(0) p{0) p{0) 1 1 <7(1) 1 </(l) <7(0)

p(0)3p(l)p(2)<7(0)3<7(l)4<7(2)

au coefficient [m21]c(m).

Lhi chemin de Motzkin est premier s'il n'intersecte la droite horizontale
discrète Z x {0} qu'en ses extrémités (0,0) et (n. 0). Il est clair que tout
chemin de Motzkin premier est soit un palier à la hauteur 0 (valué /?(()) soit

commence avec une montée de la hauteur 0 à la hauteur 1, continue avec un
chemin de Motzkin (éventuellement vide) allant de la hauteur 1 à la hauteur 1

et se termine avec une descente de la hauteur 1 à la hauteur 0 (valuée <7(0)).
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De plus, tout chemin de Motzkin non vide se factorise de manière unique en

produit de chemins de Motzkin premiers (il suffit de considérer les sommets
situés à la hauteur 0). En itérant, on obtient immédiatement le théorème

suivant (voir [5]):

Théorème 6. Soit
OG OO

c(m) — 1 — ^ c„u" — 14- n" ^ wfy)
n— 1 n— 1 7T(n)

la fonction génératrice des chemins de Motzkin. Alors

c(u) —

1 — p(0)u —
q{0)ir

1 — p(l)it —
q(l)u

On appelle le développement du théorème précédent fraction continue de

Jacobi, ou encore J-fraction. Il permet d'exprimer les coefficients c„ d'une

série formelle à l'aide de chemins (de Motzkin). En fait, on a la généralisation
suivante. Soit

OC

d(u) — d0 + Y"* d„u" — ——r d0 c(u)
S 1-M0). £*

et soit D — (d/.ih i... x. la matrice de Hankel (infinie) associée à la suite

do, c/|. c/2. de série génératrice d(it). Nous dirons qu'un mineur de D est un
déterminant de Hatikel. I il tel mineur sera noté - '"'^j, en désignant

par 0 < «o < «i < • • • < &k et 0 < ßq < ßi <•< (h les indices respectifs
des lignes et colonnes du mineur extrait. Le coefficient mtj de la sous-matrice

associée à D(°j°'est doue donné par ixtfßj pour 0 < ij < k.

Regardons, pour 0 < i < k, les points A, — (—o,, 0) et £>, — (//,. 0).
La somme des valuations (relativement aux variables /?(()). p( 1 p(2),... et

1/(0), q( 1 1/(2),... des chemins de Motzkin allant de A, à Bj est cai+ß.,
le terme (/./) du déterminant C °t' C — (<••.,)(> x est la

matiice de Hankel associée à la série génératrice c{u). On peut donc énoncer

le théorème suivant (voir [19], chapitres IV et V, [20] ou [6]) :
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Théorème 7. On a

Oiî. OU, - • • 7 Ol \ ^-t '
^

DO • 7 03k

ß'Oißxi ßkj ° \Ä>, fta • - ßk,

4 '1
1 • • • who,

(«I S®. 717 —, Si)

où /o sommation est étendue aux paires formées par une permutation a Sn+1

er m«c configuration (jq, fi\, 71) de k + 1 chemins de Motzkin sans

sommets communs avec Jf| reliant Ai à pour tout 0 < i < k.

REMARQUE. Dans le théorème précédent, deux chemins de Motzkin 7; et

« peuvent s'intersecter en des points de la forme Z2 + (|, |) (de tels points
né sont pas considérés coimne étant des sommets).

Preuve. En omettant la condition "sans soimnets communs", on voit que
la somme est par définition du déterminant Cependant, si deux

chemins 7/ sjj ont un sommet commun, alors 011 peut continuer, à partir
du premier sommet commun rencontré, le premier chemin sur le second et

le second sur le premier. Il est évident que les contributions de ces deux

configurations s'annulent.

Le théorème précédent pennet de calculer le déterminant de certaines

matrices. On dénombre pour cela des chemins de Motzkin convenablement

pondérés.

Théorème 8. On a

1 r-, I Oo 7
OL I • • ' ; Ott \ ^ OL-0, 715 * • * 7 Ok \ ^ / 7 \ ,/ ,3 1 \de8«D( A, ß„ftj g<«"CU, A A

1 s («'-i)+W'-t)
et

wor+""'io(2: 2:::: £) î)
f ^0^ ^1 • • • 5 (%k — 1

avec />' (/v..du M X v
OO

bo + b„u"

A» A 7 • 7 Â-i

</(0)

o(1)M"=i l-p(l)« ^
2

</(->»
1 — p(2)u



290 R. BACHER ET B. LASS

En particulier,

Ko l' '1
k) ^Wîd)'"1?®'-2 q(k - 2fq(k - 1)

ne dépend pas de p{0), p(l), p(2),

Preuve. Pour que le degré

«o, op, oiA
_ 0 ,/ üu- otx, a%

ßo, ßu I ßk o/,<0) \.ß$h ßt, • • • j ßk

eu la variable /?(()) devienne maximal, il faut (et il suffit) que les configurations

(7o, 7i, satisfassent aux conditions suivantes : Le chemin 70

relie ,4(l à B() et reste toujours à la hauteur 0 (ceci domie une
contribution de p(Oyio+ai>). Le chemin 7-t commençant à A, (—a,, 0),
i {1,2, k}, reste à la hauteur 0 jusqu'à (—a,_i — 1,0) et monte
à (—n,_|, 1) ensuite (ceci donne une contribution de p(0)ai_tti-1_1 De

manière analogue, le chemin qui se termine à B; — (J/.0), i t {1.2. k},
descend de (ßi_1,l) vers (/3,_i + 1,0) et reste ensuite jusqu'à B, à

la hauteur 0 (ceci donne une contribution de f/(0)/j(0);''/_ ,''-| _l Ce

qui n'a pas encore été considéré n'est rien d'autre qu'une configuration
de k chemins de Motzkin (translatés par le vecteur (0,1)) deux à deux

disjoints qui relient les sommets (—«o, 1), (—«Ax, 1), {—£%_ 1,1) aux sommets

(rio-1), (/ii, 1), {ßk— 1,1)-

Preuve de l'assertion (i) du théorème 5. Soit a{u) — 00 + 01« + ö2«2 +
apB + o4m4 + • • • une série génératrice. Comme les tennes de la suite

(del ((/,.,.. \)>ci
J ; dépendent polynomialement de x et des

coefficients oo, fli, il suffit d'étudier le cas générique oo 76 0. Considérons
la transformée inverse continue l ' \a(u)\ — a(«)/(l xtta(u)). On a alors

tfr / m °° °°/ [ü(u)| — «0
a(u) + a0ux 1 _ U _ \ „ / t „ m i)V ao } \u a°u a\u)uL

et on remarque que

1 Ol Oo Oofl2 — O2 Oq03 — 2flofllfl2 + af
'i2 oqm a(u)u2

-u -

n'a pas de pôle en 0. On cherche à calculer le degré en x de l)(k Ja«-
où D est coimne ci-dessus. Le théorème 8 montre que ce degré est

< (n — 1) — (« — 1) + k + n — 1 — (n — 1) k ce qui prouve l'assertion (i) du
théorème 5.
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Remarque. Soit Âx la matrice de IIankel associée à la série I '\a(it)\.
Le théorème 8 montre l'égalité

|.v" ' '• 24|.L aU " '1 akS] aLn+1(-a0)Ql+ßk~2liA f®0' aU " ' ' ak~l
%&.s ftj • • ßkj %&.s ßl, • • j ßk-1

où A est la matrice de Hankel associée à la série \ —— 7^-7 • L'identité
u aou a(u)uz

0,1 4

est d'ailleurs une illustration de la dernière partie du théorème 8.

Preuve de l'assertion (ii) du théorème 5. En appliquant l'assertion (i) du
théorème 5 à l'identité / v[y ôn(0)t"] — 7 YLn- 1 Q«(~K)t"> nous pouvons

supposer _v — 0. On a maintenant le développement

qSi=o(u) — S0U + t<os2u3 "É Sos3u + (VqVt + 2.ÏQ.vrilË + • • •

u
t= s0

/m ?(°)M
1 - p(0)u —J

1 -/?(!)« 7^-
1 n\ q(^)u
1 — p(2)u

avec p{0) — 0, q{0) s0s2, p{ 1) — q{ 1) s0s2 + — - ^, • • • La
4*2 42 45

proposition 2 du chapitre 7 implique donc

q(u) q,. „ 1 — SjM

et nous avons

H

q '
1 - S\ u

S°
q(0)u2

1 - (41 + p{0)) u -3-
1 - (41 + p(i))u

1 - ifil + p(2)) u - q^U

L'assertion (ii) découle maintenant de la dernière partie du théorème 8.

Remarque, I -'identité

1 il cet \ \ I K

1 — tx
k—n—l

« ^2 y^k+t-n f+X



292 R. BACHER ET B. LASS

montre qu'on a

—— a (-J—") y an xk~" tk

cr-xf) 11 -<#)

pour a(t) — X]j^Loflnr"- La suite formée des coefficients b| —

est la transformée binomiale (de paramètre x) de la suite a — (a0, fljs •

Il découle de la preuve ci-dessus que deux suites reliées par une transformation
binomiale possèdent la même transformée de Hankel.

Les auteurs remercient Pierre de la Harpe et Frédéric Chapoton pour des

remarques et discussions intéressantes ainsi que le Fonds National Suisse de

la Rechercher Scientifique pour un soutien financier.
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