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L’Enseignement Mathématique (2) 52 (2006), 255-266

INVARIANT D’HERMITE DU RESEAU DES FLOTS ENTIERS
D’UN GRAPHE PONDERE

par Florent BALACHEFF

RESUME. A tout graphe pondéré de premier nombre de Betti b est naturellement
associé un réseau de dimension b: le réseau des flots entiers. Nous démontrons ici
une majoration de I'invariant d’"Hermite d’un tel réseau en fonction de & dont 1'ordre
de grandeur est Inb. Cet ordre de grandeur est optimal: il est réalisé par I'invariant
d’Hermite du réseau des flots entiers associé 4 un graphe systoliquement économique.

ABSTRACT. To any weighted graph with first Betti number 5 is naturally associated
a lattice of dimension b: the lattice of integral flows. We give here an upper bound
of the Hermite invariant of such a lattice in terms of b, of order Inb. This order 1is
optimal : it is realized by the Hermite invariant of the lattice of integral flows associated
to a systolically economic graph.

INTRODUCTION

L’étude de la densité des réseaux d’un espace euclidien (R”, (-, }) est un
sujet classique : étant donné un réseau A C R”", le déterminant de A, noté
det(A), est le carré du volume euclidien du domaine fondamental du réseau
et sa norme minimale est définie par

N(&) = min{(X, ) | A € A\ {0}}.
Linvariant d’Hermite du réseau est la quantité

N(A)
v/ det(A)

et mesure la densité du réseau. La densité maximale en dimension n correspond
a la constante d’Hermite

WA) =

(1) ~n = sup{s(A) | A réseau de R"}.
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Cette quantité est bien définie et vérifie I’encadrement suivant (voir [6]):

@) L )
2me

Dans la définition (1), on peut considérer la borne supérieure des invariants
d’Hermite non plus de tous les réseaux mais d’'un sous-ensemble de réseaux
de R". P. Buser et P. Sarnak ont étudié dans [5] la borne supérieure des
invariants d’Hermite des réseaux symplectiques et ont montré qu’elle vérifiait
I'inégalité inférieure dans la formule (2). Ils ont également montré le résultat
suivant : la borne supérieure des invariants d’'Hermite de I’ensemble des réseaux
associés aux jacobiennes de surfaces de Riemann de genre g, que l'on
notera 12, , vérifie

2rme

3
3) clng $n2 S ;ln(4g—|—3),

oll ¢ est une constante positive et In désigne le logarithme naturel. Rappelons
que si fi; et f, sont des fonctions de N dans R, fi < f, signifie

limsup,_, , . (f(n)/fa(n) < 1.

Le but de cet article est de prouver un résultat analogue pour la borne
supérieure des mvariants d’Hermite de I’ensemble des réscaux des flots entiers
de graphes pondérés de premier nombre de Betti fixé. En effet, le réseau des
flots entiers d’un graphe pondéré est un des analogues unidimensionnels du
résecau associé a la jacobienne d’une surface de Riemann. Rappelons tout
d’abord quelques définitions.

Un graphe I’ = (V,E) est un complexe simplicial de dimension 1. C’est
la domnée d’une paire d’ensembles (V,E), o V désigne les sommets et £
les arétes. L.a valence d’un sommet est le nombre d’arétes incidentes a ce
sommet et un graphe sera dit k-régulier, pour k € N*, si la valence de
chacun de ses sommets est constante égale & k. Dans ce qui suit, les graphes
seront supposés connexes, finis et leurs sommets de valence au moins 2.
Un graphe pondéré est une paire (I',w) ou I' = (V,E) est un graphe et
w: E — RY est une fonction poids sur les arétes. Nous dirons d’un graphe
pondéré (I',w) qu’il est combinatoire si la fonction poids w est constante
égale & 1, et nous le noterons simplement I'. Le type d’homotopie d’un graphe
donné I' = (V, E) est caractérisé par le nombre b;(I') de cycles indépendants,
appelé premier nombre de Betti ou nombre cyclomatique. On a la formule
by(T) = |E|—|V|+1 ou |X| désigne le cardinal d’un ensemble fini X. Notons
qu’a premier nombre de Betti fixé, les graphes considérés sont en nombre fini
a homéomorphisme pres.
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Ftant fixé un graphe pondéré (I',w) de premier nombre de Betti b > 1,
nous rappelons la construction du réseau des flots entiers associé a ce graphe
(voir [2]). Nous introduisons pour cela I'ensemble E des arétes orientées
de ' (a chaque aréte dans E correspondent deux arétes orientées dans E) et
nous noterons ¢ € E 'opposée d’une aréte orientée ¢ € E. Le poids w(e)
d’une aréte orientée ¢ € E est naturellement défini comme le poids de 1’aréte
géométrique correspondante dans E. Soit

C'(IR)={g: E—=R|VYecE, g()=—gle))}

I’espace des arétes. C’est un espace euclidien pour le produit scalaire défini par

1
(g1, 02),, = 5 > wi@gi(e)gale)

ecE
pour tous gi, g, € CY(I',R). Nous pouvons définir un laplacien
A: CY(T,R) — CY(T',R)
par la formule

(Ag)e) = 2g(e) — > g(e) — > gt

{¢'€E|e'#E et o =e_} {e""E€E|e/"#& et e/ =e, }

ol e+ et e_ désignent respectivement la tete et la queue d’une aréte
orientée e € E. Le noyau ker(A) de ce laplacien est un sous-espace vectoriel
b-dimensionnel de C1(T", R) appelé sous-espace des cycles (cet espace peut &tre
pensé comme 1’espace des 1-formes harmoniques sur I') et dont I'intersection
avec le réseau CY(I',Z) € CY(I',R) des fonctions sur E 2 valeurs enticres
définit le réseau des flots entiers

AT, w) = CI', Z) Nker(A) C (ker(A), (-, -}.,) .
Posons
pp = sup{ (AT, w)) | (I',w) graphe pondéré de premier nombre de Betti b}.

Notre résultat principal s’énonce de la mani¢re suivante :
THEOREME. Pour b > 2,
|
“h Ge log, b 5 pr <4logy b,
e

ou log, désigne le logarithme en base 2.
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Nous pouvons, sous certaines restrictions, améliorer ces deux inégalités.
(1) Pour une infinité de valeurs {bp}m, 1l existe un graphe combinatoire

3-régulier G,, de premier nombre de Bett b,, (construit dans [8]) pour lequel
(voir I’'inégalité (9))

4
HAG)) 2 5 l0g; b
e

(i1) Tout graphe combinatoire I' de premier nombre de Betu » > 2 dont la
valence en chaque sommet est au moins 3 vérifie (voir I'inégalité (10))

HAT)) < 2log, b.

La suite de cet article est consacrée aux démonstrations de ces résultats.
L’étude de I'invariant d’Hermite du réseau des flots entiers d’ un graphe pondéré
est équivalente (voir les lemmes 2 et 3) a I’étude du probleme combinatoire
suivant: étant donné un graphe combinatoire ' dont les sommets sont de
valence 2 ou 3, borner inférieurement sa complexité, définie comme le nombre
d’arbres maximaux qu’il contient, par sa systole ou tour de taille (la plus
petite longueur d'un de ses circuits simples). Dans le premier chapitre, nous
donnons la démonstration de 'inégalité supérieure dans la formule (4), le point
clef étant une majoration classique de la systole d’un graphe combinatoire
3-régulier en fonction de son premier nombre de Betti (voir le lemme 4).
Dans le second chapitre, nous majorons pour tout graphe sa complexité par son
volume unidimensionnel, et obtenons ainsi a 1’aide de graphes systoliquement
économiques — graphes dont le rapport volume sur systole est suffisamment
petit — I'estimée inférieure annoncée pour pp. Nous démontrons pour finir les
améliorations (1) et (i1).

1. COMPLEXITE ET SYSTOLE D'UN GRAPHE

Nous allons prouver la proposition suivante, qui démontre la majoration
de p, annoncée dans le théoreme.

PROPOSITION 1. Pour tout graphe pondéré (I',w) de premier nombre de
Betti b > 2,

5 (AT, w)) < 4log, b.

Démonstration. Nous commencons par réduire le probléme :
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LEMME 2. 1l suffit de démontrer la proposition pour tout graphe combi-

natoire de premier nombre de Betti b > 2 dont les sommets sont de valence
2 ou 3.

Démonstration. Ftant donné un graphe pondéré (I', w) de premier nombre
de Betti b, nous pouvons construire facilement un graphe TV = (V' E')
également de premier nombre de Betti £ dont les sommets sont de valence 2
ou 3 et une fonction poids w’: E' — Ry sur I tels que (', w) soit obtenu
a partir de (T, w’) en contractant les arétes de poids nul en un point (voir
figure 1).

FIGURE 1

Modification du graphe I au voisinage d’un sommet de valence n > 4

La forme bilinéaire symétrique définie sur C'(I",R) par

1
(1920 = 5 D w'(@gi(gae)

e/ cE’

n’est pas nécessairement un produit scalaire, puisqu’elle est dégénérée lorsqu’il
existe une aréte orientée ¢’ de poids w'(e’) = 0. Mais il résulte de ce
qu suit que cette forme est un produit scalaire sur le sous-espace des
cycles, de sorte que le réseau des flots entiers est encore bien défini, et
que (AT, w)) = (AT, ).

Choisissons un arbre maximal 7”7 de T ; rappelons qu’il existe exactement
b arétes géométriques de IV qui ne sont pas dans 7. On note T’ le sous-
ensemble de E’ constitué des paires d’arétes orientées associées aux arétes
de 77. Nous pouvons choisir une famille de chemins fermés simples et orientés
{¥{,--.,7} dans E' qui constitue une base du Z-module H(I"',Z) de sorte
que pour chaque i € {1,...,b}, les arétes orientées de ~; sont toutes dans T’
sauf une que nous notons ¢/ (voir par exemple le chapitre 5 de [3]). L'élément
fie cHI’,R) défini par
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1 si e €9}
fitehy=+< -1 sie €
0 sinon .

est dans le réseau des flots entiers. Pour tout ¢’ A, w’), on vérifie que
g — 2?21 g'(e))f! est d’'une part dans ker(A) et d’autre part a support dans T’,
de sorte que ¢ — 2?21 geNfi=0cet {f1,....f,} engendre AT, w’).
Par ailleurs, les f/,...,f}, sont linairement indépendants puisque les arétes
géoméltriques sous-jacentes aux e; sont distinctes. La famille {f{,...,f}}
est donc une Z-base du réseau des flots entiers de (I, w’). Aprés contraction
des arétes de T de poids nul, la famille {~{,...,~,} fournit une nouvelle
famille {v,...,75} qui est encore une base de ’homologie enticre de T
et dont la famille duale {f,...,f;} est une base du réseau des flots entiers
AT, w) vérifiant (f;,f;), = (fﬁ,fj’} pour 1 < i, j < b. Les affirmations
précédentes en découlent.

w!

I application pp : RJ:T_’ — Ry, w' — (AT, w')) est continue et invariante
par composition avec les dilatations, d’ot I'on déduit que pour tout ¢ > 0, il
existe une fonction poids w! sur T telle que:

— pour toute aréte ¢ € E', wi(e’) €N,

= [(AT, w)) — AT, w | <e.

Nous subdivisons alors chaque aréte ¢ de longueur w!.(¢’) € N* en
wi(e') arétes de longueur 1, ce qui ne modifie pas p (par un raisonnement
analogue au précédent). Nous obtenons ainsi un graphe combinatoire I', dont
les sommets sont de valence 2 ou 3 vérifiant |p(AT, w)) — u(ATL))| < € et
ce pour tout € > 0. Cect démontre le lemme.

/

Etant donné un graphe combinatoire I', nous introduisons les quantités
suivantes :

— La systole (ou tour de taille), définie comme la plus petite longueur d’un
circuit simple de I et notée sys(I').

— La complexité, définie comme le nombre d’arbres maximaux du graphe I’
(voir [3]) et notée w(I).

LEMME 3. Etant donné un graphe combinatoire T de premier nombre de
Betti b > 1, nous avons [’égalité

sys(I)
Ved)

pAD)) =
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Démonstration. D’apres la proposition 1 de [2], N(A(T)) = sys(I') et
det(A(I")) = r(I'), d’ol 1’égalité¢ annoncée.

Notre majoration revient donc a estimer inférieurement la complexité dun
graphe combinatoire dont les sommets sont de valence 2 ou 3 par sa systole.
Nous aurons besoin pour ce faire du lemme swmvant:

LEMME 4. La systole d’un graphe I combinatoire 3-régulier de premier
nombre de Betti b > 2 vérifie

sys(I) < 2log, b.

Démonstration. le principe de démonstration de cette inégalité est clas-
sique (voir par exemple [7]). On commence par se fixer un sommet v de T.
Supposons tout d’abord que sys(I') est un entier pair. Nous minorons le
nombre d’arétes |E| de I' par le nombre d’arétes d’une boule centrée en v
de rayon sys(I')/2:
|E| > 3@ ™2 _ 1),

Comme le premier nombre de Betti vérifie b = |E|/3 + 1 pour un graphe
3-régulier, nous obtenons le lemme dans ce cas.

Supposons maintenant que sys(I') est un entier impair. Nous minorons le
nombre d’arétes de I' par le nombre d’arétes d’une boule centrée en v de
rayon (sys(I') — 1)/2 auquel on ajoute le nombre minimal d’arétes situées a
une distance (sys(I') — 1)/2 de v:

|E| > 3&sD=D/2 _ 1y 4 3 a1z
o 2
Ceci nous donne 1'inégalité

sys(I) < 210g2(§b) 5

d’ott le lemme dans ce cas.
Le lemme suivant implique alors la proposition 1.

LEMME 5.  Pour tout graphe combinatoire I de premier nombre de Betti
b > 2 dont les sommets sont de valence 2 ou 3,

b sys()
(6) v R(T) > Thog, b’
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Démonstration. 'Tout d’abord, supposons que b = 2. Comme les sommets
de T' sont de valence 2 ou 3, on a deux classes possibles pour I' a
homéomorphisme prés: la classe 8; ¢t la classe 8, (voir figure 2).

FIGURE 2
Les classes 81 et &

Dans un graphe de la classe 8;, tout arbre maximal est obtenu en
supprimant une aréte de chaque boucle; la complexité dun tel graphe est
donc le produit des nombres d’arétes dans les deux boucles, et on en déduit
Iinégalité (8;) > (sys(8;))?. Pour un graphe dans la classe 8,, le choix
d’'une aréte dans chacun des deux chemins de longueur plus grande que
sys(82)/2 reliant les deux sommets de valence 3 nous fournit également un
arbre maximal, donc nous avons r(8,) > (sys(82)/2)*.

Nous obtenons ainsi pour b = 2 I'inégalité /x > sys /2, ce qui prouve
le lemme dans ce cas.

On suppose maintenant que b > 2. Si

sysd | 0
2log, b ’

ou [x] désigne la partie entiecre d’un réel x, le résultat est immédiat car la
complexité d’un graphe est un entier non nul. Supposons donc

sys(I) - i
2log, b| —

On note T le graphe défini & partir de T' de la manitre suivante. Ftant
donné un sommet v de valence 2, on considere le graphe obtenu en supprimant
le sommet v et les deux arétes e; et e, incidentes a ce sommet, et en ajoutant
une nouvelle aréte reliant les deux sommets restant de ¢y et ¢, (voir figure 3).

On répete 1’opération pour tout sommet de valence 2 et on obtient ainsi
le graphe [. C’est un graphe 3-régulier et on note f: ' — rr application
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FIGURE 3

Elimination d’un sommet de valence 2

topologique naturelle qui envoie homéomorphiquement une suite maximale
d’arétes adjacentes de T dont les sommets intermédiaires sont de valence 2
sur I’aréte correspondante de T, Soit 4 une courbe réalisant la systole de r
et v son image réciproque par f.

Comme sys(f) < 2log, b (par le lemme 4), nous déduisons I existence
d’une aréte e € § C T telle que, si C =f"!(e), on a

sys(I')

long(C) > .
ong(C) 2 2log, b

En effet, sinon, long(y) < (sys(I')/2log, b) - sys(I:) < sys(I'), d’oit une
contradiction.

Soit T'\ C le graphe complémentaire de la suite d’ arétes adjacentes C
dans T': ¢’est un sous-graphe de I' vérifiant by(I"\ C) = by(I') — 1. Pour tout
arbre maximal 7 de T\ C et toute aréte ¢ de C, la réunion de 7 et des
arétes de C distinctes de ¢ est un arbre maximal de I'. Les arbres maximaux
de T" ainsi obtenus sont distincts deux a deux, de sorte que

sys(I') sys(I')
2log, b 2(2log, b)

n(r)m(r\c*)-[ }M(r\(s)-

Comme sys(I' \ C) > sys(I'), on obtient le résultat par récurrence sur b.
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2. COMPLEXITE ET VOLUME D’UN GRAPHE

Nous allons dans ce chapitre définir la notion de constante systolique pour
un graphe pondéré, et ensuite introduire une famille de graphes systoliquement
économiques. Cette famille nous permet, & 1’aide d’une majoration de la
complexit€é d’un graphe par son volume, de démontrer I'inégalité inférieure
annoncée dans la formule (4).

Ftant donné un graphe pondéré (I', w) de premier nombre de Betti b > 2,
le probleme systolique peut étre formulé comme suit. On définit le volume

systoligue de (I, w),

~ Vol(T'", w)
W)= )

ou Vol(I', w) désigne le 1-volume de (I',w) (la somme des poids de ses
arétes), puis la constante systolique de T,

o) =inf o(T", w),

ou l'infimum est pris sur I’ensemble des fonctions poids de I'. D’apres [4],
T) > b—1
T8 = 2log,(b— 1) + logy log,(b— 1) — 4

@)

I1 a été démontré dans [1] qu’il existe pour chaque b > 2 un graphe
combinatoire de premier nombre de Betti b, que nous noterons I'j, et que
nous appellerons systoliqguement économique, vérifiant asymptotiquement

VolTy) _ b
sys(Tp) ™~ log, b~

Nous minorons maintenant 1'invariant d’Hermite du réseau des flots entiers
d’un graphe pondéré par son volume systolique comme suit:

PROPOSITION 6.  Pour tout graphe pondéré (I',w) de premier nombre de

Betti b > 1,
Vb!

AT, w)) > oT.0)

Démonstration. Par une argumentation similaire a celle du lemme 2,
nous nous ramenons a un graphe combinatoire. On estime supérieurement la
complexité de ce graphe par son volume de la maniére suivante. Tout arbre
maximal 7" de T est entierement déterminé par les b arétes de T'\ 7', ce qui
nous donne
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Vol(T)\ _ Vol(T)
fi(l")<( b )< o

désigne le coefficient binomial. On en dédut immédiatement le

oi (A7)

résultat.

Les graphes T, vérifient donc

18!
(AT ) 2 e h log, b,

d’ol la minoration annoncée en (4) par application de la formule de Stirling:

1
@) WAL 2 = logy b.

Pour conclure, nous expliquons les améliorations (i) et (1) annoncées en
mtroduction.

(1) Nous pouvons, en utilisant les familles de graphes a grand tour de taille
mises en évidence dans [8], améliorer pour certaines valeurs de b 1’estimée (8).
G. A. Margulis a construit, pour une famille infinie {b,,}, de valeurs, une
famille {G,}, de graphes 3-réguliers de premier nombre de Betti {b,,},
pour lesquels

4
sys(G,,) 2 3 log, b,, .
Nous en déduisons

4
) wAG) Z % log, by, .

(i) Si l'on se restreint a certains graphes, nous pouvons estimer
supérieurement 1'invariant d’Hermite du réseau des flots entiers par l'inverse
du volume systolique :

PROPOSITION 7. Pour tout graphe combinatoire T de premier nombre de
Betti b > 2 dont chaque sommet est de valence au moins 3,
sys(I')
Vol(T)

pAI)) < 3(b—1)

Démonstration. Comme la valence en chaque sommet du graphe est au
moins 3, on a 'inégalité

Vol(I") < 3(h — 1).

Donc

VD) ¢ ey < Vo)) « 35 — 1930

HAT) = \/_ Vol(T) — Vol(T)
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On en déduit une amélioration de I'inégalité (5) pour cette classe de
graphes, en vertu de I’ estimée systolique (7): pour tout graphe I' dont chaque
sommet est de valence au moins trois et de premier nombre de Betti & > 2,

(10)  p(A) < 20ogy(b — 1)+ logy logy(b — 1) +4) S 2log, b.
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