Vector fields in the presence of a contact structure Autor(en): **Ovsienko, Valentin** Objekttyp: Article Zeitschrift: L'Enseignement Mathématique Band (Jahr): 52 (2006) Heft 3-4: L'enseignement mathématique PDF erstellt am: **15.05.2024** Persistenter Link: https://doi.org/10.5169/seals-2232 #### Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. #### Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch #### VECTOR FIELDS IN THE PRESENCE OF A CONTACT STRUCTURE # by Valentin OVSIENKO ABSTRACT. We consider the Lie algebra of all vector fields on a contact manifold as a module over the Lie subalgebra of contact vector fields. This module is split into a direct sum of two submodules: the contact algebra itself and the space of tangent vector fields. We study the geometric nature of these two modules. #### 1. Introduction Let M be a smooth manifold and Vect(M) the Lie algebra of all smooth vector fields on M. We consider the case when M is (2n + 1)-dimensional and can be equipped with a contact structure. For instance, if $\dim M = 3$, and M is compact and orientable, then a famous theorem of 3-dimensional topology states that there is always a contact structure on M. Let CVect(M) be the Lie algebra of smooth vector fields on M preserving the contact structure. This Lie algebra naturally acts on Vect(M) (by Lie bracket). We will study the structure of Vect(M) as a CVect(M)-module. First, we observe that Vect(M) is split, as a CVect(M)-module, into a direct sum of two submodules: $$Vect(M) \cong CVect(M) \oplus TVect(M)$$, where TVect(M) is the space of vector fields tangent to the contact distribution. Note that the latter space is a CVect(M)-module but not a Lie subalgebra of Vect(M). The main purpose of this paper is to study the above two spaces geometrically. The most important notion for us is that of *invariance*. All the maps and isomorphisms we consider are invariant with respect to the group of contact diffeomorphisms of M. Since we consider only local maps, this is equivalent to invariance with respect to the action of the Lie algebra CVect(M). It is known, see [5, 6], that the adjoint action of CVect(M) has the following geometric interpretation: $$\text{CVect}(M) \cong \mathcal{F}_{-\frac{1}{n+1}}(M)$$, where $\mathcal{F}_{-\frac{1}{n+1}}(M)$ is the space of tensor densities of degree $-\frac{1}{n+1}$ on M, that is, of sections of the line bundle $$\left| \bigwedge^{2n+1} T^* M \right|^{-\frac{1}{n+1}} \to M.$$ In particular, this provides the existence of a nonlinear invariant functional on CVect(M) defined on the contact vector fields with nowhere vanishing contact Hamiltonians. The analogous interpretation of TVect(M) is more complicated: $$\operatorname{TVect}(M) \cong \Omega_0^2(M) \otimes \mathcal{F}_{-\frac{2}{n+1}}(M),$$ where $\Omega_0^2(M)$ is the space of 2-forms on M vanishing on the contact distribution. Here and below the tensor products are defined over $C^{\infty}(M)$. We study the relations between TVect(M) and CVect(M). We prove the existence of a non-degenerate skew-symmetric invariant bilinear map $$\mathcal{B} : \operatorname{TVect}(M) \wedge \operatorname{TVect}(M) \to \operatorname{CVect}(M)$$ that measures the non-integrability, i.e., the failure of the Lie bracket of two tangent vector fields to remain tangent. In order to provide explicit formulæ, we introduce a notion of Heisenberg structure on M. Usually, to write explicit formulæ in contact geometry, one uses the Darboux coordinates. However, this is not the best way to proceed (as already noticed in [4]). The Heisenberg structure provides a universal expression for a contact vector field and its actions. #### 2. Contact and tangent vector fields In this section we recall the basic definitions of contact geometry. We then prove our first statement on a decomposition of the Lie algebra of all smooth vector fields viewed as a module over the Lie algebra of contact vector fields. # 2.1 Main definitions Let M be a (2n+1)-dimensional manifold. A contact structure on M is a codimension 1 distribution ξ which is completely non-integrable. The distribution ξ can be defined (locally) as the kernel of a differential 1-form α defined up to multiplication by a nowhere vanishing function. Complete non-integrability means that (1) $$\Omega := \alpha \wedge (d\alpha)^n \neq 0$$ everywhere on M. The above condition is also equivalent to the fact that the restriction $d\alpha|_{\xi}$ to any contact hyperplane is a non-degenerate 2-form. In particular, $\ker d\alpha$ is one-dimensional. Note that if M is orientable and the contact structure is coorientable, then the form α can be globally defined on M; the form Ω is then a volume form. A vector field X on M is a contact vector field if it preserves the contact distribution ξ . In terms of contact forms this means that for every contact form α , the Lie derivative of α with respect to X is proportional to α : $$(2) L_X \alpha = f_X \alpha ,$$ where $f_X \in C^{\infty}(M)$. The space of all contact vector fields is a Lie algebra that we denote by CVect(M). Let us now fix a contact form α . A contact vector field X is called strictly contact if it preserves α , in other words, if $f_X = 0$ everywhere on M. Strictly contact vector fields form a Lie subalgebra of CVect(M). There is one particular strictly contact vector field Z called the *Reeb field* (or characteristic vector field). It is defined by the following two properties: $$Z \in \ker d\alpha$$, $\alpha(Z) \equiv 1$. We will also consider the space, TVect(M), of vector fields tangent to the contact distribution. That this space is not a Lie subalgebra of Vect(M) follows from non-integrability of the contact distribution. # 2.2 The decomposition of Vect(M) Let Vect(M) be the Lie algebra of all smooth vector fields on M. The Lie bracket defines a natural action of CVect(M) on Vect(M). In particular, the Lie bracket of a contact vector field with a tangent vector field is again a tangent vector field. Therefore, TVect(M) is a module over CVect(M). PROPOSITION 2.1. The space Vect(M) is split into a direct sum of two CVect(M)-modules: $$Vect(M) \cong CVect(M) \oplus TVect(M)$$. *Proof.* Both spaces on the right hand side are CVect(M)-modules. It then remains to check that every vector field can be uniquely decomposed into a sum of a contact vector field and a tangent vector field. Given a vector field X, there exists a tangent vector field Y such that X-Y is contact. Indeed, consider a 1-form $\beta=L_X\alpha$ and its restriction $\beta|_{\xi}$ to a contact hyperplane ξ . If Y is a tangent vector field then $L_Y\alpha=i_Y(d\alpha)$. Since $d\alpha$ is non-degenerate on ξ , there exists for any 1-form β a tangent field Y such that $i_Y(d\alpha)|_{\xi}=\beta|_{\xi}$. This means that X-Y is contact. Furthermore, the intersection of $\mathrm{CVect}(M)$ and $\mathrm{TVect}(M)$ is zero. Indeed, let X be a non-zero vector field which is contact and tangent at the same time. Then $L_X\alpha = f\alpha$ for some function f and $L_X\alpha = i_X(d\alpha)$. Since $\ker f\alpha$ contains $\xi = \ker \alpha$ while the restriction $d\alpha|_{\xi}$ is non-degenerate, this is a contradiction. \square # 3. THE ADJOINT REPRESENTATION OF CVect(M) In this section we study the action of CVect(M) on itself. # 3.1 FIXING A CONTACT FORM: CONTACT HAMILTONIANS Let M be orientable; fix a contact form α on M. Every contact vector field X is then characterized by a function $$H=\alpha(X)$$. This is a one-to-one correspondence between CVect(M) and the space $C^{\infty}(M)$ of smooth functions on M, see e.g. [1]. We can denote the contact vector field corresponding to H by X_H . The function H is called the contact Hamiltonian of X_H . EXAMPLE 3.1. The contact Hamiltonian of the Reeb field Z is the constant function $H \equiv 1$. Note also that the function f_X in (2) is given by the derivative $f_{X_H} = Z(H)$. The Lie algebra CVect(M) is then identified with $C^{\infty}(M)$ equipped with the Lagrange bracket defined by $X_{\{H_1,H_2\}} := [X_{H_1},X_{H_2}]$. One checks that (3) $$\{H_1, H_2\} = X_{H_1}(H_2) - Z(H_1)H_2.$$ The formula expresses the adjoint representation of CVect(M) in terms of contact Hamiltonians. The second term on the right hand side shows that this action is different from the natural action of CVect(M) on $C^{\infty}(M)$. Let us now clarify the geometric meaning of this action. # 3.2 SPACE OF TENSOR DENSITIES Let V be a vector space of dimension d and λ an arbitrary real number. A λ -density on V is a function $\phi: \bigwedge^d V \setminus \{0\} \to \mathbf{R}$ homogeneous of degree λ , that is, such that $$\phi(\kappa w) = |\kappa|^{\lambda} \phi(w)$$ for all $\kappa \in \mathbf{R} \setminus \{0\}$ and $w \in \bigwedge^d V \setminus \{0\}$. This is a one-dimensional vector space that we denote by $\mathbf{F}_{\lambda}(V)$. Let M be a smooth manifold of dimension d; consider the determinant bundle $\bigwedge^d TM \to M$. DEFINITION 3.2. A tensor density of degree $\lambda \in \mathbf{R}$ on M is a smooth function on the complement of the zero section $\bigwedge^d TM \setminus M$, homogeneous of degree λ . The space of tensor densities of degree λ on M will be denoted by $\mathcal{F}_{\lambda}(M)$. In other words, a tensor density of degree λ on M is a section of the line bundle $\mathbf{F}_{\lambda}(TM)$, i.e. a field of λ -densities on the tangent space. Equivalently, consider the line bundle $\bigwedge^d T^*M \to M$. Then, the line bundle $|\bigwedge^d T^*M|^{\lambda}$ is well defined for every $\lambda \in \mathbf{R}$ and naturally isomorphic to $\mathbf{F}_{\lambda}(TM)$. It worth noticing that the bundle $\mathbf{F}_{\lambda}(TM)$ is *trivial* for any M and all λ . Every space $\mathcal{F}_{\lambda}(M)$ is naturally a module over the Lie algebra $\mathrm{Vect}(M)$. Let us give here without proof the basic properties of these modules: - The space $\mathcal{F}_0(M)$ is simply $C^{\infty}(M)$. - The space $\mathcal{F}_1(M)$ is isomorphic as a Vect(M)-module to the space $\Omega_d(M)$ of differential d-forms if and only if M is orientable. If Ω is a volume form on M, then one represents tensor densities in the form $$\varphi = f \Omega^{\lambda}$$, where f is a function. - The Vect(M)-modules $\mathcal{F}_{\lambda}(M)$ and $\mathcal{F}_{\mu}(M)$ are isomorphic if and only if $\lambda = \mu$. - If M is compact then there is an invariant functional (4) $$\int_{M} : \mathcal{F}_{1}(M) \to \mathbf{R}.$$ More generally, there is an invariant pairing $$\langle \mathcal{F}_{\lambda}(M), \mathcal{F}_{1-\lambda}(M) \rangle \to \mathbf{R}$$ given by the integration of the product of tensor densities. To summarize, the 1-parameter family of spaces $\mathcal{F}_{\lambda}(M)$ can be viewed as a deformation of the natural Vect(M)-action on the space of functions. We refer to [3] for more information on modules of tensor densities and invariant differential operators on these modules. #### 3.3 Tensor densities on a contact manifold Let now M be a contact manifold of dimension d=2n+1. In this case, there is one more way to define tensor densities. Consider the (2n+2)-dimensional submanifold S of the cotangent bundle $T^*M\setminus M$ that consists of all non-zero covectors vanishing on the contact distribution ξ . The restriction to S of the canonical symplectic structure on T^*M defines a symplectic structure on S. The manifold S is called the *symplectization* of M (cf. [1, 2]). Clearly S is a line bundle over M, its sections are the 1-forms on M vanishing on ξ . Note that, in the case where M is orientable, S is a trivial line bundle over M. There is a natural lift of CVect(M) to S. Indeed, a vector field X on M can be lifted to T^*M , and, if X is contact, then it preserves the subbundle S. The space of sections Sec(S) is therefore a CVect(M)-module. The sections of the bundle S can be viewed as tensor densities of degree $\frac{1}{n+1}$ on M. PROPOSITION 3.3. There is a natural isomorphism of CVect(M)-modules $$\operatorname{Sec}(S) \cong \mathcal{F}_{\frac{1}{n+1}}(M)$$. *Proof.* A section of S is a 1-form on M vanishing on the contact distribution. For every contact vector field X and a volume form Ω as in (1) one has $$L_X\Omega=(n+1)f_X\Omega$$. The Lie derivative of a tensor density of degree λ is then given by $$L_X(f \Omega^{\lambda}) = (X(f) + \lambda(n+1)f_X f) \Omega^{\lambda}.$$ The result follows from formula (2). One can now represent tensor densities in terms of a contact form: $\varphi = f \alpha^{(n+1)\lambda}$. #### 3.4 Contact Hamiltonian as a tensor density In this section we identify the algebra CVect(M) with a space of tensor densities of degree $-\frac{1}{n+1}$ on M; the adjoint action is simply a Lie derivative on this space. The result of this section is known (see [5] and [6], Section 7.5) and given here for the sake of completeness. Let us define a different version of contact Hamiltonian of a contact vector field X as a tensor density on M of degree $-\frac{1}{n+1}$: $$\mathcal{H} := \alpha(X) \, \alpha^{-1} \, .$$ An important feature of this definition is that it is independent of the choice of α . Let us denote the corresponding contact vector field by $X_{\mathcal{H}}$. The space $\mathcal{F}_{-\frac{1}{n+1}}(M)$ is now identified with CVect(M). Moreover, the Lie bracket of contact vector fields corresponds to the Lie derivative. PROPOSITION 3.4. The adjoint representation of CVect(M) is isomorphic to $\mathcal{F}_{-\frac{1}{m+1}}(M)$. Proof. The Lagrange bracket coincides with a Lie derivative: $$\{\mathcal{H}_1,\mathcal{H}_2\}=L_{X_{\mathcal{H}_1}}(\mathcal{H}_2).$$ This formula is equivalent to (3). Geometrically speaking, a contact Hamiltonian is not a function but rather a tensor density of degree $-\frac{1}{n+1}$. # 3.5 Invariant functional on CVect(M) Assume M is compact and orientable; fix a contact form α and the corresponding volume form $\Omega = \alpha \wedge d\alpha^n$. The geometric interpretation of the adjoint action of CVect(M) implies the existence of an invariant (non-linear) functional on CVect(M). Let $CVect^*(M)$ be the set of contact vector fields with nowhere vanishing contact Hamiltonians (i.e., the corresponding contact Hamiltonian has no zeroes on M). This is an invariant open subset of CVect(M). COROLLARY 3.5. The functional on CVect*(M) defined by $$\mathcal{I}\colon X_H\mapsto \int_M H^{-(n+1)}\,\Omega$$ is invariant. This functional is independent of the choice of the contact form. *Proof.* Consider is a contact vector field X_F , then according to (3) one has $$L_{X_F}(H^{-(n+1)}) = X_F(H^{-(n+1)}) + (n+1)Z(F)H^{-(n+1)},$$ so that the quantity $H^{-(n+1)}\Omega$ is a well defined element of the space $\mathcal{F}_1(M)$. The functional \mathcal{I} is then given by the invariant functional (4). Furthermore, choose a different contact form $\alpha' = f \alpha$ and the corresponding volume form $\Omega' = f^{n+1} \Omega$. The contact Hamiltonian of the vector field X_H with respect to the contact form α' is the function $H' = \alpha'(X_H) = f H$. Hence, $H'^{-(n+1)} \Omega' = H^{-(n+1)} \Omega$ so that the functional \mathcal{I} is, indeed, independent of the choice of the contact form. \square # 4. The STRUCTURE OF TVect(M) In this section we study the structure of the space of tangent vector fields TVect(M) viewed as a CVect(M)-module. #### 4.1 A GEOMETRIC REALIZATION Let us start with a geometric realization of the CVect(M)-module structure on TVect(M) which is quite similar to that of Section 3.4. Let $\Omega_0^2(M)$ be the space of 2-forms on M vanishing on the contact distribution. In other words, elements of $\Omega_0^2(M)$ are proportional to α : $$\omega = \alpha \wedge \beta \,,$$ where β is an arbitrary 1-form. The following statement is similar to Proposition 3.4. THEOREM 4.1. There is an isomorphism of CVect(M)-modules $$\operatorname{TVect}(M) \cong \Omega_0^2(M) \otimes \mathcal{F}_{-\frac{2}{n+1}}(M)$$, where the tensor product is defined over $C^{\infty}(M)$. *Proof.* Let M be orientable; fix a contact form α on M. Consider a linear map from TVect(M) to the space $\Omega_0^2(M)$ that associates to a tangent vector field X the 2-form $$\langle X, \alpha \wedge d\alpha \rangle = -\alpha \wedge i_X d\alpha$$. This map is bijective since the restriction $d\alpha|_{\xi}$ of the 2-form $d\alpha$ to the contact hyperplane ξ is non-degenerate. However, the above map depends on the choice of the contact form and, therefore, cannot be CVect(M)-invariant. In order to make this map independent of the choice of α , one defines the map (6) $$X \mapsto \langle X, \alpha \wedge d\alpha \rangle \otimes \alpha^{-2}$$ with values in $\Omega_0^2(M) \otimes \mathcal{F}_{-\frac{2}{n+1}}(M)$. Note that the term α^{-2} on the right hand side is a well defined element of the space of tensor densities $\mathcal{F}_{-\frac{2}{n+1}}(M)$, see Section 3.3. It remains to check the CVect(M)-invariance of the map (6). Let X_H be a contact vector field; one has $$L_{X_H} \left(\langle X, \alpha \wedge d\alpha \rangle \otimes \alpha^{-2} \right) = \langle [X_H, X], \alpha \wedge d\alpha \rangle \otimes \alpha^{-2}$$ $$+ \langle X, f_X \alpha \wedge d\alpha + \alpha \wedge df_X \alpha \rangle \otimes \alpha^{-2}$$ $$- \langle X, \alpha \wedge d\alpha \rangle \otimes (2f_X \alpha^{-2})$$ $$= \langle [X_H, X], \alpha \wedge d\alpha \rangle \otimes \alpha^{-2}.$$ Hence the result. The isomorphism (6) identifies the CVect(M)-action on TVect(M) by Lie bracket with the usual Lie derivative. It is natural to say that this map defines an analog of contact Hamiltonian of a tangent vector field. # 4.2 A SKEW-SYMMETRIC PAIRING ON TVect(M) OVER CVect(M) There exists an invariant skew-symmetric bilinear map from TVect(M) to CVect(M) that can be understood as a "symplectic structure" on the space TVect(M) over CVect(M). THEOREM 4.2. There exists a non-degenerate skew-symmetric invariant bilinear map $$\mathcal{B}$$: TVect(M) \wedge TVect(M) \rightarrow CVect(M), where the \wedge -product is defined over $C^{\infty}(M)$. *Proof.* Assume first that M is orientable and fix the contact form α . Given 2 tangent vector fields X and Y, consider the function $$H_{X,Y} = \langle X \wedge Y, d\alpha \rangle$$. Define first a bilinear map B from TVect(M) to $C^{\infty}(M)$ by (7) $$B_{\alpha}: X \wedge Y \mapsto H_{X,Y}$$. The definition of the function $H_{X,Y}$ and thus of the map B_{α} depends on the choice of α . Our task is to understand it as a map with values in CVect(M) which is independent of the choice of the contact form. This will, in particular, extend the definition to the case where M is not orientable. It turns out that the above function $H_{X,Y}$ is a well defined contact Hamiltonian. LEMMA 4.3. Choose a different contact form $\alpha' = f \alpha$, then $$H'_{X,Y}=fH_{X,Y}$$. *Proof.* By definition, $$H'_{X,Y} = \langle X \wedge Y, d\alpha' \rangle = f \langle X \wedge Y, d\alpha \rangle + \langle X \wedge Y, df \wedge \alpha \rangle = f H_{X,Y}$$ since the second term vanishes. We observe that the function $H_{X,Y}$ depends on the choice of α precisely in the same way as a contact Hamiltonian (cf. Section 3.1). It follows that the bilinear map (8) $$\mathcal{B}: X \wedge Y \mapsto H_{X,Y} \alpha^{-1}$$ with values in $\mathcal{F}_{-\frac{1}{n+1}} \cong \text{CVect}(M)$ (cf. Section 3.4) is well defined and independent of the choice of α . It remains to check that the constructed map (8) is CVect(M)-invariant. This can be done directly but also follows from Proposition 4.4. The Lie bracket of two tangent vector fields $X, Y \in \text{TVect}(M)$ is of the form (9) $$[X, Y] = \mathcal{B}(X, Y) + (tangent vector field).$$ *Proof.* Consider the decomposition from Proposition 2.1 applied to the Lie bracket [X, Y]. The "non-tangent" component of [X, Y] is a contact vector field with contact Hamiltonian $\alpha([X, Y])$. One has $$i_{[X,Y]}\alpha = (L_X i_Y - i_Y L_X)\alpha = -i_Y L_X \alpha = -i_Y i_X d\alpha = H_{X,Y}.$$ The result follows. \Box Theorem 4.2 is proved. \Box Proposition 4.4 is an alternative definition of \mathcal{B} : the map \mathcal{B} measures the failure of the Lie bracket of two tangent vector fields to remain tangent. # 5. Heisenberg structures In order to investigate the structure of TVect(M) as a CVect(M)-module in more detail, we will write explicit formulæ for the CVect(M)-action. We assume that there is an action of the Heisenberg Lie algebra \mathfrak{h}_n on M, such that the center acts by the Reeb field while the generators are tangent to the contact structure. We then say that M is equipped with the Heisenberg structure. Existence of a globally defined Heisenberg structure is a strong condition on M, however, locally such structure always exists. ## 5.1 Definition of a Heisenberg structure Recall that the Heisenberg Lie algebra \mathfrak{h}_n is a nilpotent Lie algebra of dimension 2n+1 with the basis $\{a_1,\ldots,a_n,b_1,\ldots,b_n,z\}$ and the commutation relations $$\begin{bmatrix} a_i,b_j \end{bmatrix} = \delta_{ij}z\,,\quad \begin{bmatrix} a_i,a_j \end{bmatrix} = \begin{bmatrix} b_i,b_j \end{bmatrix} = \begin{bmatrix} a_i,z \end{bmatrix} = \begin{bmatrix} b_i,z \end{bmatrix} = 0\,,\quad i,j=1,\ldots,n\,.$$ The element z spans the one-dimensional center of \mathfrak{h}_n . REMARK 5.1. The algebra \mathfrak{h}_n appears naturally in the context of symplectic geometry as a Poisson algebra of linear functions on the standard 2n-dimensional symplectic space. We say that M is equipped with a *Heisenberg structure* if one fixes a contact form α on M and a \mathfrak{h}_n -action spanned by 2n+1 vector fields $\{A_1,\ldots,A_n,B_1,\ldots,B_n,Z\}$, such that the 2n vector fields A_i,B_j are independent at any point and tangent to the contact structure: $$i_{A_i}\alpha=i_{B_i}\alpha=0$$ and $[A_i, B_i] = Z$, where Z is the Reeb field, while the other Lie brackets are zero. ## 5.2 Example: the local Heisenberg structure The Darboux theorem states that locally contact manifolds are diffeomorphic to each other. An effective way to formulate this theorem is to say that in a neighborhood of any point of M there is a system of local coordinates $(x_1, \ldots, x_n, y_1, \ldots, y_n, z)$ such that the contact structure ξ is given by the 1-form $$\alpha = \sum_{i=1}^{n} \frac{x_i \, dy_i - y_i \, dx_i}{2} + dz.$$ These coordinates are called the Darboux coordinates. Proposition 5.2. The vector fields (10) $$A_i = \frac{\partial}{\partial x_i} + \frac{y_i}{2} \frac{\partial}{\partial z}, \qquad B_i = -\frac{\partial}{\partial y_i} + \frac{x_i}{2} \frac{\partial}{\partial z}, \qquad Z = \frac{\partial}{\partial z},$$ where i = 1, ..., n, define a Heisenberg structure on \mathbb{R}^{2n+1} . *Proof.* One readily checks that A_i, B_i are tangent and $$[A_i,B_j]=\delta_{ij}Z$$ while other commutation relations are zero. The vector field Z is simply the Reeb field. \square There is a well-known formula for a contact vector field in the Darboux coordinates (see e.g. [1, 2, 4]). We will not use this formula since the expression in terms of the Heisenberg structure is much simpler. # 5.3 CONTACT VECTOR FIELDS AND HEISENBERG STRUCTURE Assume that M is equipped with an arbitrary Heisenberg structure. It turns out that every contact vector field can be expressed in terms of the basis of the \mathfrak{h}_n -action by a universal formula. PROPOSITION 5.3. Given an arbitrary Heisenberg structure on M, a contact vector field with a contact Hamiltonian H is given by the formula (11) $$X_H = HZ - \sum_{i=1}^n (A_i(H) B_i - B_i(H) A_i).$$ *Proof.* Let us first check that the vector field (11) is, indeed, contact. If X is as on the right hand side of (11), then the Lie derivative $L_X\alpha := (d \circ i_X + i_X \circ d) \alpha$ is given by $$L_X\alpha=dH-\sum_{i=1}^n\left(A_i(H)\,i_{B_i}-B_i(H)\,i_{A_i}\right)d\alpha.$$ To show that the 1-form $L_X\alpha$ is proportional to α , it suffices to check that $$i_{A_i}(L_X\alpha)=i_{B_i}(L_X\alpha)=0$$ for all $i,j=1,\ldots,n$. The first relation is a consequence of the formulæ $i_{A_i}(dH) = A_i(H)$ together with (12) $$i_{A_i}i_{B_j}d\alpha = i_{A_i}(L_{B_j}\alpha) = i_{[A_i,B_j]}\alpha = \delta_{ij}i_Z\alpha = \delta_{ij}, \\ i_{A_i}i_{A_i}d\alpha = i_{B_i}i_{B_i}d\alpha = 0.$$ The second one follows from the similar relations for i_{B_i} . Secondly, observe that, if X is as in (11), then $i_X \alpha = H$. This means that the contact Hamiltonian of the contact vector field (11) is precisely H. Note that a formula similar to (11) was used in [4] to define a contact structure. # 5.4 THE ACTION OF CVect(M) ON TVect(M) Since 2n vector fields A_i and B_j are linearly independent at any point, they form a basis of TVect(M) over $C^{\infty}(M)$. Therefore, an arbitrary tangent vector field X has a unique decomposition (13) $$X = \sum_{i=1}^{n} (F_i A_i + G_i B_i) ,$$ where (F_i, G_j) in a 2n-tuple of smooth functions on M. The space TVect(M) is now identified with the direct sum $$\operatorname{TVect}(M) \cong \underbrace{C^{\infty}(M) \oplus \cdots \oplus C^{\infty}(M)}_{2n \text{ times}}.$$ Let us calculate explicitly the action of CVect(M) on TVect(M). PROPOSITION 5.4. The action of CVect(M) on TVect(M) is given by the first-order $(2n \times 2n)$ -matrix differential operator (14) $$X_H \begin{pmatrix} F \\ G \end{pmatrix} = \begin{pmatrix} X_H \cdot \mathbf{1} - \begin{pmatrix} AB(H) & BB(H) \\ -AA(H) & -BA(H) \end{pmatrix} \begin{pmatrix} F \\ G \end{pmatrix},$$ where F and G are n-vector functions, $\mathbf{1}$ is the unit $(2n \times 2n)$ -matrix, AA(H), AB(H), BA(H) and BB(H) are $(n \times n)$ -matrices, namely $$AA(H)_{ij} = A_iA_i(H)$$, and the three other expressions are similar. *Proof.* Straightforward from (11) and (13). \square PROPOSITION 5.5. The bilinear map (7) has the following explicit expression: $$H_{X,\widetilde{X}} = \sum_{i=1}^{n} \begin{vmatrix} F_i & \widetilde{F}_i \\ G_i & \widetilde{G}_i \end{vmatrix},$$ where $X = \sum_{i=1}^{n} (F_i A_i + G_i B_i)$, and $\widetilde{X} = \sum_{j=1}^{n} (\widetilde{F}_j A_j + \widetilde{G}_j B_j)$. *Proof.* This follows from definition (7) and formula (12). \Box Note that formula (14) implies that $H_{X,\tilde{X}}$ transforms as a contact Hamiltonian according to (3) since the partial traces of the $(2n \times 2n)$ -matrix in (14) are $A_iB_i(H) - B_iA_i(H) = Z(H)$. ACKNOWLEDGEMENTS. I am grateful to C. Duval and S. Tabachnikov for their interest in this work and a careful reading of a preliminary version of this paper. #### REFERENCES [1] ARNOLD, V. I. Mathematical Methods of Classical Mechanics. Third edition. Nauka, Moscow, 1989. - [2] ARNOLD, V. and A. GIVENTAL. *Symplectic Geometry*. Encycl. of Math. Sci., Dynamical Systems 4. Springer-Verlag, 1990. - [3] FUKS, D. B. Cohomology of Infinite-Dimensional Lie Algebras. Consultants Bureau, New York, 1986. - [4] KIRILLOV, A. Local Lie algebras. Russ. Math. Surv. 31 (1976), 57-76. - [5] OVSIENKO, V. Contact analogues of the Virasoro algebra. *Funct. Anal. Appl.* 24 (1990), 306–314. - [6] OVSIENKO, V. and S. TABACHNIKOV. Projective Differential Geometry Old and New, from Schwarzian Derivative to the Cohomology of Diffeomorphism Groups. Cambridge Tracts in Mathematics 165, Cambridge University Press, 2005. (Reçu le 22 décembre 2005) #### V. Ovsienko CNRS, Institut Camille Jordan Université Claude Bernard Lyon 1 21, avenue Claude Bernard F-69622 Villeurbanne Cedex France e-mail: ovsienko@math.univ-lyon1.fr # Leere Seite Blank page Page vide