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INTERPOLATION APPROACH TO THE SPECTRAL
RESOLUTION OF SQUARE MATRICES

by Luis VERDE-STAR

ABSTRACT. We present a proof of the spectral resolution theorem for square
matrices that are not necessarily diagonalizable. The construction of the idempotent
and nilpotent component matrices and the proofs of their properties use only simple
properties of the basic Hermite interpolation polynomials. The relevant results from
polynomial interpolation are presented in detail. Determinants, canonical forms, inner
products, and integrals are not used in our development.

1. INTRODUCTION

The spectral decomposition theorem for linear operators on finite dimen-
sional spaces is a very important result. Its generalizations to infinite dimen-
sions constitute a fundamental part of the theory of operators. The spectral
resolution may be used in many sitvations as an alternative to the Jordan
canonical form, since it gives a decomposition of a linear operator as a sum
of orthogonal idempotents and nilpotents, although it does not immediately
give the finer decomposition of the nilpotents provided by the Jordan canonical
form. The structure of the nilpotents can easily be obtained from the spectral
decomposition. See [8].

Most linear algebra textbooks present the spectral resolution theorem only
for special kinds of operators, such as diagonalizable operators. The general
case is usually considered as part of the theory of functions of matrices. For
this subject the main reference 1s [6]. See also [4], [7], and [12].

Lancaster and Tismenetsky [7, Ch. 9] use the Jordan canonical form to
prove the properties of the component matrices. Hille [5] uses determinants to
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express the resolvent, and then finds a partial decomposition of the resolvent in
which the numerators are the component matrices. Dunford and Schwartz [1,
Ch. VII] present a more analytical approach and use Cauchy’s integral
representation.

In the present paper we show that the spectral resolution of a square
matrix A can be obtained in a simple way if we know a nonzero polynomial
w(z) such that w(A) = 0. The polynomial w need not be the characteristic nor
the minimal polynomial of A, but, of course, the minimal polynomial must
divide w. We use only polynomial interpolation and properties of the map
that sends the polynomial p(z) to the matrix p(A). In particular, determinants,
canonical forms, mner products, and integrals are not used. We present a
construction of the basic Hermite interpolation polynomials based on [9]
and [10]. The explicit expressions for these polynomials are our main tools to
obtain the properties of the component matrices. We include in section 2 some
basic results and present a restricted form of the spectral resolution, related
to Lagrange’s interpolation, which is the version that appears most often in
the literature. We also try to clarify the relationships among resolvents, partial
decomposition, and interpolation.

One of the results that we will use frequently 1s the relationship between
polynomial interpolation and the division algorithm for polynomials that we
describe next.

Let w(z) be a monic polynomial of degree n+1 with roots Ag, Ar, ..., A,
which are pairwise distinct, with multiplicities mq, my, . . ., m; respectively. The
Hermite interpolation theorem, which we prove in section 4, states that for
any given numbers a;; where 0 <j<s and 0 <k <m; — 1, there exists a
unique polynomial v(z) of degree at most equal to n, such that ¥®(\) = a4,
for 0<j<sand 0<k<m—1.

Let p(z) be a polynomial. By the division algorithm there exist unique
polynomials g and r such that p = wg+r and, either r = 0 or r has degree
at most equal to n. Since each A; is a root of gw with multiplicity at least
equal to m;, the equation p = wq + r implies that p®©(\) = r®\), for
0<j<sand 0 <k <m;— 1. Therefore the remainder r(z) of the division
of p by w 1s the polynomial of degree at most n that interpolates the values
p®()\)). This clearly implies the following proposition.

PROPOSITION 1.1. Let w(z) be as defined above and let p and u be
polynomials. Then we have p = u mod w if and only if pP(\) = u®(N),
Jor 0<j<s and 0 <k<m—1.
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2. THE RESOLVENT AND [LAGRANGE’S INTERPOLATION

Let w(z) be a monic polynomial of degree n+ 1. Define the difference
quotient

— t
pld] - P = w®
z—1t
The polynomial identity
k
@D FH A = @)Y
j=0

mmplies that w[z, ] 1s a symmetric polynomial in z and ¢, of degree n 1n each
variable. If w(z) = "'+ b17" + by7" ' +--- + b, then a simple reordering
of summands yields

22) wlz,f] =) w@ ",
k=0

where wi(z) = 25+ bz ' + - + by, for 0 < k < n. These are called the
Horner polynomials of w. It 1s clear that they form a basis for the vector
space P, of all polynomials of degree at most equal to n. This basis is often
called the control basis [2].

PROPOSITION 2.1. Let w be a monic polynomial of degree n+ 1 and let
{fo-f1,-...fn} be a basis of P,. There exists a unique basis {Fo,Fy,...,F,}
of Pp such that

2.3) wlz, 1] =Y Fui(Dfi2).
k=0

Furthermore, if fi has degree k then F; has degree k, for 0 <k < n.

Proof. Let C = [ci;] be the nonsingular matrix that satisfies

n

= efi,  0<k<n.

/=0
Substitution in (2.2) and the interchange of the sums yields

wlz, 1= wd) Y cijfasi® =Y cijuw@fui(0).
k=0
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Define

F@=) ajuda, 0<j<n.
k=0
Therefore (2.3) holds. Since C' is nonsingular it is clear that the F; form
a basis for P,. If C is upper triangular then CT is lower triangular. This
proves the last part of the assertion.

We will show next how the difference quotient w[z,¢] can be used to
construct the resolvent of a matrix.

Let w(z) be a monic polynomial of degree n + 1 and let A be a
square matrix of order N with complex entries that satisfies w(A) = 0.
The polynomial identity (f — 2wlt, z] = w(r) — w(z) gives us

2.4) (t — Awltl, A] = w(®! — w(A) = w@)!l .
Therefore, for any complex number ¢ such that w(f) # 0, we have
tl, A
(2.5) o — Ayt = YAl
w(r)

This construction of the resolvent is quite old and has been rediscovered many
times. See [3] and [4].

By Proposition 2.1, for each basis {fj} of P, we obtain
Fi ()

n

2.6 H—A)" = i (A) .
(2.6) 11~ 4) ;w@fk()
For example, (2.2) yields
_ " wi(?) -
2.7 tH—A)' =) ——ar
@2.7) -4 =>" v A
k=0
and
. 2 tn—k
2.8 tH—A)~ = A).
2.8) - =>" o A
k=0
Let us consider another example. Let the roots of w be Ag, Aq,..., A,

not necessarily distinct. Define Ng(z) = 1 and
(2.9) Ni@) = (2 — do)z — A1) -+ - (2 — Ae—1), 1<k<n.

These are the Newton polynomials associated with the sequence of roots
Ao, ALy« .o, An. Let Fy be the Newton polynomials associated with the sequence
Ay Au_1y- -5 0. Then, by a simple telescopic summation we have
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wlz, ] =Y Fut®ONG) ,
k=0
and thus

n

(2.10) - =)

k=0

Nk+1(f)Nk(A) '

Since the only restricion we have imposed on w 1is that it be monic
and w(A) = 0, it is possible that some of the roots of w are not in the
spectrum of A. Let us see what happens in such a case. Suppose now that
w(z) = w(z)v(z) where u(A) = 0. Then, since w[t,z] can be written in the
form wlt, z] = w(vlt, z] + v(B)ult, z], we obtain

wlt, Al ulzl, Alu(z)
w(y — w@v)
Therefore the roots of v are removable singularities of wl[tl, Al/w(t).

Let us now consider a simple case. Let w(z) = HLO(Z — Aj) where the A;
are pairwise distinct complex numbers. It is obvious that w[A;, \c] = d; s’ (M.
Define the basic Lagrange interpolation polynomials associated with the
nodes A; by

w(z, Acl
w'(A)
Note that ¢ 1s a polynomial of degree n and ((()\)) = 9; . Therefore

<k<n.

(2.11) bi(z) =

(2.12) P =Y pOL@,  pEPa.
k=0
This 1s Lagrange’s interpolation formula.

PROPOSITION 2.2.

& 1=) 4@,
k=0
(ii) 2= M@,
k=0
(111) Ejfk = j,kﬁk mod w .

Proof. Parts 1) and 11) are cases of (2.12).

It is clear that /;(; is a multiple of w if j# k. Since Ei()\,») = O, the
polynomial that interpolates ¢ at the roots of w is ¢, and this is the same
as the remainder of the division of ¢ by w. This proves part iii).
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Since w]z, 7] 1s a polynomial in z of degree n, by Lagrange’s interpolation
formula we have

(2.13) wlz, (1= wit, v (@) .
k=0
This formula gives us

b b

(2.14) h-AH"=> wlt, ”\"]fk(A) = %

k=0 w(t) k=0

e U (A).

Replacing z by A in Proposition 2.2 we obtain immediately the following
theorem.

THEOREM 2.3 (Spectral Resolution; simple case).

Let A be an N x N matrix. Suppose that w Is a monic polynomial of
degree n+ 1 with pairwise distinct roots Ao, Ay, ..., A, such that w(A) = 0.
Let ¢ (z) be the basic Lagrange polynomials associated with the X\ and let
Er, = 6(A), for 0 <k <n. Then

M) I=) E,
k=0

(ii) A=) ME,
k=0

(iii) EiE, = 0,4k .

Suppose that w(z) = u(z)v(z) and u(A) = 0. Then

wlt,z]  w(@vlr, z] + v(Dult, z]
w' (@) u@d @)+ WO

and hence
v(ADulA, Al

u(AU' ) + u (Ao

Therefore, if A; 1s not m the spectrum of A, that 1s, if v()\;)) = 0 (and
thus u();) # 0) then E; = 0. In the other case we have u()\;) = 0 and
v(A)) # 0 and thus E; = u[N1,A]/u'()\). This means that we can reduce
w to the minimal polynomial of A, and therefore that Theorem 2.3 holds
for any diagonalizable matrix. In some textbooks the existence of a spectral

E = ((A) =
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decomposition like that of Theorem 2.3 is presented as a condition equivalent
to diagonalizability of A.

The case when w is the characteristic polynomial of A is particularly
simple, since A is then a matrix of order n + 1 that has n + 1 distinct
characteristic roots A;. Consequently, the image of each idempotent F; 1s a
one-dimensional subspace and hence E; is a matrix of rank one. L.et V be a
matrix such that its k-th column v; 1s an eigenvector corresponding to .
Since the vy are linearly independent, the matrix V 1s nonsingular. Let x; be
the k-th row of V1. It is easy to see that E; = vx;. Note that this simple
construction of the idempotents E; does not work if the minimal polynomial
has distinct roots but 1s not equal to the characteristic polvnomial of A, since
then some of the FE; are projections on subspaces of dimension greater than

one.
3. HERMITE’S INTERPOLATION
Tet
(.1) w@) = [Je— ™,
Jj=0

where the \; are distinct and the multiplicities m; are positive integers with
>.;mj =n+ 1. Define the index set

IT={(,k):0<j<s, 0<k<m}.

Note that 7 has n + 1 elements.
Define the polynomials

w(z)

(3.2) qj4(2) = RSy T3

(J,kyel.

Note that A; 15 a root of ¢g;« of multuplicity k, for k > 1, and is not a root
of gjo. Note also that g, ,(z) = (z — )\j)kqm(z). The Taylor functionals T;
are defined by

1
Tuf = /%0, GRET,

for any function f sufficiently differentable at A\;. We define the functionals
L;« on the space of polynomials by

(3.3) fup=TuPl  GBeL.

gj0(2)’
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By Leibniz’s rule we have

JkP Z]}k z ; ”P,

1

and hence L;; is a linear combination of Taylor functionals.

PROPOSITION 3.1.

(34) Li,qu,k — 5(i,r),(j,k)7 (la l"), (J7 k) = I:
and hence {q;.} is a basis of P, and {L;,} is its dual basis.

The proof is a direct application of Leibniz’s rule. See [9].

COROLLARY 3.2 (Lagrange-Sylvester interpolation formula).

(3.5) PR = D Liwp g2, pEPu.
(fkel

Dividing both sides of (3.5) by w(z) and using (3.2) we obtain the partial
fraction decomposition formula.

COROLLARY 3.3.

p(2) _ Liwp
3.6 — = E L
GO w@ 2o eyt PET

Leibniz’s rule yields
3.7) Tim—1—kwlz, 1] = g (0) (k) el,
where the functional acts with respect to z. We define the polynomials

(3.8) H () = Ljm—1—rwlz, 1], Lk el,

where the functional acts with respect to z. Then, using Leibmiz’s rule, the
definition of the functionals L;, and (3.7) we get

m—1—k

Jk(t)_ Z 1:/1 ; jm_,—l —k—iwlz, 1]

mJ,—l—k

1
= Tiv— grii@).
Z Js g0 4jk+

i=0 S
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Therefore

m;—1—k

1 ‘
(3.9) Hi®) = g > Ty o =)
=0

Js

Note that each H,; is a polynomial of degree .
By the Lagrange-Sylvester interpolation formula we have

(3.10) wlz.fl = Y Hjw@ gim—1-10),
(.kel
and thus
wlz, 7] H; ()
(3.11) — = e
w(t) (j,k%l’ (I — )\j)k-l'l

PROPOSITION 3.4.
(3.12) Ti vl = 0.m,00) 5 (i,r), (J;k) € L.

Proof. Usmg the definition of the H;; and interchanging the linear
functionals we get

T Hii(6) = L 1110wz, 11 = Ly 1=k Gim—1—(2) = ¢ty »
where 7;, acts with respect to ¢.

The polynomials H;; are the basic Hermite interpolation polynomials
associated with the roots of w.

We say that a function f 1s defined on the roots of w if 7;f is defined
for (J,k) € Z. Proposition 3.4 gives us immediately the following

PROPOSITION 3.5 (Hermite’s interpolation formula).
For any function f defined on the roots of w, the polynomial

(3.13) PO = > Tif Hy)
(J,eT

is the unique element of ‘P, that satisfies T;f = T;p for (j,k) € L.

We can write (3.9) in the form

mj—l—k

1 :
H (@) = (¢ = \)'qio®) > Tj— (= N).
=0

4q;,0
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The sum above is the Taylor series of 1/g;o(f) at r = );, truncated at the
(mj — 1 — k)-th power of (z — };). A simple computation yields

(3.14) Hity == N == A" ) et = A,
r=0
where
’ 1
(3.15) ¢ =3 T30 Tjmgri—
= 9,0

PROPOSITION 3.6.  The basic Hermite interpolation polynomials satisfy :
1) Hi H;, =0 modw if j#£1I,
Hiyr modw if 0<k+r<m,

i) HiwHjr=(—A) H(t) =
) ISR ( J) j"k() {O modw !,f k—&—erJ,

Proof. From the definition of the polynomials ¢;« it is clear that g;,q;«
is a multiple of w if i # j. From (3.9) we see that ¢;, divides H;, and g,
divides ;. Therefore H;H;, is also a multiple of w. This proves part 1).

By Proposition 1.1, for any pair of polynomials p and u# we have p=u
mod w if and only if Tj.p = T;u for (j,k) € . Then it 1s clear that part
11) follows from (3.14), which gives an explicit formula for the expansion of
H; . i powers of (r — A;).

We will use in the next section the following special cases of Hermite’s
mterpolation formula:

(3.16) 1= Hjo@,
j=0
(3.17) 2= {NH; 0@ + Hja@)} -
=0

The difference quotient w(z, 7] can be considered as the kernel function
of an interpolation operator, as we show next. Let us define the linear
functional A,,, called the divided difference with respect to the roots of
w, as follows. For any function f defined on the roots of w,

(3.18) Auf =) Lim—if -
Jj=0
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Since each L;; is a linear combination of Taylor functionals, so is A,,. It is
easy to see that

5 ' f
Ay = — L
i Z Residue of ” at A,
j=0
Using Proposition 3.1, equation (3.10), and Hermite’s interpolation the
proof of the following theorem is a simple computation.

THEOREM 3.7 (General interpolation formula).
For any function f defined on the roots of w,

(3.19) p0) = Ay {wlz, 11 f (@) }

is the polynomial of degree at most n that interpolates [ at the roots of w.

Note that by the above theorem and Proposition 2.1 we can express the
mterpolating polynomial in terms of any given basis of the space P,. See [9]
and [10].

4.  SPECTRAL RESOLUTION

Let w(z) be as in the previous section a monic polynomial of degree n+ 1

with roots Ag, Ag, ..., \; with multiplicities myg, my, ..., m;, respectively. Let
A be a square matrix such that w(A) = 0. Define
“.1) Ei=Hio(4), and N;=H;1(4), 0<i<ys,

where the H;; are the basic Hermite mterpolation polynomials associated
with the roots of w. From Proposition 3.6 and equations (3.16) and (3.17)
we obtain immediately the following theorem.

THEOREM 4.1 (Spectral resolution).

i) A=30 o{NE+ N}

D I=3%5 gl

1Ly By = oy,

v) Ny =(A— NDE; = E{A — M),

v) NiE; = E;N; = 0;;N;,

vi) N;N; = 6 ;N?,
vit) For 1 <r <m; —1 we have Ni = H; ,(A) = (A— ND)'E;,
viii) N = 0.
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From (3.11) we obtain the following expression for the resolvent of A :

5 E: mi—1 Nk
42) (i — Ay —Z{o—’m " Zm}
k=1

i=0

Note that we can also write this in the form
s m—1
_ — (A — \DF
43 t— A~ = — T VE;.
) e §{§v—w+l

Suppose now that w has a factorization w = uv, where u(A) =0,

u@=[Je-N", and v@= ] c-\".
J=0 j=r+1
If j > r then g;o(z) = u(z)v;o(z), where v;o(z) = v(2)/(z — A\)™. By
equation (3.9) the polynomial ¢g;o is a factor of /;; and hence u is also a
factor of H;y. Therefore E; = Hjo(A) =0 and N, = H,,(A) = 0.
If 0<j<r then gj0(z) = v(Du;0(z), where u;0(z) = u(z)/(z — \)™.
Then, by (3.8) and (3.3) we have

e Juls2]
Hhk(t) - Tj,mj—z—k { qJ'VO(Z) } ;

and thus

u(tyvlt, 2] + v(z)ult, 2] }

(D) 0(2)

- | | M . . M'[ta Z]
= U jm—i—4 {U(Z)Mj,O(Z)} T D {”j,O(Z)} .

The last term is the basic Hermite interpolation polynomial associated with
the roots of u(z), with indices j, k. Let us denote it by G, «(¢). Therefore we
have H;; = G, mod u, and consequently H;((A) = G;(A), since u(A) = 0.
This means that the roots of w that are not in the spectrum of A do not
contribute to the spectral decomposition of A.

Hi (&) = Tjm—ix {

We consider next the possibility of reducing the mulaplicity of a root \;
of w(z) for the construction of the spectral resolution of A.

PROPOSITION 4.2, Suppose that there is an index j such that E; # 0 and
N =0 for some r with 1 <r < my. Let u(z) = w(z)/(z— \)"". Then
u(d) = 0.
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Proof.  Since u(z) = (z— A\)'qjo(z) 1t 1s clear that 7; u may be nonzero
only if i =j and k > r. Then, by the Hermite interpolation formula u(z) is a
linear combination of the polynomials H;,, H;,y1,...,H;, 1. By hypothesis
N; = H;,(A) = 0 and thus by part vii) of Theorem 4.1, H;,.;(A) = 0 for
i > 0. Therefore u(A) = 0.

COROLLARY 4.3. If w is the minimal polynomial of A then my; is the
index of nilpotency of N;, for 0 <j <s.

From (3.14) we obtain
“4.4) Ei=1-) cld—XD™t,
r=0
where the coefficients ¢, are given by equation (3.15). From (3.9) we also
gct

mi—1 1
4.5) Ei = qio(A) Y T {

4io0

} (A— NI
=0

Note that F; is a polynomial in A of degree n. We show next that the
idempotents E; are essentially unique.

PROPOSITION 4.4. Let h be an element of P, such that h* = h mod w.
Then h(z) = Zj:() d;H; o(z) where each d; is an element of {0,1,—1}.

Proof. The hypothesis > = h mod w is equivalent to the condition
T, h* = Tjh, for each (j, k) in Z. By Leibniz’s rule, for each j we must

have
k

> Tyih Tjueih=Tigh,  0<k<m—1.

=0
This system of equations has only the solutions 7;0h € {0,1,—1} and
Tith =0 for 1 <k <m;—1. Applying the Hermite interpolation formula to
h we get the desired conclusion.

COROLLARY 4.5. Let h be a polynomial such that W(A) is an idempotent.
Then

hA) = diE;,
=0

where the coefficients d; are elements of {0,1,—1}.
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The nilpotent matrices N; have a similar property. Let w be the minimal
polynomial of A. Suppose that g is an element of P, such that N = g(A)
satisfies N = O for some r > 0. Then w divides g" and thus (z — A\)™
divides g for 0 < j < s. Therefore (z — A;) divides g for each j and,
by Hermite’s interpolation, ¢(z) is a linear combination of the polynomials
H;; with k > 1. This means that N = g(A) is a linear combination of the
nilpotents N ko with & > 1.

The spectral resolution of a matrix A is often used to find functions of A.
For example, using the properties of the matrices E; and N; and the binomial
formula we obtain

s m—1
4.6 A = r) NTENEE, r>0.
(4.6) zoj kZ_; (k
The same formula is obtained by finding the polynomial p that interpolates
7" at the roots of w and then computing p(A), which is

s mi—1

pA) = T Hix(A).

=0 k=0
Formula (4.2) for the resolvent of A is obtained in the same way using the
polynomial that interpolates 1/(zr — z), as a function of z, at the roots of w.
The general interpolation formula of Theorem 3.7 yields

+.7) 9(4) = Ay {wlzl, Alg(2)}
for any function g defined on the roots of w. For example, for g(z) = % we
get

s mi—l

(4.8) =33 li—k'e)“"Nf‘E,-.

i=0 k=0

Using formula (2.2) for w[z, x] we get
4.9) =" filhA" ™,
k=0

where fi(f) = Ap{e“wi(z)} and the divided difference functional acts with
respect to the variable z. See [11] and [12] for some related formulas and
applications to the solution of matrix differential equations.

Let us note that (4.7) can be written in the form

wlzl, A]
w(z) } at )\['.

g(A) =) Residue of {g(z)

i=0




INTERPOLATION APPROACH TO SPECTRAL RESOLUTION 253

Since wlzl, A]/w(z) is the resolvent of A, this formula is analogous to the
Cauchy integral representation

1
o= fc g — Ay dz,

where C 1s a simple curve whose interior contains the ;. See [1, Ch. VII].

[10]
[11]

[12]
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