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VECTOR FIELDS IN THE PRESENCE OF A CONTACT STRUCTURE

by Valentin OVSIENKO

ABSTRACT. We consider the Lie algebra of all vector fields on a contact manifold
as a module: over the Lie subalgebra of contact vector fields. This module: is split into
a direct sum of two submodules: the contact algebra itself and the space of tangent
vector fields. We study the geometric nature of these two modules.

1. Introduction

Let M be a smooth manifold and Vect(M) the Lie algebra of all smooth

vector fields on M. We consider the case when M is (2n + 1)-dimensional
and can be equipped with a contact structure. For instance, if dim M — 3,
and M is compact and orientable, then a famous theorem of 3-dimensional

topology states that there is always a contact structure on M.
Let CVect(M) be the Lie algebra of smooth vector fields on M preserving

the contact strucUire. This Lie algebra naturally acts on Vect(M) (by Lie
bracket). We will study the strucUire of Vect(M) as a CVect(M)-module.
First, we observe that Vect(M) is split, as a CVect(M) -module, into a direct

sum of two submodules :

Vect(M) CVect(M) © TVect(M),

where TVect(M) is the space of vector fields tangent to the contact distribution.
Note that the latter space is a CVect(M) -module but not a Lie subalgebra
of Vect(M).
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The main purpose of this paper is to study the above two spaces

geometrically. The most important notion for us is that of invariance, All
the maps and isomorphisms we consider are invariant with respect to the

group of contact diffeomorphisms of M. Since we consider only local maps,
this is equivalent to invariance with respect to the action of the Lie algebra

CVect(M).

It is known, see [5, 6], that the adjoint action of CVect(M) has the

following geometric interpretation:

CVect(M) M _(M),

where T_ \ (M) is the space of tensor densities of degree - on M, that

is, of séchons of hie line bundle

2n+l

f\ T*M -4 M.

In particular, tins provides hie existence of a nonlinear invariant functional on

CVect(M) defined on the contact vector fields with nowhere vanishing contact
Hamiltonians.

The analogous interpretation of TVect(M) is more complicated :

TVect(M) S Q20(M) 0 f : (M),

where £22{M) is the space of 2-fonns on M vanishing on the contact
distribution. Here and below the tensor products are defined over C"X (M).

We study the relations between TVect(M) and CVect(M). We prove the

existence of a non-degenerate skew-symmetric invariant bilinear map

B: TVect(M) A TVect(M) —» 'Vect(.W)

that measures the non-integrability, i.e., hie failure of hie Lie bracket of two

tangent vector fields to remain tangent.

In order to provide explicit formulae, we introduce a notion of Heisenberg
structure on M. LTsually, to write explicit formula; in contact geometry, one

uses the Darboux coordinates. However, this is not the best way to proceed
(as already noticed in [4]). The Heisenberg structure provides a universal

expression for a contact vector held and its actions.
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2. Contact and tangent vector fields

In this section we recall the basic definitions of contact geometry. We then

prove our first statement on a decomposition of the Lie algebra of all smooth

vector fields viewed as a module over the Lie algebra of contact vector fields.

2.1 Main definitions

Let M be a (2n 4« 1) -dimensional manifold. A contact structure on M
is a codimension 1 distribution £ which is completely non-integrable. The

distribution f can be defined (locally) as the kernel of a differential 1-form

a defined up to multiplication by a nowhere vanishing function. Complete
non-integrability means that

everywhere on M. The above condition is also equivalent to the fact that

the restriction da|c to any contact hyperplane is a non-degenerate 2-fonn. In
particular, ker d<\ is one-dimensional. Note that if M is orientable and the

contact structure is coorientable, then the form a can be globally defined on
M ; the form Q is then a volume form.

A vector field X on M is a contact vector field if it preserves the contact
distribution Ç. In terms of contact fonns this means that for every contact
form fx, the Lie derivative of a with respect to X is proportional to a :

where fx C00(M). The space of all contact vector fields is a Lie algebra
that we denote by CVect(M).

Let us now fix a contact form a. A contact vector field X is called

strictly contact if it preserves a., in other words, if fx — 0 everywhere on M.
Strictly contact vector fields form a Lie subalgebra of CVect(M). There is one

particular strictly contact vector field Z called the Reeb field (or characteristic

vector field). It is defined by the following two properties :

(1) Q m A (da)" 0

(2) Lf# fxCK

Z ig ker dfx, a(Z) 1.

We will also consider the space, TVect(M), of vector fields tangent to
the contact distribution. That this space is not a Lie subalgebra of Vect(M)
follows from non-integrability of the contact distribution.
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2.2 THE DECOMPOSITION of Vect(M)

Let Vect(M) be the Lie algebra of all smooth vector fields on M. The

Lie bracket defines a natural action of GVect(M) on Vect(M). In particular,
the Lie bracket of a contact vector held with a tangent vector held is again

a tangent vector held. Therefore, TVect(M) is a module over CVect(M).

Proposition 2.1. The space Vect(M) is split into a direct sum of two

'Vect(.W)-modules :

Vect(M) CVect(M) TYect(.W).

Proof. Both spaces on the right hand side are CVect(M) -modules. It then

remains to check that every vector held can be uniquely decomposed into a

sum of a contact vector held and a tangent vector held.

Given a vector held X, there exists a tangent vector held Y such that

X — Y is contact. Indeed, consider a 1 -form ß Lxa and its restriction B||
to a contact hyperplane Ç. If Y is a tangent vector held then LyCt — iy(do
Since da is non-degenerate on Ç, there exists for any 1-form ft a tangent
held Y such that iy(da)c ß g. Tins means that X — Y is contact.

Furthermore, hie intersection of CVect(M) and TVect(M) is zero. Indeed,
let X be a non-zero vector held which is contact and tangent at the same

time. Then Lxa ~fa for some function / and Lxa — ix(da). Since kerfa
contains £ — kern while hie restriction da \is non-degenerate, this is a

contradiction.

3. The adjoint representation of CVect(M)

In this section we study the action of CVect(M) on itself.

3.1 Fixing a contact form: contact LIämiltöniäns

Let M be orientable ; hx a contact fonn a on M. Every contact vector
held X is then characterized by a function

H afX).

This is a one-to-one correspondence between CVect(M) and hie space C°°(M)
of smooth functions on M, see e.g. [1]. We can denote hie contact vector held

corresponding to H by Xh The function H is called hie contact Hamiltonian
of XH.
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EXAMPLE 3.1. The contact Hainiltonian of the Reeb held Z is the constant

function H 1. Note also that the function fx in (2) is given by the derivative

fx„=Z(H).

The Lie algebra CVect(M) is then identified with CX (M) equipped with
the Lagrange bracket defined by ÂÇjt. \ — • One checks that

(3) {//,-Hi} - XHl(tl2) - Z(Hi)H2

The formula expresses the adjoint representation of CVect(M) in terms of
contact Hamiltonians. The second term on the right hand side shows that this

action is different from the natural action of CVect(M) on C°°(M). Let us

now clarify the geometric meaning of this action.

3.2 Space of tensor densities

Let L be a vector space of dimension d and A an arbitrary real number. Â
A-density on V is a function ç>: /\' V \ {0} —) R homogeneous of degree A,
that is, such that

<f(KW) — |ft|A 4>(w)

for all k R \ {o} and w G f\ V \ {0}. Tliis is a one-dimensional vector

space that we denote by F^(L).
Let M be a smooth manifold of dimension d ; consider the determinant

bundle TM —t M.

DEFINITION 3.2. A tensor density of degree A G R on M is a smooth

function on the complement of the zero section j\ TM\M, homogeneous of
degree A. The space of tensor densities of degree A on M will be denoted

by F\{M).

In other words, a tensor density of degree A on M is a section of tire line

bundle F\(TM), i.e. a held of A-densities on the tangent space. Equivalently,
consider the line bundle f\dT*M —> M. Then, the line bundle | f\" T*M|A is

well defined for every A G R and naturally isomorphic to F\(TM). It worth

noticing that the bundle Fa (TM) is trivial for any M and all A.
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Every space J-\(M) is naturally a module over tire Lie algebra Vect(M).
Let us give here without proof the basic properties of these modules :

• The space Fo(M) is simply Cm(M).
• The space F\(M) is isomorphic as a Vect(M)-module to the space Q,j(M)

of differential d-forms if and only if M is orientable. If Q is a volume

form on M, then one represents tensor densities in the form

where / is a function.
• The Vect(M)-modules F'x(M) and are isomorphic if and only if

À p.
• If M is compact then there is an invariant functional

given by the integration of the product of tensor densities.

To summarize, the 1-parameter family of spaces F\{M) can be viewed as

a deformation of the natural Vect(M)-action on the space of functions. We

refer to [3] for more information on modules of tensor densities and invariant
differential operators on these modules.

3.3 Tensor densities on a contact manifold

Let now M be a contact manifold of dimension d — 2n + 1. In this

case, there is one more way to define tensor densities. Consider the (2n — 2)-
dimensional submanifold S of the cotangent bundle T*M\M that consists of
all non-zero covectors vanishing on the contact distribution Ç. The restriction
to S of the canonical symplectic structure on T*M defines a symplectic
structure on S. The manifold S is called the symplectization of M (cf. [1, 2]).
Clearly S is a line bundle over M, its sections are the 1-forms on M vanishing

on £. Note that, in the case where M is orientable, 5 is a trivial line bundle

over M.
There is a natural lift of CVect(M) to S. Indeed, a vector field X on M

can be lifted to T*M, and, if X is contact, then it preserves the subbundle S.

The space of sections Sec(S) is therefore a CVect(M)-module.
The sections of the bundle S can be viewed as tensor densities of

degree on M.

P=/É2\

More generally, there is an invariant pairing
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PROPOSITION 3.3. There is a natural isomorphism of CVect(M)-modules

Sec (S) Fy_(M).

Proof. A section of 5 is a 1-forin on M vanishing on tlie contact
distribution. For every contact vector field X and a volume form Q as in (1)

one has

LXQ — (n + 1 )fx&
The Lie derivative of a tensor density of degree A is then given by

Lx(f Qa) - iX(f) + A(n + DM) Qx

The result follows from formula (2).

One can now represent tensor densities in terms of a contact form:

ip — f ain+1)X.

3.4 Contact Hamiltonian as a tensor density

In this section we identify the algebra CVect(M) with a space of tensor
densities of degree — —j-j- on M ; the adjoint action is simply a Lie derivative

on this space. The result of this section is known (see [5] and [6], Section

7.5) and given here for the sake of completeness.
Let us define a different version of contact Hamiltonian of a contact vector

field X as a tensor density on M of degree — ^j_ :

'H : — a(X)a~l.

An important feature of this definition is that it is independent of the choice

of a. Let us denote the corresponding contact vector field by Xy.
The space T_ _j_ (M) is now identified with CVect(M). Moreover, the Lie

bracket of contact vector fields corresponds to the Lie derivative.

PROPOSITION 3.4. The adjoint representation of CVect(M) is isomorphic
to If 1 (M

Proof. The Lagrange bracket coincides with a Lie derivative :

(5)

This formula is equivalent to (3).

Geometrically speaking, a contact Hamiltonian is not a function but rather

a tensor density of degree — ^-j-.
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3.5 Invariant functional on CVect(M)

Assume M is compact and orientable ; fix a contact form a and the

corresponding volume form Q — a Aria". The geometric interpretation of the

adjoint action of CVect(M) implies the existence of an invariant (non-linear)
functional on CVect(M).

Let CVect*(M) be the set of contact vector fields with nowhere vanishing
contact Hamiltonians (i.e., hie corresponding contact Hamiltonian has no zeroes

on M). This is an invariant open subset of CVect(M).

COROLLARY 3.5. The functional on CVect*(M) defined by

is invariant. This functional is independent of the choice of the contact form.

Proof. Consider is a contact vector field X/ then according to (3) one
has

so that the quantity Z/-(n+1)Q is a well defined element of the space dFfiM).
The functional I is then given by the invariant functional (4).

Furthermore, choose a different contact form <f —fa and the corresponding

volume form Q' /"-l Q. The contact Hamiltonian of the vector field
X/i with respect to the contact fonn a' is the function //' a'(Xn) — fH.
Hence, //M«+D Q' — }{-in+t) q so that hie functional I is, indeed, independent

of the choice of hie contact form.

In this section we study hie structure of the space of tangent vector fields

TVect(M) viewed as a CVect(M) -module,

4.1 A GEOMETRIC REALIZATION

Let us start with a geometric realization of the ÇVect(M) -module structure

on TVect(M) which is quite similar to that of Section 3.4.

Let £2l(M) be the space of 2-fonns on M vanishing on the contact
distribution. In other words, elements of QfiM) are proportional to a 1

% XF + (n + l)Z(/'j//~"'~"

4. The structure of TVect(M)

w — a f\ ß,
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where fi is an arbitrary 1-form.

The following statement is similar to Proposition 3.4.

THEOREM 4.1. There is an isomorphism of CVect(M) -modules

TVect(M) Q20 (M) 0 (M),

where the tensor product is defined over C°°(M).

Proof. Let M be orientable; fix a contact form a on M. Consider a

linear map from TVect(M) to the space QfiM) that associates to a tangent
vector field X the 2-fonn

(X, a A da) — —a A ixda.

This map is bijective since the restriction dotU of the 2-fonn da to the

contact hyperplane | is non-degenerate.

However, tlie above map depends on the choice of the contact form
and, therefore, cannot be CVect(M)-invariant. In order to make this map
independent of the choice of a, one defines the map

(6) X J—)- (X, a A da) 0 a"2

with values in Q\(M)\!F_ : (M). Note that tire tenn a-2 on tire right hand
side is a well defined element of the space of tensor densities T_ jl_ (M), see

Section 3.3.

It remains to check the CVeet(M) -invariance of the map (6). Let Xn be

a contact vector field; one has

Lx„ ((I,ttA da) 0 a~2) — l\Xn. X\. a. A da) 0 a~2

+ (X,fxa A da + a A dfxa) ® oT2

— (X, a A da) <$> (2fxa~2)

— (\XH,X\, a. A da) 0 a~2

Hence the result.

The isomorphism (6) identifies the CVect(M)-action on TVect(M) by Lie
bracket with the usual Lie derivative. It is natural to say that tins map defines

an analog of contact Hamiltonian of a tangent vector field.
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4.2 A skew-symmetric pairing On TVect(M) OVER CVect(M)

There exists an invariant skew-synimetric bilinear map from TVect(M) to

CVect(M) tliat can be understood as a "symplectic structure" on the space

TVect(M) over CVect(M).

THEOREM 4.2. There exists a non-degenerate skew-symmetric invariant
bilinear map

B : TVect(M) A TVect(M) -a CVect(M),

where the A -product is defined over C°°(M).

Proof. Assume first that M is orientable and fix the contact form a.
Given 2 tangent vector fields X and Y, consider the function

//v., (XAY, da).

Define first a bilinear map B from TVect(M) to CX(M) by

(7) B„ :X Y • //x

The definition of the function Ilx.y and thus of the map Ba depends on the

choice of a. Our task is to understand it as a map with values in CVect(M)
which is independent of the choice of the contact form. This will, in particular,
extend the definition to the case where M is not orientable.

It turns out that the above function IIxj is a well defined contact
Hamiltonian.

LEMMA 4.3. Choose a different contact form a1 — fa^ then

./ //\.i •

Proof. By definition,

H'x y A F, da') —f {X AY, da) + (X AY,df A a) / fix. y

since the second term vanishes.

We observe that the function IIx.v depends on the choice of a precisely
in the same way as a contact Hamiltonian (cf. Section 3.1). It follows that
tlie bilinear map

(8) B: X AY va HXja~l
with values in iF_ CVect(M) (cf. Section 3.4) is well defined and

independent of the choice of a.
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It remains to check that the constructed map (8) is CVect(M) -invariant.
This can be done directly but also follows from

PROPOSITION 4.4. The Lie bracket of two tangent vector fields X, Y

TVect(M) is of the form

(9) [X, Y] — B(X, F) 4- (tangent vector field).

Proof. Consider the decomposition from Proposition 2.1 applied to the

Lie bracket [X, F]. The "non-tangent" component of [X, F] is a contact vector
field with contact HamilIonian o([X. Y\). One lias

i[X,r\a — (Lx h — h Lx) a — —iY Lx a iy ix da — HXty

The result follows.

Theorem 4.2 is proved.

Proposition 4.4 is an alternative definition of B : the map B measures the

failure of the Lie bracket of two tangent vector fields to remain tangent.

5. Heisenberg structures

In order to investigate the structure of TVect(M) as a CVect(M)-module
in more detail, we will write explicit formulae for the CVect(M) -action.

We assume that there is an action of the Heisenberg Lie algebra f)„ on M,
such that the center acts by the Reeb field while the generators are tangent
to the contact structure. We then say that M is equipped with the Heisenberg
structure. Existence of a globally defined Heisenberg structure is a strong
condition on M, however, locally such structure always exists.

5.1 Definition of a Heisenberg structure
Recall that the Heisenberg Lie algebra fj„ is a nilpotent Lie algebra of

dimension 2«+l with the basis {flx,.... a„. b„,z} and the commutation
relations

\ah bj] <% z, [fl/, êj\ [b;, bj] [ah z\ - [bh z\ 0. ij 1,..., n

The element s spans the one-dimensional center of [}„.
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REMARK 5.1. The algebra fj„ appears naturally in the context of sym-
plectic geometry as a Poisson algebra of linear functions on the standard

2«-dimensional symplectic space.

We say that M is equipped with a Heisenberg structure if one fixes

a contact form a 011 M and a h„ -action spanned by 2n + 1 vector
fields {Aj,..., such that the 2n vector fields 4;. B; are

independent at any point and tangent to the contact structure :

//\. (X - iß G - 0

and \Aj. B, | — Z, where Z is the Reeb held, while the other Lie brackets

are zero.

5.2 Example : the local Heisenberg structure
The Darboux theorem states that locally contact manifolds are diffeomor-

phic to each other. An effective way to formulate this theorem is to say that

in a neighborhood of any point of M there is a system of local coordinates

(xi,... ,y„,z) such that the contact structure £ is given by
the 1-form

EXidyi -yrdxi +dz-
1=1

These coordinates are called the Darboux coordinates.

Proposition 5.2. The vector fields

6 fe & d xi d d
(10) Ai=a^29i' Bi

ijyi
'

2d-'
where i — 1define a Heisenberg structure on R2" ' 1.

Proof. One readily checks that ,4,. /i, are tangent and

[Ai, Bj] Sij Z

wlrile other commutahon relahons aie zero. The vector held Z is simply the

Reeb held.

There is a well-known formula for a contact vector held in the Darboux
coordinates (see e.g. [1, 2, 4]). We will not use this formula since hie expression
in terms of the Heisenberg structure is much simpler.
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5.3 Contact vector i ii.i.ds and Heisenberg structure
Assume that M is equipped with au arbitrary Heisenberg structure. It turns

out that every contact vector held can be expressed in tenus of the basis of
the I),,-action by a universal formula.

PROPOSITION 5.3. Given an arbitrary Heisenberg structure on M, a

contact vector field with a contact Hamiltonian H is given by the formula
n

(11) Xh - HZ - J2{MH)BI - BiUDAi)
i=i

Proof. Let us first check that the vector held (11) is, indeed, contact.

If X is as on the right hand side of (11), then the Lie derivative Lxa
(id o ix f ix o d) a is given by

n

Lxa dll (AW tBl - if (H iAi) da.
i= 1

To show that the 1-forni Lxa is proportional to a, it suffices to check that

iAi CLxa) iBj (Lxa) 0 for all ij - I....,n
The hrst relation is a consequence of hie fonnulae iA. (dH) — A,(H) together
with

ifi'Bj da, — iAj (LBfa) — i[AhB^a öy iz a — 5y
V /

iAfAj da - ißfißj da. — 0.

The Second one follows from the similar relations for iß,.

Secondly, observe that, if X is as in (11), then ixa H. Tins means that
hie contact Hamiltonian of the contact vector held (11) is precisely //.

Note that a fonnula similar to (11) was used in [4] to dehne a contact
structure.

5.4 THE ACTION of CVect(M) on TVect(M)

Since 2n vector helds A, and Bj are linearly independent at any point,
hiey form a basis of TVect(M) over C'x (M). Therefore, an arbitrary tangent
vector held X has a unique decomposition

n

(13) X A,-G, If)
i= 1
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where (/•',. Gs) in a 2«-tuple of smooth functions on M. The space TVect(M)
is now identified with the direct sum

TVect(M) ^ CV(M) ® • • • © C°°(M)
v y,

2n times

Let us calculate explicitly the action of CVect(M) on TVect(M).

PROPOSITION 5.4. The action of CVect(M) on TVeet(M) is given by the

first-order (2n x 2n)-matrix differential operator

« -z;o) a
where F and G are n-vectorfunctions, 1 is the unit (2nx2n)-matrix, AA(H),
AB(H), BA(H) and BB(H) are (« x n)-matrices, namely

AA(H )ij — A,Aj(H

and the three other expressions are similar.

Proof. Straightforward from (11) and (13).

PROPOSITION 5.5. The bilinear map (7) has the following explicit expression

:

hx^ T Fi
A'A f- Gi G,

l—l

where X Y,"=i(FiAi + Gi Bi)- and * Y,"=i(FjAj + GjBj)-

Proof. This follows from definition (7) and formula (12).

Note that formula (14) implies that flx y transforms as a contact Hamiltonian

according to (3) since the partial traces of the (2n x 2«)-matrix in (14) are

Aff(ll)- IfAfll) Z(II).
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