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INVARIANT D'HERMITE DU RÉSEAU DES FLOTS ENTIERS

D'UN GRAPHE PONDÉRÉ

par Florent BalaCHEFF

RÉSEMÉ. A tout graphe pondéré de premier nombre de Betti b est naturellement
associé un réseau de dimension b : le réseau des flots entiers. Nous démontrons ici
une majoration de l'invariant d'Hermite d'un tel réseau en fonction de b dont l'ordre
de grandeur est lnb. Cet ordre de grandeur est optimal: il est réalisé par l'invariant
d'Hermite du réseau des flots entiers associé à un graphe systoliquement économique.

ABSTRACT. To any weighted graph with first Betti number b is naturally associated
a lattice of dimension b : the lattice of integral flows. We give here an upper bound
of the Hermite invariant of such a lattice in terms of b, of order ln b. This order is
optimal : it is realized by the Hermite invariant of the lattice of integral flows associated
to a systolically economic graph.

Introduction

L'étude de la densité des réseaux d'un espace euclidien (R", {•,)) est un
sujet classique: étant donné un réseau A C R", le déterminant de A, noté

det(A), est le carré du volume euclidien du domaine fondamental du réseau

et sa nonne minimale est définie par

N(A) — min{{A, A) A G A \ {0}}.

L'invariant d'Hermite du réseau est la quantité

,A, N(A)
M } '

<AÜt(Ä)

et mesure la densité du réseau. La densité maximale en dimension n correspond
à la constante d'Hermite:

(1) 7„ sup{ytt(A) | A réseau de R"}
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Cette quantité est bien définie et vérifie l'encadrement suivant (voir [6]) :

« 1.744«
(2)

-, •

lire 27re

Dans la définition (1), on peut considérer la borne supérieure des invariants

d'Hennite non plus de tous les réseaux mais d'un sous-ensemble de réseaux

de R". P. Buser et P. Sarnak ont étudié dans [5] la borne supérieure des

invariants d'Hennite des réseaux symplectiques et ont montré qu'elle vérifiait
l'inégalité inférieure dans la formule (2). Ils ont également montré le résultat

suivant : la borne supérieure des invariants d'Hennite de l'ensemble des réseaux

associés aux jacobiemies de surfaces de Ricmatm de genre g, que l'on
notera îfm, vérifie

(3) c.In g < g 2g < - lu(4r/ + 3),
7r

où c est une constante positive et ln désigne le logarithme naturel. Rappelons

que si f et % sont des fonctions de N dans R, f\ < signifie

lunsup(î^+00(/1(«)//2(«)) < 1.

Le but de cet article est de prouver un résultat analogue pour la borne

supérieure des invariants d'Hennite de l'ensemble des réseaux des Ilots entiers

de graphes pondérés de premier nombre de Betti fixé. En effet, le réseau des

flots entiers d'un graphe pondéré est un des analogues unidimensionnels du
réseau associé à la jacobiemie d'une surface de Riemann. Rappelons tout
d'abord quelques débilitions.

I n graphe Y — (R, E) est un complexe simplieial de dimension 1. C'est
la donnée d'une paire d'ensembles (V. E), où R désigne les sommets et E
les arêtes. La valence d'un sommet est le nombre d'arêtes incidentes à ce

soimnet et un graphe sera dit k-régulier, pour k e N*, si la valence de

chacun de ses sommets est constante égale à k. Dans ce qui suit, les graphes

seront supposés connexes, finis et leurs sommets de valence au moins 2.

Un graphe pondéré est une paire (r, w) où L (R, E) est un graphe et

w: E —> R*+ est une fonction poids sur les arêtes. Nous dirons d'un graphe

pondéré (T. m) qu'il est combinatoire si la fonction poids w est constante

égale à 1, et nous le noterons simplement Y. Le type d'homotopie d'un graphe
donné Y — (V,E) est caractérisé par le nombre b\(T) de cycles indépendants,

appelé premier nombre de Betti ou nombre cyclomatique. On a la formule

/;i (T) — \È — |R| + 1 où |3f| désigne le cardinal d'un ensemble fini X. Notons

qu'à premier nombre de Betti fixé, les graphes considérés sont en nombre fini
à homéomorphisme près.



INVARIANT I )'! Il RMI I I. DU RÉSEAU DES FLOTS ENTIERS 257

Étant fixé un graphe pondéré (T, iv) de premier nombre de Betti b > 1,

nous rappelons la construction du réseau des Ilots entiers associé à ce graphe

(voir [2]). Nous introduisons pour cela l'ensemble E des arêtes orientées

de T (à chaque arête dans E correspondent deux arêtes orientées dans E) et

nous noterons ê e E l'opposée d'une arête orientée p | 1, Le poids w(e)
d'une arête orientée e E est naturellement défini comme le poids de l'arête

géométrique correspondante dans E. Soit

Cm,R) - {g : E -A R I fle G E, g(e) -g{e)}

l'espace des arêtes. C'est un espace euclidien pour le produit Scalaire défini par

{gug%).u, ij2tiie)gi(e)g2(e)
" £6E

pour tous gi. rj2 G C'(T. R). Nous pouvons définir un laplacien

A: C'(T.R) -À C(r,R)

par la fonnule

(Agm 2g(e) - ]T §(<>') - ^ g(e")
{e'Ç:E\e'^e et e'+—e-} {e"£E\e"^e et e" —e+}

où e+ et e- désignent respectivement la tête et la queue d'une arête

orientée e G E. Le noyau ker(A) de ce laplacien est un sous-espace vectoriel
b-dimensionnel de C-1 (F. R) appelé sous-espace des cycles (cet espace peut être

pensé comme l'espace des 1-formes harmoniques sur T) et dont l'intersection
avec le réseau C^r, Z) Cd'. R) des fonctions sur E à valeurs entières

définit le réseau des flots entiers

A(F, w) Cl(T%Z) n ker(A) C (ker(A), {•, •),„).

Posons

pi, — sup{//(A(r. w)) | (T. in) graphe pondéré de premier nombre de Betti b}.

Notre résultat principal s'énonce de la manière suivante:

Théorème. Pour b> 2,

(4) ^ log2 b < pb < 4 log2 b

où log2 désigne le logarithme en base 2.
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Nous pouvons, sous certaines restrictions, améliorer ces deux inégalités.

(i) Pour une infinité de valeurs il existe un graphe combinatoire
3 -régulier Gm de premier nombre de Betti b„, (construit dans [8]) pour lequel
(voir l'inégalité (9))

4
p(A(G„,)) > — log2 bm

9e

(ii) Tout graphe combinatoire T de prenuer nombre de Betti h > 2 dont la

valence en chaque sommet est au moins 3 vérifie (voir l'inégalité (10))

p(A(D)<21og2b.

La suite de cet article est consacrée aux démonstrations de ces résultats.

L'étude de l'invariant d'Hermite du réseau des flots entiers d'un graphe pondéré
est équivalente (voir les lemmes 2 et 3) à l'étude du problème combinatoire
suivant: étant donné un graphe combinatoire F dont les sommets sont de

valence 2 ou 3, borner inférieurement sa complexité, définie comme le nombre

d'arbres maximaux qu'il contient, par sa systole ou tour de taille (la plus

petite longueur d'un de ses circuits simples). Dans le premier chapitre, nous
donnons la démonstration de l'inégalité supérieure dans la formule (4), le point
clef étant une majoration classique de la systole d'un graphe combinatoire

3-régulier en fonction de son premier nombre de Betti (voir le leimne 4).
Dans le second chapitre, nous majorons pour tout graphe sa complexité par son
volume umdimensioimel, et obtenons ainsi à l'aide de graphes systoliquement
économiques - graphes dont le rapport volume sur systole est suffisamment

petit - l'estimée inférieure annoncée pour /)/,. Nous démontrons pour finir les

améliorations (i) et (ii).

1. Complexité et systole d'un graphe

Nous allons prouver la proposition suivante, qui démontre la majoration
de [>i, annoncée dans le théorème.

PROPOSITION 1. Pour tout graphe pondéré (L, w) de premier nombre de

Betti b >2,

(5)

Démonstration.

H(A(F,w)) < 4log2b.

Nous commençons par réduire le problème :
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I .1 MMI. 2. // suffit de démontrer la proposition pour tout graphe combi-

natoire de premier nombre de Betti b > 2 dont les sommets sont de valence
2 ou 3.

Démonstration. Étant donné un graphe pondéré (T, w) de premier nombre
de Betti b, nous pouvons construire facilement un graphe !" (V',E')
également de premier nombre de Betti b dont les sommets sont de valence 2

ou 3 et une fonction poids w1 : E' —t R+ sur I" tels que (F, w) soit obtenu
à partir de (F, w') en contractant les arêtes de poids nul en un point (voir
figure 1

w1 w'=0 w'=0 w'=0 w„

r r'
Eksbrb 1

Modification du graphe T au voisinage d'un sommet de valence n > 4

La forme bitinéaire symétrique définie sur C1 F, R pai'

- A w'(e')g[(e')g'2(e')
" e'eE'

n'est pas nécessairement un produit scalaire, puisqu'elle est dégénérée lorsqu'il
existe une arête orientée e' de poids w\e') - 0. Mais il résulte de ce

qui suit que cette forme est un produit scalaire sur le sous-espace des

cycles, de sorte que le réseau des flots entiers est encore bien défini, et

que ytt(A(r,w)) — p(A(F,w')).
Choisissons un arbre maximal 7" de F ; rappelons qu'il existe exactement

b arêtes géométriques de F qui ne sont pas dans T'. On note T' le sous-

ensemble de E' constiUié des paires d'arêtes orientées associées aux arêtes

de T'. Nous pouvons choisir une famille de chemins fermés simples et orientés

{-v(,... ,7;'} dans E' qui constitue une base du Z-module 77i(F,Z) de sorte

que pour chaque i e {1,... ,b}, les arêtes orientées de sont toutes dans T'
sauf une que nous notons e\ (voir par exemple le chapitre 5 de [3]). L'élément

/I G C1 (F, R) défini par
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1f1 si e' G t|
/>') -1 si e' G 7\

1u sinon.

est dans le réseau des flots entiers. Pour tout g'e A(r', w'), on vérifie que

f/ —
| !l'(c'j)f 'j est d'une part dans ker(A) et d'autre part à support dans T',

de sorte que / - £ï=i/(<?,')/! - 0 et engendre A(r',V).
Par ailleurs, les sont linéairement indépendants puisque les arêtes

géométriques sous-jacentes aux e[ sont distinctes. La famille {f\.... ,f 'h\

est donc une Z-base du réseau des flots entiers de (f. ir1). Après contraction
des arêtes de f' de poids nul, la famille 7^,} fournit une nouvelle

famille {71 ,...,7),} qui est encore une base de l'homologie entière de T

et dont la famille duale {/j,...,//,} est une base du réseau des flots entiers

A(T,w) vérifiant - (f'iJ'j)w, Pour 1 < b J S b. Les aflinnations

précédentes en découlent.

L'application /ti < : Rf; —» R+ w' M- /i(A(T', 'u/)) est continue et invariante

par composition avec les dilatations, d'où l'on déduit que pour tout e > 0, il
existe une fonction poids w'f sur L' telle que :

- pour toute arête e1 (E E', «' (V) e N,

- |/i(A(r,w))-MA(r', <))| <e.
Nous subdivisons alors chaque arête e1 de longueur w[ (e' G N* en

()•[(('') arêtes de longueur 1, ce qui ne modifie pas // (par un raisoimement

analogue au précédent). Nous obtenons ainsi un graphe combinatoire r' dont
les sommets sont de valence 2 ou 3 vérifiant //(A(r, w)) — //(A(rj < e et

ce pour tout e > 0. Ceci démontre le lemme.

Étant donné un graphe combinatoire L, nous introduisons les quantités
suivantes :

- La systole (ou tour de taille), définie comme la plus petite longueur d'un
circuit simple de T et notée sys(r).

- La complexité, définie comme le nombre d'arbres maximaux du graphe T

(voir [3]) et notée «(r).

LEMME 3. Etant donné un graphe combinatoire L de premier nombre de

Betti h > 1. nous avons l'égalité

ma(H)
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Démonstration. D'après la proposition 1 de [2], /VfÄ( T)) sys(T) et

det(À(r)) — k(T), d'où l'égalité annoncée.

Notre majoration revient donc à estimer inférieurement la complexité d'un
graphe combinatoire dont les sommets sont de valence 2 on 3 par sa systole.
Nous aurons besoin pour ce faire du leimne suivant:

LEMME 4. La systole d'un graphe F combinatoire 3 -régulier de premier
nombre de Betti b > 2 vérifie

sys(r) < 21og2 b.

Démonstration. Le principe de démonstration de cette inégalité est

classique (voir par exemple [7]). On commence par se fixer un sommet v de T.

Supposons tout d'abord que sys(r) est un entier pair. Nous minorons le

nombre d'arêtes |£j de F par le nombre d'arêtes d'une boule centrée en v
de rayon sys(r)/2 :

|£j > 3(2sys<r)/2 - 1).

Comme le premier nombre de Betti vérifie b \E\/3 + 1 pour un graphe

3-régulier, nous obtenons le leimne dans ce cas.

Supposons maintenant que sys(r) est un entier impair. Nous minorons le

nombre d'arêtes de F par le nombre d'arêtes d'une boule centrée en v de

rayon (sys(r) — l)/2 auquel on ajoute le nombre minimal d'arêtes situées à

une distance (sys(r) — l)/2 de v :

\E\ > 3(2'"wr> 11 2
1) + - 2l>vr.) i> 2

Ceci nous donne l'inégalité

sys(r) < 2log2(-y^) »

d'où le leimne dans ce cas.

Le leimne suivant implique alors la proposition 1.

I .l-.MMi: 5. Pour tout graphe combinatoire F de premier nombre de Betti
h > 2 dont les sommets sont de valence 2 ou 3,

(«)
4 log2b
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Démonstration. Tout d'abord, supposons que b — 2. Comme les sommets
de T sont de valence 2 ou 3, on a deux classes possibles pour T à

homéomorphisme près: la classe 8! et la classe 82 (voir ligure 2).

Dans un graphe de la classe 8,, tout arbre maximal est obtenu en

supprimant une arête de chaque boucle; la complexité d'un tel graphe est

donc le produit des nombres d'arêtes dans les deux boucles, et on en déduit

l'inégalité k(8|) > (sys(8i))2. Pour un graphe dans la classe 82, le choix
d'une arête dans chacun des deux chemins de longueur plus grande que

sys(82)/2 reliant les deux sommets de valence 3 nous fournit également un
arbre maximal, donc nous avons k(82) > (sys(82)/2)2.

Nous obtenons ainsi pour b 2 l'inégalité \J~k > sys/2, ce qui prouve
le lemme dans ce cas.

On suppose maintenant que b > 2. Si

où [a I désigne la partie entière d'un réel x, le résultat est immédiat car la

complexité d'un graphe est un entier non nul. Supposons donc

On note T le graphe défiai à partir de T de la manière suivante. Étant

donné un sommet v de valence 2, on considère le graphe obtenu en supprimant
le sommet § et les deux arêtes e\ et e2 incidentes à ce soimnet, et en ajoutant
une nouvelle arête reliant les deux soimnets restant de c, et e2 (voir figure 3).

On répète l'opération pour tout sommet de valence 2 et on obtient ainsi
le graphe T. C'est un graphe 3-régulier et on note /: T —» T l'application

8,

Figure 2

Les classes 8i et 82

sys(T)
2 log2b

sys(T) 1

> l
2 log2 b \ -



INVARIANT I )'! Il RMI I I. DU RÉSEAU DES FLOTS ENTIERS 263

/
V

Figure 3

Élimination d'un sommet de valence 2

topologique naturelle qui envoie homéomorpliiquement une suite maximale
d'arêtes adjacentes de F dont les sommets intennédiaires sont de valence 2

sur l'arête correspondante de F. Soit F une courbe réalisant la systole de F

et 7 son image réciproque par /.
Coimne sys(r) < 2log2b (par le lenmie 4), nous déduisons l'existence

d'une arête e G 7 C F telle que, si C — f~1 (e), on a

sys(r)
long(C) >

2 log2l

En effet, sinon, long(7) < (sys(r)/21og2 b) • sys(F) < sys(r), d'où une

contradiction.
Soit r \ C le graphe complémentaire de la suite d'arêtes adjacentes C

dans F : c'est un sous-graphe de F vérifiant b\(F\ C) - /; 1 T)- 1. Pour tout
arbre maximal T de F \ C et toute arête e de C, la réunion de T et des

arêtes de C distinctes de e est un arbre maximal de T. Les arbres maximaux
de T ainsi obtenus sont distincts deux à deux, de sorte que

«(r) > «(r \ c) •

sys(r)
2 log2 b

> Mr \ a sys(n
2(2 log, b)

Coimne sys(r \C) > sys(r), on obtient le résultat par récurrence sur h.
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2. Complexité et vöLUMB d'un graphe

Nous allons dans ce chapitre définir la notion de constante systolique pour
un graphe pondéré, et ensuite introduire une famille de graphes systoliquement
économiques. Cette famille nous pennet, à l'aide d'une majoration de la

complexité d'un graphe par son volume, de démontrer l'inégalité inférieure
annoncée dans la formule (4).

Étant donné un graphe pondéré (T. //•) de premier nombre de Betti h > 2,
le problème systolique peut être fonnulé comme suit. On définit le volume

systolique de (F,to),

^ Vol(F, w)
tffT., w) ——-

sys(l, w)
où Vol(r, w) désigne le 1 -volume de (r, w) (la somme des poids de ses

arêtes), puis la constante systolique de F,

<t(F) inf cr(r, w),
W

où l'infimum est pris sur l'ensemble des fonctions poids de T. D'après [4],

3 b- 1

(7) cr(F) > -2 log2(ù - 1) + log2 log2(ù - 1) + 4

Il a été démontré dans [1] qu'il existe pour chaque b > 2 un graphe
combinatoire de premier nombre de Betti b, que nous noterons T/, et que

nous appellerons systoliquement économique, vérifiant asymptotiquement

Vol(Ffc) ^ 6
b

sys(r6) ~ log2 b
'

Nous minorons maintenant l'invariant d'Hennite du réseau des Ilots entiers

d'un graphe pondéré par son volume systolique comme suit:

PROPOSITION 6. Pour tout graphe pondéré (r, w) de premier nombre de

Betti b > 1,

s[b\
p(A(r, w)) > ——-

(7(1 W)

Démonstration. Par une argumentation similaire à celle du lemme 2,
nous nous ramenons à un graphe combinatoire. On estime supérieurement la

complexité de ce graphe par son volume de la manière suivante. Tout arbre

maximal T de F est entièrement déterminé par les b arêtes de F \ I, ce qui
nous dorme
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A'oifrA vonn»
K(r,sV b )-^r-

où (Vo}'r>) désigne le coefficient binomial. On en déduit immédiatement le

résultat.

Les graphes L, vérifient donc

1 \/b\
//(A(I',*,)) > - — log2b,

d'où la minoration annoncée en (4) par application de la formule de Stirling :

(8) ß(A(rb))> -î-log2ù.
oe

Pour conclure, nous expliquons les améliorations (i) et (ii) annoncées en

introduction.

(i) Nous pouvons, en utilisant les familles de graphes à grand tour de taille
mises en évidence dans [8], améliorer pour certaines valeurs de b l'estimée (8).
G. À. Margulis a construit, pour une famille infinie de valeurs, une

famille {G„,}m de graphes 3-réguliers de premier nombre de Betti

pour lesquels
4

sys(Gm) > - log2 bm

Nous en déduisons

(9) p(A(G„,)) > ^ log2 bm

(ii) Si l'on se restreint à certains graphes, nous pouvons estimer

supérieurement l'invariant d'Hennite du réseau des flots entiers par l'inverse
du volume systolique :

PROPOSITION 7. Pour tout graphe combinatoire T de premier nombre de

Betti b > 2 dont chaque sommet est de valence au moins 3,

p(A(D) < 3(b - l)^—*m V " - Vol(P)

Démonstration. Coimne la valence en chaque sommet du graphe est au
moins 3, on a l'inégalité

Yol(P) < 3(b 1).

Donc

,.(A(r» < sys(r) < VoKDÏHO < 3,4 - 1)5!«_ w.iiTj - voifo
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On en déduit une amélioration de l'inégalité (5) pour cette classe de

graphes, en vertu de l'estimée systolique (7): pour tout graphe F dont chaque

sommet est de valence au moins trois et de premier nombre de Betti b >2,

(10) p(A(D) < 2(log2(h - 1) + log2lög2(h - 1) + 4) < 21og2 b.
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