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VECTOR FIELDS IN THE PRESENCE OF A CONTACT STRUCTURE

by Valentin OVSIENKO

ABSTRACT. We consider the Lie algebra of all vector fields on a contact manifold
as a module over the Lie subalgebra of contact vector fields. This module is split into
a direct sum of two submodules: the contact algebra itself and the space of tangent
vector fields. We study the geometric nature of these two modules.

1. INTRODUCTION

Let M be a smooth manifold and Vect(M) the Lie algebra of all smooth
vector fields on M. We consider the case when M is (2n + 1)-dimensional
and can be equipped with a contact structure. For instance, if dmM = 3,
and M 1s compact and orientable, then a famous theorem of 3-dimensional
topology states that there is always a contact structure on M.

Let CVect(M) be the Lie algebra of smooth vector fields on M preserving
the contact structure. This Lie algebra naturally acts on Vect(M) (by Lie
bracket). We will study the structure of Vect(M) as a CVect(M)-module.
First, we observe that Vect(M) 1s split, as a CVect(M)-module, into a direct
sum of two submodules :

Vect(M) = CVect(M) @ TVect(M) ,

where TVect(M) is the space of vector fields tangent to the contact distribution.
Note that the latter space is a CVect(M)-module but not a Lie subalgebra
of Vect(M).
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The main purpose of this paper is to study the above two spaces
geometrically. The most important notion for us is that of invariance. All
the maps and isomorphisms we consider are invariant with respect to the
group of contact diffeomorphisms of M. Since we consider only local maps,
this 1s equivalent to invariance with respect to the action of the Lie algebra
CVect(M).

It is known, see [5, 6], that the adjoint action of CVect(M) has the
following geometric interpretation :

CVect(M) = f_ﬁ(m,

. .. 1
where F_ 5 (M) 1is the space of tensor densities of degree —g on M, that

. ot .
1s, of sections of the line bundle

— M.

/\ "M

In particular, this provides the existence of a nonlinear invariant functional on
CVect(M) defined on the contact vector fields with nowhere vanishing contact
Hamiltonians.

1
2n+1 |_n+1

The analogous interpretation of TVect(M) 1s more complicated:
TVeet(M) = Q4M) @ F_ 2 (M),

where Q2(M) is the space of 2-forms on M vanishing on the contact
distribution. Here and below the tensor products are defined over C*>(M).

We study the relations between TVect(M) and CVect(M). We prove the
existence of a non-degenerate skew-symmetric invariant bilinear map

B: TVect(M) A 'TVect(M) — CVect(M)

that measures the non-integrability, i.e., the failure of the Lie bracket of two
tangent vector fields to remain tangent.

In order to provide explicit formule, we mtroduce a notion of Heisenberg
structure on M. Usually, to write explicit formule in contact geometry, one
uses the Darboux coordinates. However, this is not the best way to proceed
(as already noticed in [4]). The Heisenberg structure provides a universal
expression for a contact vector field and its actions.
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2. CONTACT AND TANGENT VECTOR FIELDS

In this section we recall the basic definitions of contact geometry. We then
prove our first statement on a decomposition of the Lie algebra of all smooth
vector fields viewed as a module over the Lie algebra of contact vector fields.

2.1 MAIN DEFINITIONS

Let M be a (2n + 1)-dimensional manifold. A contact structure on M
i1s a codimension 1 distribution £ which is completely non-integrable. The
distribution £ can be defined (locally) as the kernel of a differential 1-form
o defined up to multiplication by a nowhere vanishing function. Complete
non-integrability means that

(1) Q:=aA(da) £0

everywhere on M. The above condition 1s also equivalent to the fact that
the restriction da|¢ to any contact hyperplane is a non-degenerate 2-form. In
particular, kerdco is one-dimensional. Note that if M 1s orientable and the
contact structure is coorientable, then the form « can be globally defined on
M ; the form €2 is then a volume form.

A vector field X on M is a contact vector field if it preserves the contact
distribution £. In terms of contact forms this means that for every contact
form «, the Lie derivative of a with respect to X 1s proportional to « :

(2 Lya = fxa,

where fy € C>°(M). The space of all contact vector fields is a Lie algebra
that we denote by CVect(M).

Let us now fix a contact form «. A contact vector field X is called
strictly contact 1if it preserves «, 1n other words, if fy = 0 everywhere on M.
Strictly contact vector fields form a Lie subalgebra of CVect(M). There is one
particular strictly contact vector field Z called the Reeb field (or characteristic
vector field). It is defined by the following two properties:

Z € kerda, aZ)=1.

We will also consider the space, TVect(M), of vector fields rangent to
the contact distribution. That this space i1s not a Lie subalgebra of Vect(M)
follows from non-integrability of the contact distribution.
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2.2 'THE DECOMPOSITION OF Vect(M)

Let Vect(M) be the Lie algebra of all smooth vector fields on M. The
Lie bracket defines a natural action of CVect(M) on Vect(M). In particular,
the Lie bracket of a contact vector field with a tangent vector field is again
a tangent vector field. Therefore, TVect(M) 1s a module over CVect(M).

ProOPOSITION 2.1. The space Vect(M) is split into a direct sum of two
CVect(M)-modules :

Vect(M) = CVect(M) & TVect(M) .

Proof. Both spaces on the right hand side are CVect(M)-modules. It then
remains to check that every vector field can be uniquely decomposed into a
sum of a contact vector field and a tangent vector field.

Given a vector field X, there exists a tangent vector field ¥ such that
X — Y is contact. Indeed, consider a 1-form /5 = Lyo and its restriction [|¢
to a contact hyperplane £. If Y is a tangent vector field then Lya = iy(da).
Since do 1s non-degenerate on £, there exists for any 1-form 7 a tangent
field Y such that iy(da)|¢ = /3|c. This means that X — Y is contact.

Furthermore, the intersection of CVect(M) and TVect(M) 1s zero. Indeed,
let X be a non-zero vector field which 1s contact and tangent at the same
time. Then Lyoa = fo for some function f and Ly = ix(da). Since kerfa
contains £ = kero while the restriction da|e is non-degenerate, this is a
contradiction. [ |

3. THE ADIJOINT REPRESENTATION OF CVect(M)
In this section we study the action of CVect(M) on itself.

3.1 FIXING A CONTACT FORM: CONTACT HAMIITONIANS

Let M be orientable; fix a contact form o on M. Every contact vector
field X is then characterized by a function

H = a(X).

This is a one-to-one correspondence between CVect(M) and the space C>(M)
of smooth functions on M, see e.g. [1]. We can denote the contact vector field
corresponding to H by Xy . The function H is called the contact Hamiltonian
of XH.
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EXAMPLE 3.1. The contact Hamiltonian of the Reeb field Z is the constant
function H = 1. Note also that the function fx in (2) is given by the derivative

Jxy = 2().

The Lie algebra CVect(M) 1s then identified with C>(M) equipped with
the Lagrange bracket defined by Xy, p,) 1= [XHI,XHZ] . One checks that

3 {H1,H2} = Xy, (Hy) — Z(H1)H> .

The formula expresses the adjoint representation of CVect(M) in terms of
contact Hamiltonians. The second term on the right hand side shows that this
action is different from the natural action of CVect(M) on C>*(M). Let us
now clarify the geometric meaning of this action.

3.2 SPACE OF TENSOR DENSITIES

Let V be a vector space of dimension d and A an arbitrary real number. A
A-density on V is a function ¢: /\d V\{0} — R homogeneous of degree A,
that 1is, such that

P(kw) = |6 d(w)

for all x € R\ {0} and w € /\dV\ {0}. This is a one-dimensional vector
space that we denote by Fy(V).

let M be a smooth manifold of dimension ¢ ; consider the determinant
bundle /\d ™ — M.

DEFINITION 3.2. A tensor density of degree A € R on M is a smooth
function on the complement of the zero section /\d TM\ M, homogeneous of
degree A. The space of tensor densities of degree A on M will be denoted

by Fr(M).

In other words, a tensor density of degree A on M is a section of the line
bundle Fy(7M), 1.e. a field of A-densities on the tangent space. Equivalently,
consider the line bundle /\d T*M — M. Then, the line bundle | /\d T*M \’\ is
well defined for every A € R and naturally isomorphic to Fy(7M). It worth
noticing that the bundle Fx(7M) is trivial for any M and all A.
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Every space F\(M) is naturally a module over the Lie algebra Vect(M).
Let us give here without proof the basic properties of these modules:
* The space Fo(M) 1s simply C>*(M).
* The space F{(M) is isomorphic as a Vect(M)-module to the space €2,(M)
of differential d-forms if and only if M 1s orientable. If Q 1s a volume
form on M, then one represents tensor densities in the form

p=fQ*,
where f 1s a function.
¢ The Vect(M)-modules F)(M) and F,(M) are isomorphic if and only if
A= p.
* If M 1s compact then there is an invariant functional

@ / : Fi(M) = R.
M
More generally, there is an mvariant pairing

(FAM), Fix(M)) — R

given by the integration of the product of tensor densities.

To summarize, the 1-parameter family of spaces Fy(M) can be viewed as
a deformation of the natural Vect(M)-action on the space of functions. We
refer to [3] for more mformation on modules of tensor densities and invariant
differential operators on these modules.

3.3 TENSOR DENSITIES ON A CONTACT MANIFOLD

Let now M be a contact manifold of dimension d = 2n + 1. In this
case, there is one more way to define tensor densities. Consider the (214 2)-
dimensional submanifold S of the cotangent bundle 7*M \ M that consists of
all non-zero covectors vanishing on the contact distribution £. The restriction
to S of the canonical symplectic structure on 7*M defines a symplectic
structure on §. The manifold § is called the symplectization of M (cf. [1, 2]).
Clearly § 1s a line bundle over M, its sections are the 1-forms on M vanishing
on £. Note that, in the case where M is orientable, S is a trivial line bundle
over M.

There is a natural lift of CVect(M) to S. Indeed, a vector field X on M
can be lifted to 7°M, and, if X 1s contact, then it preserves the subbundle §.
The space of sections Sec(S) is therefore a CVect(M)-module.

The sections of the bundle S can be viewed as tensor densities of

1
degree -7 on M.
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PROPOSITION 3.3.  There is a natural isomorphism of CVect(M)-modules

Sec($) 2 Fy_(M).

Proof. A section of § i1s a lform on M vanishing on the contact
distribution. For every contact vector field X and a volume form €2 as in (1)
one has

LyQ = (n + 1)fx<2

The Lie derivative of a tensor density of degree A is then given by

Lx(f @) = (X(F) + A + D) @ .

The result follows from formula (2). Ll

One can now represent tensor densities in terms of a contact form:
0 = f Oé(n—ﬁ-l))\'

34 CONTACT HAMILTONIAN AS A TENSOR DENSITY

In this section we identify the algebra CVect(M) with a space of tensor
densities of degree _#1 on M ; the adjoint action is simply a Lie derivative
on this space. The result of this section 1s known (see [5] and [6], Section
7.5) and given here for the sake of completeness.

Let us define a different version of contact Hamiltonian of a contact vector

field X as a tensor density on M of degree —nj_l :

Hi=aX)a !

An 1mportant feature of this definmition 1s that 1t 1s independent of the choice
of a. Let us denote the corresponding contact vector field by Xy .

The space F_ . (M) 1s now identified with CVect(M). Moreover, the Lie
bracket of contact vector fields corresponds to the Lie derivative.

PROPOSITION 3.4.  The adjoint representation of CVect(M) is isomorphic
to F_ ﬁ M).

Proof. 'The Lagrange bracket coincides with a Lie derivative :

3) {H1, Ha} = Lx,, (H2) -
This formula 1s equivalent to (3). [

Geometrically speaking, a contact Hamiltonian 1s not a function but rather

- 1
a tensor density of degree —_=.
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3.5 INVARIANT FUNCTIONAL ON CVect(M)

Assume M 1s compact and orientable; fix a contact form « and the
corresponding volume form €2 = a Ada”. The geomeltric interpretation of the
adjoint action of CVect(M) implies the existence of an invariant (non-linear)
functional on CVect(M).

Let CVect"(M) be the set of contact vector fields with nowhere vanishing
contact Hamiltomans (i.¢., the corresponding contact Hamiltonian has no zeroes
on M). This is an invariant open subset of CVect(M).

COROLLARY 3.5. The functional on CVect" (M) defined by
I: Xy / H~hQ
M

is invariant. This functional is independent of the choice of the contact form.

Proof. Consider is a contact vector field Xp, then according to (3) one
has
Ly, (™) = Xp D) + (0 + DZE H™TD,

so that the quantity H="+D Q is a well defined element of the space F,(M).
The functional Z is then given by the invariant functional (4).

Furthermore, choose a different contact form o’ = f a and the correspond-
ing volume form €' = f*71 Q. The contact Hamiltonian of the vector field
Xy with respect to the contact form o is the function H' = o/(Xy) = fH.
Hence, H'~"*+D Q' = H="+D Q g0 that the functional 7 is, indeed, indepen-
dent of the choice of the contact form. [ ]

4. THE STRUCTURE OF TVect(M)

In this section we study the structure of the space of tangent vector fields
TVect(M) viewed as a CVect(M)-module.

4.1 A GEOMETRIC REALIZATION

Let us start with a geometric realization of the CVect(M)-module structure
on TVect(M) which is quite similar to that of Section 3.4.

Let Q3(M) be the space of 2-forms on M vanishing on the contact
distribution. In other words, elements of Q2(M) are proportional to « :

w=aAj,
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where ( is an arbitrary 1-form.
The following statement is similar to Proposition 3.4.

THEOREM 4.1.  There is an isomorphism of CVect(M)-modules

TVect(M) = Q4M) @ F_ 2 (M),
where the tensor product is defined over C(M).

Proof. Tet M be orientable; fix a contact form « on M. Consider a
linear map from TVect(M) to the space Qi(M) that associates to a tangent
vector field X the 2-form

X,aNda) = —a Aixda.

This map is bijective since the restriction dale of the 2-form da to the
contact hyperplane £ i1s non-degenerate.

However, the above map depends on the choice of the contact form
and, therefore, cannot be CVect(M)-invariant. In order to make this map
mdependent of the choice of «, one defines the map

(6) X (X,a Ada) @ a™?

with values in Q3(M) ®~7:_%(M). Note that the term a~? on the right hand
side 1s a well defined element of the space of tensor densities F_ 2 (M), see

Section 3.3.

It remains to check the CVect(M)-invariance of the map (6). Let Xy be
a contact vector field; one has

Ly, ({(X,a Nda) @ o) = {([Xg, X],a Ada) @ o™
+ (X, fxa Ada + a A dfxa) © a2
— (X, Ado) ® @fxa™?)
= {[Xy,Xl,a Ada) @ a™?,
Hence the result, [
The isomorphism (6) identifies the CVect(M)-action on TVect(M) by Lie

bracket with the usual Lie derivative. It 1s natural to say that this map defines
an analog of contact Hamiltonian of a tangent vector field.
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4.2 A SKEW-SYMMETRIC PAIRING ON TVect(M) OVER CVect(M)

There exists an invariant skew-symmetric bilinear map from TVect(M) to
CVect(M) that can be understood as a “symplectic structure” on the space
TVect(M) over CVect(M).

THEOREM 4.2. There exists a non-degenerate skew-symmetric invariant
bilinear map

B: TVect(M) A TVect(M) — CVect(M),
where the A-product is defined over C*°(M).

Proof.  Assume first that M 1s orientable and fix the contact form «.
Given 2 tangent vector fields X and Y, consider the function

HX,Y: <X/\Y, dOé)
Define first a bilinear map B from TVect(M) to C*(M) by
(7) BQIX/\Yl—)HX’y.

The defimition of the function Hy y and thus of the map B, depends on the
choice of . Our task is to understand it as a map with values in CVect(M)
which is independent of the choice of the contact form. This will, in particular,
extend the definition to the case where M is not orientable.

It turns out that the above function Hxy 1s a well defined contact
Hamiltonian.

LEMMA 4.3. Choose a different contact form o = f «, then
Hyy =fHxy.
Proof. By definition,
Hyy=XAY,do') =f(XANY,do) +(XAY,df ha)y =fHyy

since the second term vanishes. L]

We observe that the function Hy y depends on the choice of o precisely
in the same way as a contact Hamiltonian (c¢f. Section 3.1). Tt follows that
the bilinear map

(8) B:XAY— Hyya™?

with values in JF_ e = CVect(M) (cf. Section 3.4) is well defined and
independent of the choice of «.
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It remains to check that the constructed map (8) is CVect(M)-invariant.
This can be done directly but also follows from

PROPOSITION 4.4.  The Lie bracket of two tangent vector fields X,Y €
1TVect(M) is of the form

9 [X.Y] = B(X,Y) + (tangent vector field) .

Proof. Consider the decomposition from Proposition 2.1 applied to the
Lie bracket [X, Y]. The “non-tangent” component of [X, Y] is a contact vector
field with contact Hamiltonian «([X, ¥]). One has

l'[X’Y]Od = (LX iy - iny)Cl{ = —iyLXod = —iy iX da = HX,y.

The result follows. [
Theorem 4.2 is proved. [ |

Proposition 4.4 is an alternative definition of 5 : the map B measures the
failure of the Lie bracket of two tangent vector fields to remain tangent.

5. HEISENBERG STRUCTURES

In order to investigate the structure of TVect(M) as a CVect(M)-module
in more detail, we will write explicit formule for the CVect(M)-action.

We assume that there is an action of the Heisenberg Lie algebra h, on M,
such that the center acts by the Reeb field while the generators are tangent
to the contact structure. We then say that M is equipped with the Heisenberg
structure. Existence of a globally defined Heisenberg structure i1s a strong
condition on M, however, locally such structure always exists.

5.1 DEFINITION OF A HEISENBERG STRUCTURE

Recall that the Heisenberg Lie algebra b, is a nilpotent Lie algebra of
dimension 2n+1 with the basis {ay,...,as,b1,..., b, z} and the commutation
relations

[aiabj} :61]'2: [aiaaj] - [bnbj] :[ai,Z]:[bj,Z]:O, i,jzl,...,ﬂ.

The element z spans the one-dimensional center of [, .
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REMARK 5.1. The algebra b, appears naturally in the context of sym-
plectic geometry as a Poisson algebra of linear functions on the standard
2n-dimensional symplectic space.

We say that M is equipped with a Heisenberg structure if one fixes
a contact foorm « on M and a bh,-action spanned by 2n + 1 vector
fields {Ai,...,A., Bi,...,B,, Z}, such that the 2n vector fields A;,B; are
independent at any point and tangent to the contact structure :

L'AEO{:l'BJOé:O

and [A;,B;] = Z, where Z 1s the Reeb field, while the other Lie brackets
are zero.

5.2 EXAMPLE: THE LOCAL HEISENBERG STRUCTURE

The Darboux theorem states that locally contact manifolds are diffeomor-
phic to each other. An effective way to formulate this theorem is to say that
in a neighborhood of any point of M there is a system of local coordi-
nates (xq,...,%., V1,..., Vs, 2) such that the contact structure £ 1s given by
the 1-form

"\ x;dy; — yidx;
= — =  1dz.
o ; ) + dz

These coordinates are called the Darboux coordinates.

PROPOSITION 5.2.  The vector fields

0 Yi 0 0 Xi 0 o
10) A= t+D 2 B D2 g
F0 v T2 o v 2o 7z
where i = 1,...,n, define a Heisenberg structure on R¥*'T1,

Proof.  One readily checks that A;, B, are tangent and
[A:,Bj] = 6,2
while other commutation relations are zero. The vector field Z is simply the

Reeb field. L]

There is a well-known formula for a contact vector field in the Darboux
coordinates (see e.g. [1, 2, 4]). We will not use this formula since the expression
in terms of the Heisenberg structure is much simpler.
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5.3 CONTACT VECTOR FIELDS AND HEISENBERG STRUCTURE

Assume that M 1s equipped with an arbitrary Heisenberg structure. It turns
out that every contact vector field can be expressed in terms of the basis of
the f,-action by a universal formula.

PROPOSITION 5.3. Given an arbitrary Heisenberg structure on M, a
contact vector field with a contact Hamiltonian H is given by the formula

(11) Xyp=HZ-> (A(H)B;—B(H)A,).
i=1
Proof. Tet us first check that the vector field (11) is, indeed, contact.

If X 1s as on the right hand side of (11), then the Lie demnvative Lya :=
(doix +ixod)a i1s given by

Lyo = dH — Z (AH ) ig, — Bi(H )ia,) dav.
i=1
To show that the 1-form Lyxa 1s proportional to «, it suffices to check that
iAf (LXa):iBj(Lon) =0 for all l,J: 1,...,1’1.

The first relation is a consequence of the formula iy, (dH) = A;(H) together
with

iaip do = g (Lp ) = fja, pjov = O iz v = 05,

(12) A:LB; A ( B; ) [A:,5B;] j “z Ef

iAfiAj dOd = iBgiBj dOé =0.

The second one follows from the similar relations for ig. .
Secondly, observe that, if X 1s as in (11), then iy @ = H. This means that
the contact Hamiltonian of the contact vector field (11) is precisely H. [

Note that a formula similar to (11) was used in [4] to define a contact
structure.

54 THE ACTION OF CVect(M) ON TVect(M)

Since 2n vector fields A; and B, are linearly independent at any point,
they form a basis of TVect(M) over C>(M). Therefore, an arbitrary tangent
vector field X has a unique decomposition

(13) X=> (FiAi+GB),

i=1
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where (F;, G;) in a 2n-tuple of smooth functions on M. The space TVect(M)
is now identified with the direct sum

TVect(M) = g“(M) S B CTM) .

~
2n times

Let us calculate explicitly the action of CVect(M) on TVect(M).

PROPOSITION 5.4. The action of CVect(M) on TVect(M) is given by the
first-order (2n X 2n)-matrix differential operator

Fy AB(H) BB(H) F
(14 X (G) - (XH - (—AA(H) —BA(H) G|’
where F and G are n-vector functions, 1 is the unit (2nx2n)-matrix, AA(I),
AB(H ), BA(H) and BB(Il) are (n x n)-matrices, namely
AA(H ); = AA(H ),

and the three other expressions are similar.

Proof. Straightforward from (11) and (13). [

PROPOSITION 5.5.  The bilinear map (7) has the following explicit expres-

sion :
n

HX,X’ - Z

i=1
where X =31 (F; A+ G B)), and X = z;l:l(ﬁjAj +G; B).

F; F;
& 0

)

Proof- This follows from definition (7) and formula (12). [

Note that formula (14) implies that Hy ; transforms as a contact Hamiltonian
according to (3) since the partial traces of the (2n x 2#)-matrix 1n (14) are
AiBi(H) — BA(H ) = Z(H).
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