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L’Enseignement Mathématique (2) 52 (2006), 193-214

SOUS-GROUPES COMPACTS
D’HOMEOMORPHISMES DE LA SPHERE

par Boris KOLEV *)

RESUME. L objet de cet article est d’exposer la démonstration du fait que tout
sous-groupe compact d’homéomorphismes de la sphere est topologiquement conjugué
a un sous-groupe fermé du groupe orthogonal O(3).

1. INTRODUCTION
Le résultat que nous nous proposons d’exposer dans cet article, a savoir
que tout sous-groupe compact d”homéomorphismes de S* est topologiquement
conjugué a un sous-groupe fermé du groupe orthogonal O(3), se situe dans le
cadre plus général d’une suite de questions connue sous le nom de 5¢ probleme
de Hilbert [20, 25]. Plus précisément, soit G un groupe localement compact
qu agit fidelement sur une variété M, on se pose les questions suivantes :

1. G est-il nécessairement localement') euclidien ?
2. Si G est localement euclidien, est-ce un groupe de Lie ?
3. Si G est un groupe de Lie, existe-t-il une structure analytique sur M

mvariante par G ?

*) Je tiens & remercier le rapporteur pour sa relecture extrémement attentive de cet article et
pour ses nombreuses remarques qui m’ ont aidé a améliorer ce texte.
'Y Une autre terminologie pour désigner une variété topologique.
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La réponse a la premi¢re question n’est pas connue en dehors de
quelques cas particuliers. La réponse a la deuxitme question est positive
(cf. Gleason [13], Montgomery and Zippin [15]). La réponse a la troisitme
question est négative en général. Il existe des contre-exemples simples dans
le cas non compact. Citons également la construction par Bing [2] d’une
involution négative de S° non conjuguée i un élément de O(4), d’exemples
d’homéomorphisme périodique de $* non conjugué a un élément de SO4)
(Bing [3], Montgomery and Zippin [15], Bredon [5]), d’une action de U(1)
sur S* non linéarisable (Montgomery and Zippin [15]) et d’une action de
U(1) sur $*"72 non linéarisable [6]. Signalons enfin une preuve par Cairns et
Ghys [6] que toute action topologique de SO(n) sur R" qui préserve 1’origine
est globalement conjuguée a I'action standard.

Un groupe de Lie possede une propriété remarquable : 1l existe un voisinage
de l'identit¢ qui ne contient aucun sous-groupe non trivial. D’un groupe
topologique qui possede cette propriété, on dit qu’il n’a pas de petit sous-
groupe. Immédiatement apreés la démonstration par Haar, en 1933, d’une
mesure invariante sur tout sous-groupe localement compact, von Neumann [21]
établit, en utilisant la théorie des représentations unitaires, le résultat suivant
(voir également [19]), considéré comme la premicre étape majeure dans la
résolution du 5° probléme :

THEOREME 1.1 (von Neumann). Un groupe compact qui ne posséde pas
de petit sous-groupe est un groupe de Lie.

Le but de cet article est de présenter une demonstration complete et
moderne d'un théoreme dii a Kerékjarté [10] qui donne une caractérisation
topologique complete du groupe des rotations et de ses sous-groupes fermés.

THEOREME 1.2 (Kerékjartd). Tout sous-groupe compact de Homéo(S?) est
topologiquement conjugué a un sous-groupe fermé de O(3).

La preuve donnée par Kerékjarté consiste a établir d’abord qu’un sous-
groupe compact d’homéomorphismes de la sphere qui possede un point
fixe laisse invariant un disque topologique autour de ce point, et que tout
groupe compact d’homéomorphismes du disque est topologiquement conjugué
a un sous-groupe fermé du groupe des isoméltries euclidiennes O(2). Ces
résultats essentiels se trouvent en réalité dans des travaux antérieurs de
Kerékjarté [9] connus pour étre extrémement confus. C’est pourquoi nous
reprenons dans les premieres sections la démonstration compléte dans un
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langage moderne. Le reste de la preuve est une étude casuistique qui se
base sur la nature et le nombre des sous-groupes qui fixent un point (les
stabilisateurs). Dans [10], le cas qui apparait le plus compliqué et qui occupe
la majeure partie de l’article est celui ou le groupe agit transitivement sur
la sphere car Kerékjarté reconstruit dans ce cas «a la main» la géométrie
euclidienne de la sphere. Dans notre démonstration, qui utilise le langage
moderne de la géométrie différenticlle, ce cas est, au contraire, le plus
simple.

L’article original de Kerékjarté [10] traite également des sous-groupes
compacts d’homéomorphismes des autres surfaces compactes, bien que la
majeure partie de I'article soit consacrée a la sphere. En effet, pour les autres
surfaces, on se ramene a des arguments €élaborés pour la sphere et le disque.
Ainsi, I’étude d’un groupe compact G de transformations d’une surface fermée
M de caractéristique d’Euler y(M) < 0, consiste a traiter d’abord le sous-
groupe Gy des transformations 1sotopes a I'identité. Ce sous-groupe Gg est
fermé, distingué dans G et d’indice fini. Dans le cas ol y(M) < 0, on montre
en passant au revétement universel que G, est trivial. Dans le cas du tore,
une analyse analogue a celle de la section 3, ou la notion de nombre de
rotation est remplacée par celle de vecteur de rotation, permet de conclure
que Gp est conjugué a un sous-groupe de translations. Cette étude n’est pas
détaillée dans cet article ol nous nous concentrons essentiellement sur la
sphere et le disque. On pourra consulter [4] pour plus de détails sur les autres
surfaces.

Un prolongement naturel de ces questions consiste a rechercher également
une caractérisation topologique du groupe homographique ou d'un de ses
sous-groupes, question également envisagée par Kerékjarto [9]. I.'étude de ce
probleme a fait apparaitre la notion de groupe de convergence (Ghering and
Martin [12]). Mais la réponse ne semble pas aussi simple que pour le groupe
des rotations.

La section 2 de cet article est consacrée a quelques propriétés générales
des sous-groupes compacts d’homéomorphismes d’un espace métrique (X, d)
et a I’étude locale (au voisinage d’un point fixe) lorsque X est une surface.
Dans la section 3, on détaille la classification complete des sous-groupes
compacts d’homéomorphismes du cercle et dans la section 4, celle des sous-
groupes compacts d’homéomorphismes du disque. La section 5 présente une
démonstration élémentaire (due & M.H.A. Newman) du fait qu’un sous-
groupe compact d’homéomorphismes de la sphére n’a pas de petit sous-
groupe. Enfin, la section 6 contient I’étude détaillée des sous-groupes compacts
d’homéomorphismes de la sphere.
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2. SOUS-GROUPES COMPACTS D’HOMEOMORPHISMES
D’UN ESPACE METRIQUE COMPACT

Soit (X,d) un espace métrique compact. On définit la distance de deux
applications continues f,g: X — X par la formule:

d(}.9) = mazd(e), glx)).

Cette distance munit le groupe des homéomorphismes de (X, d) d’une structure
de groupe topologique. Nous pouvons ¢énoncer le résultat suivant:

THEOREME 2.1. Soit G un sous-groupe fermé d’homéomorphismes de
(X,d). Les propositions suivantes sont équivalentes :

() G est compact.
(2) L’ensemble des éléments de G forme une famille équicontinue.

(3) 1l existe une distance sur X pour laquelle les éléments de G sont des
isoméiries.

Démonstration. (1) = (3) estune conséquence de 1’existence de la mesure
de Haar sur G. En effet, ceci nous permet de construire une distance invariante
en prenant la « moyenne» pour la mesure de Haar des images de la distance d
par les éléments de G. (3) = (2) est trivial et (2) = (1) est un corollaire
direct du théoréeme d’Ascoli.

En particulier, I’ensemble des itérés d'un élément f appartenant a un
groupe compact d’homéomorphismes forme une famille équicontinue. Nous
mtroduirons la définition suivante :

DEFINITION 2.2. Un homéomorphisme f d’un espace métrique com-
pact (X, d) est régulier sila famille des itérés de f est équicontinue, autrement
dit s1 Ve > 0, da > 0 tel que:

2.1 dx,y) < a = d(f"(0),f"y) <e, Va.
Citons quelques exemples: un homéomorphisme périodique, une isométrie

pour la distance d sont des homéomorphismes réguliers. On peut montrer le
résultat suivant [4]:

LEMME 2.3. Soit f un homéomorphisme régulier, alors la fermeture du
groupe engendré par f est compact.
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Dans le cas oi X est la sphere S%, ou plus généralement une surface
compacte, nous pouvons expliciter completement la dynamique d’un groupe
compact d’homéomorphismes au voisinage d’ un point fixe.

LEMME 24. Soit G un sous-groupe compact d’homéomorphismes de la
sphére S* et D C S§* un disque topologique fermé. Alors le compact

K= g0

gcG

est localement connexe.

Démonstration. Commengons par rappeler qu’ un espace métrique compact
est localement connexe si et seulement si pour tout £ > O, on peut I'écrire
comme une réunion finie de compacts connexes de diametre inférieur a ¢.

Soit ¢ > 0. Choisissons une triangulation de D dont les cellules
€1,€s,...,¢e., sont de diametre inférieur a (), ou () est la borne supérieure
des nombres positifs « tel que:

d(x,y) < o = d(g(x), 9(») < e,

pour x,ye $?* et g€ G.

Soit p > 0, tel que I'intérieur de toute cellule e¢; contienne une boule
B(x;, p). Alors

(2.2) B(g(x;), (p)) C gle:), Vi, Vg.

Par conséquent, I"aire de chaque cellule g(e;) est minorée par 4x sin(p) et
la famille {g(e;)}, , ne contient qu'un nombre fini de cellules deux a deux
disjointes.

Dans cette famille, soit {ef,...,e,} une sous-famille finie, de cardinal
maximal, de cellules deux a deux disjointes. Alors pour tout g € G et
tout i € {1,...,r}, il existe j € {1,...,p} tel que e/ N g(e;)) # &. Pour
ke{l,...,p}, notons M; la fermeture de I'union de toutes les cellules g(e;)
qui rencontrent ¢;. Alors M, est un compact connexe de diametre inférieur
a 3¢ (le diametre de chaque cellule g(e;) étant majoré par <) et

14
(2.3) K=| M,
k=1

ce qui acheve la démonstration.
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THEOREME 2.5. Soit G un sous-groupe compact d’homéomorphismes de
la sphére S* et xy un point fixe de G. Alors il existe un systéme fondamental
de voisinages de xy, constitué par des disques topologiques invariants par G.

REMARQUE 2.6. D’aprés le théoreme 2.1, G laisse invariant une dis-
tance 0. On peut donc étre tenté de croire que les boules (pour cette dis-
tance d), centrées au point xp, fournissent ce sysieme de disques invariants.
Mais ceci ne fonctionne pas car on ne sait rien, a priori, de cette distance
mvariante 6 obtenue en moyennant par G la distance euclidienne: elle n’a
pas de raison d’€tre riemannienne.

La démonstration du théor¢me 2.5 repose sur un résultat classique de
topologie du plan qu se démontre a la fois par des méthodes purement
topologiques [17, 24] et par des méthodes issues de la géométrie complexe [18].

THEOREME 2.7. Soit K un compact, connexe, localement connexe, non
vide de S*, non réduit a un point et sans point de coupure?). Alors la frontiére
de chaque composante de S*\ K est une courbe fermée simple.

Démonstration du Théoreme 2.5. Donnons-nous arbitrairement £ > 0.
Nous pouvons trouver ¢ > 0 tel que:

) d(x,y) <8 = d(gx), 90 <&, VxyeS, Vged,
puis 7 > 0 tel que
23  dxy) <n=dg),90) <d,  VxyeS§, VgeG.

Soit D le disque euclidien (fermé) de centre xo et de rayon #. Formons le
compact, connexe, invariant :

K=|]om.

geG

D’apres (2.4), on a K C B(xg, §). Désignons par V., la composante de $\ K
qui contient $?\ B(xo, ). Soit ¢ € G. En vertu de (2.5), on a

g(S* \ B(xo,2)) C §* \ B(xo, ).

Par conséquent :
9(5*\ B(xo,£)) C Voo N 9(Vix)

2) Un point x € K est un point de coupure si K\ {x} n’est pas connexe.
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et donc g(V) = V.

Par ailleurs, d’apres le lemme 2.4, K est localement connexe. On pourra
vénfier que I’adhérence d’un ouvert connexe, non vide de la sphere ne posséde
pas de point de coupure. Il en est donc ainsi de K qui est I'adhérence de
I’ouvert connexe, non vide

U= glinuoy).

geG

Par suite, chaque composante connexe du complémentaire de K est un disque
topologique en vertu du théoréeme 2.7. En particulier, la frontiere de V., est
une courbe fermée simple mvariante et le disque topologique bordé par cette
courbe et contenant x, est invariant et contenu dans la boule B(xg, ).

3. SOUS-GROUPES COMPACTS D’HOMEOMORPHISMES DU CERCLE
Commencons par démontrer les résultats élémentaires suivants :

LEMME 3.1. Seit f : [0,1] — [0,1] un homéomorphisme régulier et
croissant, alors f = 1d.

Soit f: 8" — S' un homéomorphisme régulier, qui préserve l’orientation
et possede un point fixe, alors f = Id.

Démonstration. Soit f : [0,1] — [0,1] un homéomorphisme régulier et
croissant. Par 1’absurde, supposons f # Id, et soit |a, o[ une composante de
[0, 1]\ Fix(f). On a f(a) = a, f(b) = b et (par exemple):

fx) >x, VYx€la,bl.

Alors, Uorbite par f de tout point de Ja, b[ converge vers b, ce qui entre en
contradiction avec la régularité de f qui impose que I’orbite d’un point voisin
de a reste proche de a.

Soit maintenant f : §* — S' un homéomorphisme régulier, qui préserve
I’ orientation et posseéde un point fixe. [Vétude d’un relevement de f,

f R =R,

qu possede un point fixe ¥, nous ramene au résultat précédent en considérant
la restriction de f a U'intervalle [X,X + 1].
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Soit f un homéomorphisme de S! qui préserve I’orientation et f: R—+R
un relevement de f. On rappelle que la limite

G.1) H(f)_hmf ()_x

existe toujours et ne dépend pas du point ¥ € R (voir [11]). S1 f, est un
autre relevement de f alors H(f) — H(f,) est un entier. On note p(f) la
classe résiduclle de ces nombres modulo Z et on 'appelle le nombre de
rotation de f.

LEMME 3.2. Soit G un sous-groupe compact d homéomorphismes du
cercle S' qui préservent [’orientation, alors I’application nombre de rotation

p: G —U)
est un morphisnie continu et injectif.

Démonstration. En moyennant les images par G de la mesure canonique
de S' a l'aide de la mesure de Haar sur G, on obtient une mesure de
probabilité ¢ sur le cercle invariante par G.

Soit f € G. On peut réécrire 1’expression (3.1) sous la forme

n—1 . _¢gn
(3.2) o(f) = lim 3y M
k=0

ol Pz S' — R est la fonction induite par I’application périodique
¥ f(®—%  ¥eR.

Par conséquent, d’apres le théoreme ergodique de Birkhoff (voir par exem-
ple [22]), on a

63 0 = [ epan.

Enfin, on démontre sans difficulté, a partir de la définition de ©7 la relation
de cocycle:

Prog — $7°9+¥g-
Par suite, s1 f et g sont deux éléments quelconques du groupe G, on obtient

64 0Fen= [ groadu+ [ vodu=0G+0@.

ce qui établit que p est bien un morphisme de groupe.
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L'injectivité est une conséquence du Lemme 3.1 et du fait qu’un
homéomorphisme du cercle qui a pour nombre de rotation 0, possede un
point fixe (voir [11]).

La continuité résulte de 1'inégalité suivante :

d(f,1d) < (&) = |0(P)| < <.

qui est elle-méme conséquence de 1'équicontinuité d'un élément f du
groupe G.

4. SOUS-GROUPES COMPACTS D ’HOMEOMORPHISMES DU DISQUE

Le résultat suivant généralise un résultat connu pour les homéomorphismes
périodiques du disque [7].

LEMME 4.1.  Un homéomorphisme régulier du disque D* qui est I’identité
sur le bord est Iidentité sur le disque tout entier.

Démonstration. TFormons le double de f, qui est un homéomorphisme de
la sphere et que nous continuerons de désigner par f. Nous obtenons ainsi un
homéomorphisme régulier, qui est I'identité sur une courbe fermée simple J
(correspondant au bord de D?) et que nous pouvons supposer &tre 1’équateur.

Choisissons sur J deux points diamétralement opposés que nous noterons
a et b. Soit d un cercle arbitraire séparant les points a et b. Reprenons
la construction donnée dans la démonstration du Théoreme 2.5, en prenant
pour G, la fermeture dans Homéo(5?) du groupe engendré par f et pour D, le
disque (fermé) délimité par 4 et contenant a. Notons, comme précédemment

K =] o)
geG
et désignons par A la composante de b dans $*\ K. Alors A est un disque
topologique invariant bordé par une courbe fermée simple que nous noterons &.
Cette courbe sépare les points a et b et rencontre donc nécessairement la
courbe J. Par conséquent, en utilisant & nouveau le lemme 3.1, on en déduit
que f = 1Id sur 4. Or, par construction

sc | g@,
geG

et donc § C d (car & C Fix(G)), ce qui n’est possible que si 6 = d. Le
cercle d ayant été choisi arbitrairement, ceci montre que f = Id sur S2.
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COROLLAIRE 4.2. Soit f € Homéo™(D?) un homéomorphisme régulier,
différent de lidentité. Alors [ posséde un point fixe unique et ce point est
situé a lintérieur du disque.

Démonstration. 1’apres le théoréme du point fixe de Brouwer, f possede
au moins un point fixe xo. Si f # Id, il résulte du lemme 4.1 et du lemme 3.1
que ce point fixe se trouve a 'intérieur du disque.

Nous allons maintenant montrer que si f possede un second point fixe x;
alors f = Id. Pour cela, construisons a 1’aide du théoreme 2.5, une courbe
fermée simple invariante J € int(D?) qui sépare les deux points fixes et borde
un disque topologique (ouvert) A contenant xo. Par construction, I’anneau
topologique (fermé) A — D* \ A et invariant par f et contient ’autre point
fixe, x;. Soit

F:Rx[0,1] = Rx[0,1]

un relevement de la restriction de f a A. On peut vérifier que f est un
homéomorphisme régulier de R x [0,1] (pour la métrique standard). Soit
@5 A — R la fonction définie par

vy (FO - %),
ol p; est la projection sur le premier facteur du produit R x [0,1]. La

régularité de f 1mplique l'existence et 1'unicité (indépendance par rapport
a x) de la limite

i Z sof(f S

que nous noterons H(f) comme dans la preuve du lemme 3.2. Soit ¥; un
relevement de x; et choisissons pour f un relevement de f qui fixe %;. Alors
on a nécessairement H(f) = 0 et cect impose a f d’avoir un point fixe sur
aD? (voir [11]). 1l résulte alors du lemme 3.1 que f est I'identité sur 9D?,
puis que que f est I'identité sur le disque d’apres le lemme 4.1.

COROLLAIRE 4.3. Soit G un sous-groupe compact d’homéomorphismes
du disque D?. La restriction au bord

R : G — Homéo(dD?)
est un morphisme continu et injectif.

Démonstration. la restriction au bord d’un sous-groupe d’homéomor-
phismes du disque est toujours un morphisme continu mais n’est pas injectif
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en général. Soit g € G un élément du noyau de R. Comme g est régulier,
alors g = Id en vertu du lemme 4.1 et donc R est injectif si G est compact.

En combinant le corollaire 4.3 avec le lemme 3.2, on obtient:

COROLLAIRE 4.4. Tout sous-groupe compact G de Homéo™ (D?) est
isomorphe (en tant que groupe topologique) a un sous-groupe fermé de U(1).

Si G est fin, il est engendré par un élément périodique f. Dans ce cas,
on montre que f est conjugué a une rotation euclidienne (voir [7]). Sinon,
G = U(1) et nous allons établir le résultat suivant:

THEOREME 4.5. Toute action continue et fidéle du groupe U(1) sur le
disque est topologiquement conjuguée a l'action standard de SO(2).

Nous diviserons la démonstration de ce résultat en deux étapes: nous
montrerons d’abord que la structure des orbites d’un tel groupe est identique
a celle de I'action standard et ensuite, ce qui est la partie la plus délicate,
qu’il existe un arc transverse aux orbites, ce qui nous permettra de conclure.

LEMME 4.6. Les orbites de toute action continue et fidele de U(1) sur
le disque D? sont constituées par un point fixe unique x, a l'intérieur du
disque et des courbes fermées simples qui entourent ce point.

Démonstration. Soit G I'image de U(1) dans Homéo(D?) et f € G un
¢lément d’ordre infini. L'unique point fixe xo de f donné par le corollaire 4.2
est également un point fixe de G car les itérés de f forment un ensemble
dense dans G. Par conséquent, xo est également 1'unique point fixe de tout
autre élément g # Id de G. Il en résulte que la G-orbite de tout point x
différent de xo est une courbe fermée simple. Cette courbe est invariante par f
et borde un disque qui contient nécessairement un point fixe de f, en vertu
du théoréeme du point fixe de Brouwer. Ce point fixe ne peut €tre que xg, ce
qu acheéve la démonstration du lemme 4.6.

LEMME 4.7. Etant donné une action topologique et fidéle de U(1) sur le
disque D?, il existe un arc simple rencontrant chaque orbite en un point et
un seul.
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REMARQUE 4.8. Je ne connais pas de preuve élémentaire de ce lemme.
La démonstration proposée ici est une construction «a la main» de cet arc
transverse. On pourra remarquer que ce résultat n’est pas une conséquence
mmédiate du lemme 4.6. Il existe en effet des partitions de ’anneau par
des familles de courbes fermées simples essentielles qui n’admettent pas de
transversale. On pourra consulter [23] pour plus de détails sur le sujet.

Soit G I'image de U(1) dans Homéo(D?) et xy, I'unique point fixe de G.
Pour tout x € D?, on note ~(x) la G-orbite de x.

SOUS-LEMME 4.9.  Pour tout £ > 0, il existe § > 0 tel que si x et y sont
deux points distincts d’'une méme G-orbite v et d(x,y) < 6, alors un des
deux arcs délimités par x et y sur v a un diametre inférieur a c.

Démonstration. Notons xg, I'umique pomt fixe de G. Soit ¢ > 0 et A
un disque contenant xp, invariant par G et de diametre inférieur & £ (voir
théortme 2.5). On pose A = D*\ A. 11 suffit de démontrer le sous-lemme
pour les orbites contenues dans 1’anneau A, ce qu résulte de 1’observation
suivante. Il existe un voisinage ouvert connexe V de 'identité dans G tel que

1) d(x, g(x)) < £/2,

pour tous x € A et g € V. Comme de plus G agit librement sur A, il existe
0 >0 tel que:

“.2) dx, g(x)) > 0,

pour tous x € A et g € G\ V. Par conséquent, si x et y sont deux points
d’une méme G-orbite v C A tels que d(x,y)) < § alors y = g(x) avec g € V
et I'arc {g(x); g € V} de v a un diametre inférieur a e.

On munit ’ensemble des orbites de G d’un ordre total en défimissant la
relation suivante: v < +' (respectivement v < ') si et seulement si ~ est
contenue dans le disque fermé (respectivement ouvert) bordé par ~' (avec la
convention xy < Xp).

DEFINITION 4.10.  Fitant donnés deux points x,y € D? tels que ~(x) < ¥(y),
on appelle j-chaine monotone de x a y une collection {xg = x,x1,...,x, =y}
de points de D? tels que

d(xe, Xe1) < pret yOo) < (X)),

pour k=0,...,n—1.
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SOUS-LEMME 4.11.  Pour tout £ > 0, il existe 0 > 0 tel que deux points
quelconques x,y n’appartenant pas a la méme orbite et vérifiant d(x,y) < 9
peuvent étre joints par une |i-chaine monotone de diamétre inférieur a e
pour tout p > 0.

Démonstration. Soit £ > 0 et choisissons § > 0 (§ < £) comme dans le
sous-lemme 4.9. Soient x,y deux points tels que v(x) < () et d(x,y) < 4/2.
Ftant donné 4 > 0 (x < &), on peut trouver une suite finie de G -orbites

Yo=Y <y < e <y =)

telle que la distance ) de Hausdorff dy(vi, vrr1) de deux courbes conséeutives
de la suite soit inférieure a /3.

Le segment xy rencontre chacune des courbes intermédiaires ;. Choisis-
sons pour chaque k£ € {1,...,n— 1} un point

Xy €xy M.

Si d(xg,Xk41) < p pour tout k, nous avons construit notre ji-chaine de

N

diametre inférieur a ¢ ; sinon, voila comment raffiner cette chaine pour en
obtenir une.

Soit x,, x,41, une paire de points consécutifs tels que d(x,,x.41) > p.
Comme dy(7vy,7+1) < /3, on peut trouver un point x,.; sur .41 tel que

d(xr:xll”-l-l) < H/3 »
et donc:
A1, %) < dxeq, X)) +d(, 2, ) < 0/2+p/3 < 4.

Alors, d’apres le sous-lemme 4.9, un des deux arcs délimités par x,q et
%, 4 SUr Yppp aun diamétre inférieur a4 ¢. Subdivisons cet arc en s sous-arcs
de diametre inférieur a /3 et notons les points intermédiaires de la fagon
suivante :

) 1 5 _
x:’r—|—1 — Zr—i—l 3 Zr+1 g R e Zr+1 = Xp+1-
Choisissons ensuite des courbes

Y= <y < <Y =

3) La distance de Hausdorff est définie sur les parties fermées d’un espace métrique compact
(X, d) par la formule:

dy(A, B) = max {maxd(a, B), max d(b, A)} ;
acA beB
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Comme du(yy, Y1) < /3 €t v < 4/ < yppy pour 1 <j<s—1,il est
possible de trouver, sur chaque courbe intermédiaire ~/, un point x/, , tel

. . r+1
que d(x/,,z, ) < p/3. La suite

r+1
_,0 1 s .
Xr = Xq1s X150 L1 = Xrdd

est donc une g -chaine joignant x, et x,.q qui appartient a un 2¢-voisinage
du segment x.x,11. En effectuant les corrections nécessaires pour chaque
paire x,, x,41 telle que d(x,,x,01) > p, on obtient finalement une y -chaine
monotone joignant x et y et de diameétre inférieur a 4¢.

Preuve du Lemme 4.7. FEn utilisant le sous-lemme 4.11, on peut construire
une suite de nombres réels 4, > O, qui tend vers O, et telle que deux points
quelconques x,y vérifiant d(x,y) < 9J,, peuvent étre joints, pour tout g > 0,
par une g -chaine de diametre inférieur a 1/2".

Soit Xp une dp-chaine monotone joignant xo, le point fixe du groupe a
un point x., sur le bord du disque D?. Récursivement, ayant défini X, on
joint chaque paire de points conséeutifs x7, xi,; de X, par une 0, -chaine
monotone de diametre inférieur a 1/2" afin d’obtenir X, et on pose:

x=|Jx..
neEN

C’est alors un exercice standard de topologie ([14, Theorem 2.27]) de montrer
que ’adhérence X de X dans D? est un arc joignant xo et x.. Cet arc est
simple et rencontre chaque orbite en un point unique, par construction, ce qui
acheéve la démonstration.

Preuve du théoreme 4.5. Pour compléter la preuve du théoreme 4.5, on
choisit un arc «, transverse aux orbites, donné par le lemme 4.7 et une
paramétrisation x(r),r € [0, 1] de cet arc. [ application

h:re® — W x(r)),

o W : U(l) x D* — D? dénote I'action, nous donne alors une conjugaison
topologique avec le groupe des rotations euclidiennes, SO(2).

5. UN LEMME DE M. H. A. NEWMAN

Avant d’entreprendre 1’étude des sous-groupes compacts d’homéomor-
phismes de la sphere, nous présentons un lemme dii a M. H. A. Newman [16].
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LEMME 5.1. Soit f un homéomorphisme périodique de S* de période
p > 1, alors parmi les itérés de f, il en existe un, disons f', tel que:

5.1 d(f",1d) > 1.
De plus :
(5.2) d(f,1d) > l%

Démonstration. Commengons par remarquer que (5.2) est une conséquence
de (5.1). En effet, dans (5.1), on peut supposer r < p/2 car I'inégalité (5.1)
est équivalente a
d(ff~",Id) > 1.

Par conséquent la négation de (5.2) conduit a

r—1
d(f @, < 3 d(FH ), fe) < % <1, v,
=0

et donc a la négation de (5.1).

La preuve de la premiere inégalité résulte de la remarque suivante:
supposons au contraire que d{f* Id) < 1 pour tout k, alors I'orbite d’un
point quelconque x est entierement contenue dans 1’hémisphere de pdle x et
par suite, pour tout p-uplet (Ag, A1,...,A,—1) de nombres positifs tels que

Z )\,‘ =1:
p—1 ’

(53) @ =D Af (0 #0,
i=0

pour tout x. Ceci implique I’existence d’une homotopie dans R* — {0} entre
I'identité et la fonction

14
54 90 == fi(,
P iz
ce qui est incompatible avec le fait que deg(g) =0 modulo p.

COROLLAIRE 5.2.  La boule unité fermée de Homéo(S?) ne contient aucun
sous-groupe compact non trivial.

Démonstration. FEn effet, si un tel groupe existait, on pourrait trouver un
€lément non trivial f de ce groupe tel que

d(f",1d) < 1,
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pour tout # € Z. En vertu du lemme 5.1, f n’est pas périodique. Quitte a
remplacer f par son carré, on peut supposer que f préserve 1’orientation et
donc possede au moins un point fixe. Alors, d’apres le lemme 2.5, f laisse
imvariant un disque topologique et la fermeture du groupe engendré par f
est isomorphe & U(1). Mais ce groupe contient des éléments périodiques ¢
vérifiant également

d(g", 1d)y < 1,

pour tout n € Z, ce qui est en contradiction avec le lemme 5.1.

Il en résulte qu’un sous-groupe compact d’homéomorphismes de la sphere
ne posséde pas de petit sous-groupe. En vertu du théoreme 1.1, on peut donc
énoncer :

THEOREME 5.3. Tout sous-groupe compact d’homéomorphismes de la
sphere est un groupe de Lie

6. PREUVE DU THEOREME PRINCIPAL

Cetle section est consacrée a la démonstration du théoréeme 1.2. Nous
envisagerons dans un premier temps le cas d’un sous-groupe compact G qu
ne contient que des éléments qui préservent 1’orientation, puis le cas général.

6.1 G NE CONTIENT QUE DES ELEMENTS QUI PRESERVENT L’ORIENTATION

LEMME 6.1.  Soit G un sous-groupe compact de Homéo™ (§%). Alors tout
élément de G est topologiquement conjugué a une rotation euclidienne d’ordre
fini ou non.

Démonstration. Soit g € G un élément non trivial. En tant qu homéo-
morphisme qui préserve 'orientation de la sphere, g possede un point fixe xg
(théoréeme de Lefschetz, par exemple). Du théoreme 2.5, on déduit 1’existence
d’un disque 1variant A contenant xy. Le disque m est également invariant
et contient donc un second point fixe x5 de g. En vertu du corollaire 4.2,
Fix(g) est réduit a ces deux points.

Si g est d’ordre fini, il est conjugué a une rotation euclidienne d’ordre
fini (voir [7]). Sinon, ’adhérence H du groupe engendré par g est isomorphe
a U(1) (voir corollaire 4.4). Les orbites de H sont constituées par les deux

points fixes xo, x; et des courbes fermées simples qui séparent xo et xj. Le
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lemme 4.7 nous assure 1’existence d’un arc transverse aux orbites, joignant xg

et x>, ce qui nous permet, comme dans la preuve du théoréeme 4.5, d’établir
0

que g est topologiquement conjugué a une rotation euclidienne d’ordre infini.

Soit x € §%. Le stabilisateur de x, noté Stab(x), est le sous-groupe des
éléments g de G tels que g(x) = x. Le sous-groupe compact Stab(x) laisse
invariant un disque contenant x. Il est isomorphe & un sous-groupe fermé du
groupe U(1) en vertu du corollaire 4.4.

Inversement, soit H un sous-groupe fermé de G. Si Fix(H) # & alors
Fix(fl) contient exactement deux points xo, x; et fI est isomorphe a un
sous-groupe fermé du groupe U(1).

LEMME 6.2. Si G est infini, il possede un sous-groupe isomorphe a U(1).

Démonstration. 1Y apres le théoreme 5.3, G est un groupe de Lie. Par
conséquent, si G est infini, sa dimension est supérieure a 1 (car G est
compact). Il possede donc un sous-groupe a un parametre non trivial et
contient des éléments d’ordre infini. Soit g un tel élément. Alors I’adhérence
du groupe engendré par g est isomorphe a U(1).

Nous allons maintenant envisager les divers cas possibles.

6.1.1 Cas 1: G EST FINI. Chaque élément non t(rivial de G possede
exactement deux points fixes. Seulement un nombre fini de points de la
sphere ont un stabilisateur non trivial. Soit 2 cet ensemble, alors la projection
canonique 7 : §* — §?/G est un revétement ramifié et on a la formule de
Riemann-Hurwitz:

(6.1) XD = nx (87 /G) = Y (- 1)

SEX/G

ou n désigne le cardinal de G et 15 est le cardinal des stabilisateurs des
points de ramification s € 5. De cette formule, il résulte que x($*/G) = 2
et donc que $?/G est homéomorphe a §%. Ces revélements sont entierement
classifiés par I’action du groupe G sur ’ensemble fini £. A chaque solution
donnée par la formule (6.1) correspond un sous-groupe fini de SO(3) et donc
une conjugaison topologique de G avec ce sous-groupe.

6.12 CAS 2: IL N'Y A QU'UN STABILISATEUR INFINI. Soit H ce stabi-
lisateur et désignons par xp et xj; les points fixes de 7. Soit g un élément
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quelconque du groupe G. Alors le point g(xg) est également d’indice infini
et donc nécessairement

g(x0) € Fix(H) = {x0,x3} .

Si de plus g(xp) = x0, alors g € H.

— Si ceci se produit pour tous les éléments du groupe alors G = H
et le groupe G est topologiquement conjugué au sous-groupe des rotations
euclidiennes autour d’un axe domné.

— Sinon, on peut trouver un élément o dans G tel que o(xg) = x; et
a(x5) = xo. On a alors nécessairement o> = Id et cho = h™!, pour tout
h e H. G est donc isomorphe au groupe diédral infini

Do = Zy x U(1).

De plus, o induit une involution continue sur I’espace des orbites de H, qui
est homéomorphe a un intervalle, et échange ses deux extrémités. Par suite, o
laisse invariante une et une seule des orbites de H. Les points fixes de ¢ sont
nécessairement sur cette courbe. On construit alors facilement une conjugaison
entre ce groupe G est I'action euclidienne standard du groupe D, .

6.1.3 CaS 3: IL Y A AU MOINS DEUX STABILISATEURS INFINIS DISTINCTS.
Dans ce cas, le groupe G agit transitivement sur S? en vertu du résultat
suivant.

LEMME 6.3. S’il existe deux stabilisateurs infinis distincts (en tant que
sous-groupes de G ), alors le groupe G agit transitivement sur la sphére.

Démonstration. Soient a et b deux points d’indice infini ayant des
stabilisateurs distincts H, et Hj, respectivement. L'orbite du poimnt a sous
I’action du groupe Hp, que I'on notera Hy(a) est une courbe fermée simple
passant par a et qui rencontre toutes les orbites du sous-groupe H, assez
voisines de a. Par suite, la G-orbite du point a, G(a), est ouverte et fermée
dans S2, ce qu acheve la démonstration.

Fixons donc un point a de la sphere et désignons par H le stabilisateur de
ce point (nécessairement isomorphe & U(1)). I”espace homogene, G/H = 57,
est muni naturellement d’ une structure de variété analytique sur laquelle G
agit également de facon analytique. On a donc trouvé sur $? une structure
analytique invariante par G. On peut alors construire, par moyennisation, une
métrique riemannienne sur S? invariante par G. Comme I'action de G est
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transitive, cette métrique est a courbure constante. Quitte a multiplier cette
métrique par une constante, on peut supposer que cette courbure est 1. Par
conséquent, cette variété riemannienne est isométrique a la sphere standard et
cette 1sométrie définit la conjugaison recherchée entre G et SO(3).

6.2 G CONTIENT DES ELEMENTS QUI RENVERSENT I ORIENTATION

Commencgons par rappeler les faits suivants. Soit s un homéomorphisme
régulier de la sphere qui renverse 1’orientation.

* Si s possede un point fixe, alors nécessairement s> = Id et s est
topologiquement conjugué a une réflexion orthogonale [7].

* Si s = Id mais s est sans point fixe, alors $%/s est homéomorphe au
plan projectif et par suite, du fait de 1’unicité du revétement universel, s
est topologiquement conjugué a la symétrie centrale x — —x.

Soit Gy le sous-groupe de G des éléments qui préservent 1’orientation.
Gy est un sous-groupe distingué d’indice 2. Quitte a effectuer une premiere
conjugaison, on peut supposer que Gy C SO(3).

6.2.1 Cas 1: Gy =S80@3). Soit s € G\ Gy. Tout cercle (euclidien) de
$? est une orbite du stabilisateur Stab(x) d’un point dans G, . Par conséquent,
I'image par s de tout cercle de $? est un cercle. D’aprés un résultat bien
connu, ceci entraine que s est une anti-homographie de la sphere. Comme
de plus s est régulier, s appartient nécessairement a O(3) et ceci permet de
conclure que G = O(3)

622 CAS 2: Gy =~ SO(2). Désignons par xo et x; les points fixes
de Gy et soit s € G\ Gy. Alors, s permute les orbites de Gy et induit un
homéomorphisme sur le quotient $?/Go qui est un intervalle. Il y a donc
deux possibilités:

— Si s fixe xp et x5, alors s* = Id et s est conjugué a une réflexion. G
est un produit semi-direct de Z, par U(l) et sgs = g—! pour tout g € Gy.
En effet, sinon on aurait sgs = g pour tout g € Gy et la courbe Fix(s)
qui contient xp et xj serait une orbite de Gy, ce qui n’est pas possible.
Par ailleurs, s induit un homéomorphisme croissant sur 1’intervalle 52 /G de
période 2 qui ne peut donc €tre que 1'identité. Par suite, s préserve les orbites
de Gy. Chaque orbite non triviale de Gy rencontre Fix(s) en deux points au
moins. Mais si x et y sont deux points distincts de Fix(s) appartenant 2 la
méme orbite de Gy, alors y = g(x) pour un certain g € Gy et la relation

sgs = g~! nous domne ¢*(x) = x. Donc ¢ est nécessairement d’ordre 2
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et ceci nous permet de conclure que chaque orbite non triviale de Gy ne
rencontre Fix(s) quen deux points seulement. On est alors en mesure de
construire une conjugaison entre G et le sous-groupe de O(3) engendré par
les rotations autour de 1'axe xpxg et la réflexion par rapport a un équateur
contenant cet axe.

— S1 s échange x, et xj, alors s induit un homéomorphisme décroissant sur
I'intervalle $*/G,. Cet homéomorphisme a un unique point fixe qui correspond
a une orbite J de Gy invariante par s. Alors, quitte & composer § avec une
rotation de Gy on peut supposer que s a un point fixe sur J et donc se
ramener encore une fois au cas ot s* = Id et s est conjugué a une réflexion.
On a Fix(s) = J et donc sgs = g pour tout g € Gy. Dans ce cas, G est
le produit direct de Z, par U(1) et on construit facilement une conjugaison
entre G et le sous-groupe de O(3) engendré par les rotations autour de I’axe
xpxy et la réflexion par rapport 4 I’équateur orthogonal a cet axe.

623 CaAS 3: Gy >~ D . Dans ce cas Gy est engendré par le groupe
des rotations autour d’un axe xgx; et par un retournement p qui échange xg
et x; et dont I’axe est perpendiculaire a la droite xpxj. Soit s € G\ G, alors
s permute ¢galement les points xop et x; car le sous-groupe des rotations
autour de 'axe xoxj est invariant par s. Quitte & composer s avec p, on
peut supposer que s(xp) = Xy et s(x;) = x; et donc que s est une réflexion
topologique. En conjuguant s par une rotation d’axe xpxj, on peut supposer
également que Fix(s) contient les points fixes de p. Alors sps = p. On
construit alors facilement une conjugaison entre G et le sous-groupe de O(3)
engendré par G, et la réflexion plane par rapport au plan contenant 1’axe

xox, et I’axe du retournement p.

624 CASs 4: Gy EST FINI. Dans ce cas Go appartient a un des cinq
types bien connus de sous-groupes finis de SO(3) [1]. Il y a deux possibilités :

— G\ Gy ne contient aucune réflexion topologique, autrement dit, Fix(s) = &
pour tout s € G\ Go. Alors $*/G est homéomorphe au plan projectif et la
projection canonique 7 : S — S?/G est un revétement ramifié, ce qui permet
de conclure que G est conjugué a un sous-groupe fini de O(3).

— G\ Gy contient une réflexion topologigue. Dans ce cas, G est un produit
semi-direct

Z2D<G0.

Par ailleurs, si s et s’ sont deux réflexions topologiques distinctes dans G alors
le cardinal de 1’ensemble Fix(s) N Fix(s') est égal a 2. En effet, un point fixe
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commun a s et s’ est un point fixe de la rotation ss' qui en posseéde au plus 2
et si les deux courbes Fix(s) et Fix(s') ne s’intersectent pas, ou seulement
en un point, alors la rotation ss’ envoie un disque fermé a lintérieur de
lui-méme (a I’exclusion éventuellement d’un point du bord), ce qui n’est pas
possible pour une rotation. On est alors en mesure de construire «a la main »,
dans chacune des cinq situations possibles, des domaines fondamentaux et
de montrer, chaque fois, que G est conjugué a un sous-groupe fini de OQ3)
(voir [7] et [8]).
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