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SOUS-GROUPES COMPACTS

D'HOMÉOMORPHISMES DE LA SPHÈRE

par Boris KöLEV * >

RÉSUMÉ. L'objet de cet article est d'exposer la démonstration du fait que tout
sous-groupe compact d'homéomorphismes de la sphère est topologiquement conjugué
à un sous-groupe fermé du groupe orthogonal 0(3).

1. Introduction

Ee résultat que nous nous proposons d'exposer dans cet article, à savoir

que tout sous-groupe compact d'homéomorphismes de S2 est topologiquement
conjugué à un sous-groupe fermé du groupe orthogonal 0(3), se situe dans le

cadre plus général d'une suite de questions comme sous le nom de 5e problème
de Hilbert [20, 25]. Plus précisément, soit G un groupe localement compact
qui agit fidèlement sur une variété M, on se pose les questions suivantes :

1. G est-il nécessairement localement1 euclidien?
2. Si G est localement euclidien, est-ce un groupe de Lie
3. Si G est un groupe de Lie, existe-t-il une structure analytique sur M

invariante par G

®) Je tiens à remercier le rapporteur pour sa relecture extrêmement attentive de cet article et

pour ses nombreuses remarques qui m'ont aidé à améliorer ce texte.

Une autre terminologie pour désigner une variété topologique.
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La réponse à la première question n'est pas comme en dehors de

quelques cas particuliers. La réponse à la deuxième question est positive
(cf. Gleason [13], Montgomery and Zippin [15]). La réponse à la troisième

question est négative en général. Il existe des contre-exemples simples dans

le cas non compact. Citons également la construction par Bing [2] d'une
involution négative de S3 non conjuguée à un élément de 0(4), d'exemples
d'homéomorpitisme périodique de S3 non conjugué à un élément de SO(4)

(Bing [3], Montgomery and Zippin [15], Bredon [5]), d'une action de U(l)
sur S4 non linéarisable (Montgomery and Zippin [15]) et d'une action de

U(l) sur .S'2"-2 non linéarisable [6]. Signalons enfin une preuve par Cairns et

Ghys [6] que toute action topologique de SO(«) sur R" qui préserve l'origine
est globalement conjuguée à l'action standard.

Un groupe de Lie possède une propriété remarquable : il existe un voisinage
de l'identité qui ne contient aucun sous-groupe non trivial. D'un groupe
topologique qui possède cette propriété, on dit qu'il n'a pas de petit sous-

groupe. Immédiatement après la démonstration par Haar, en 1933, d'une

mesure i mari ante sur tout sous-groupe localement compact, von Neumann [21]

établit, en utilisant la théorie des représentations unitaires, le résultat suivant

(voir également [19]), considéré comme la première étape majeure dans la

résolution du 5e problème :

THÉORÈME 1.1 (von Neumann). Un groupe compact qui tie possède pas
de petit sous-groupe est un groupe de Lie.

Le but de cet article est de présenter une demonstration complète et

moderne d'un théorème dû à Kerékjârtô [10] qui donne une caractérisation

topologique complète du groupe des rotations et de ses sous-groupes fermés.

THÉORÈME 1.2 (Kerékjârtô). Tout sous-groupe compact de Homéo(5'2) est

topologiquement conjugué à un sous-groupe fermé de 0(3).

La preuve donnée par Kerékjârtô consiste à établir d'abord qu'un sous-

groupe compact d'homéomorphismes de la sphère qui possède un point
fixe laisse invariant un disque topologique autour de ce point, et que tout

groupe compact d'homéomorphismes du disque est topologiquement conjugué
à un sous-groupe fenné du groupe des isométries euclidiennes 0(2). Ces

résultats essentiels se trouvent en réalité dans des travaux antérieurs de

Kerékjârtô [9] connus pour être extrêmement confus. C'est pourquoi nous

reprenons dans les premières sections la démonstration complète dans un
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langage moderne. Le reste de la preuve est une étude casuistique qui se

base sur la nature et le nombre des sous-groupes qui fixent un point (les

stabilisateurs). Dans [10], le cas qui apparaît le plus compliqué et qui occupe
la majeure partie de l'article est celui où le groupe agit transitivement sur
la sphère car Kerékjârto reconstruit dans ce cas «à la main» la géométrie
euclidienne de la sphère. Dans notre démonstration, qui utilise le langage
moderne de la géométrie différentielle, ce cas est, au contraire, le plus

simple.
L'article original de Kerékjârto [10] traite également des sous-groupes

compacts d'homéomorphismes des autres surfaces compactes, bien que la

majeure partie de l'article soit consacrée à la sphère, En effet, pour les autres

surfaces, on se ramène à des arguments élaborés pour la sphère et le disque.

Ainsi, l'étude d'un groupe compact G de transformations d'une surface fermée

M de caractéristique d'Euler \(M) < 0, consiste à traiter d'abord le sous-

groupe Go des transformations isotopes à l'identité. Ce sous-groupe Go est

fermé, distingué dans G et d'indice fini. Dans le cas où \(M) < 0, on montre

en passant au revêtement universel que Go est trivial. Dans le cas du tore,

une analyse analogue à celle de la section 3, où la notion de nombre de

rotation est remplacée par celle de vecteur de rotation, pennet de conclure

que Go est conjugué à un sous-groupe de translations. Cette étude n'est pas
détaillée dans cet article où nous nous concentrons essentiellement sur la

sphère et le disque. On pourra consulter [4] pour plus de détails sur les autres

surfaces.

Un prolongement naturel de ces questions consiste à rechercher également

une caractérisation topologique du groupe homographique ou d'un de ses

sous groupes, question également envisagée par Kerékjârto [9]. L'étude de ce

problème a fait apparaître la notion de groupe de convergence (Ghering and

Martin [12]). Mais la réponse ne semble pas aussi simple que pour le groupe
des rotations.

La section 2 de cet article est consacrée à quelques propriétés générales
des sous-groupes compacts d'homéomorphismes d'un espace métrique (A, d)
et à l'étude locale (au voisinage d'un point fixe) lorsque X est une surface.

Dans la section 3, on détaille la classification complète des sous-groupes
compacts d'homéomorphismes du cercle et dans la section 4, celle des sous-

groupes compacts d'homéomorphismes du disque. La section 5 présente une
démonstration élémentaire (due à M-H-A. Newman) du fait qu'un sous-

groupe compact d'homéomorphismes de la sphère n'a pas de petit sous-

groupe. Enfin, la section 6 contient l'étude détaillée des sous-groupes compacts
d'homéomorphismes de la sphère.
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2. SOUS-GROUESS COMPACTS D'HOMÉOMORPHISMES

D'UN ESPACE MÉTRIQUE COMPACT

Soit (X, cl) iin espace métrique compact. On définit la distance de deux

applications continues f, cp. X X par la formule :

d(f, g) - max d(f(x), g(x)).
xÇ:X

Cette distance munit le groupe des homéomorphismes de (X, cl) d'une structure
de groupe topologique. Nous pouvons énoncer le résultat suivant :

THÉORÈME 2.1. Soit G un sous-groupe fermé d'homéomorphismes de

(X,d). Les propositions suivantes sont équivalentes :

(1) G est compact.

(2) L'ensemble des éléments de G forme une famille équicontinue.

(3) Il existe une distance sur X pour laquelle les éléments de G sont des

isométries.

Démonstration. (1) -> (3) est une conséquence de l'existence de la mesure
de Haar sur G. En effet, ceci nous pennet de constmire une distance invariante

en prenant la « moyenne » pour la mesure de Haar des images de la distance d

par les éléments de G. (3) =>• (2) est trivial et (2) =>• (1) est un corollaire
direct du théorème d'Âscoli.

En particulier, l'ensemble des itérés d'un élément / appartenant à un

groupe compact d'homéomorphismes forme une famille équicontinue. Nous

introduirons la définition suivante :

DÉFINITION 2.2. Un homéomorphisme / d'un espace métrique compact

(X, d) est régulier si la famille des itérés de / est équicontinue, autrement
dit si Vs > 0, 3a > 0 tel que :

(2.1) d(x,y) <054 d(f"(x),f"y)) < s, V«.

Citons quelques exemples: un homéomorphisme périodique, une isomélrie

pour la distance d sont des homéomorphismes réguliers. On peut montrer le

résultat suivant [4] :

LeMME 2.3. Soit f un homéomorphisme régulier, alors la fermeture du

groupe engendré par f est compact.
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Dans le cas où X est la sphère S2, ou plus généralement une surface

compacte, nous pouvons expliciter complètement la dynamique d'un groupe
compact d'homéomorpliismes au voisinage d'un point fixe.

Lemme 2.4. Soit G un sous-groupe compact d'homéomorpliismes de la

sphère S2 et D C S2 un disque topologique fermé. Alors le compact

est localement connexe.

Démonstration. Commençons par rappeler qu'un espace métrique compact
est localement connexe si et seulement si pour tout e > 0, on peut l'écrire
comme une réunion finie de compacts coimexes de diamètre inférieur à e

Soit e > 0. Choisissons une triangulation de D dont les cellules

ci,C2, • - t£r « sont de diamètre inférieur à ip{e), où ip(s) est la borne supérieure
des nombres positifs a tel que :

d(x,y) < a =>- d(g(x),g(y)) < e

pour x,y G S2 et g e G.

Soit p > 0, tel que l'intérieur de toute cellule c, contienne une boule

B(xi,p). Alors

Par conséquent, l'aire de chaque cellule g{ei) est minorée par 4ttsinp(p) et

la famille {ùh',)},ne contient qu'un nombre fini de cellules deux à deux

disjointes.

Dans cette famille, soit {e\..... c'p} une sous-famille finie, de cardinal

maximal, de cellules deux à deux disjointes. Alors pour tout p G et

tout I G {l,...,r}, il existe j G {1,... ,p} tel que e'j fi g(ei) f 0. Pour
k £ {1.....//}, notons Mj; la fermeture de l'union de toutes les cellules g{eè)

qui rencontrent e'k. Alors Mk est un compact comiexe de diamètre inférieur
à 3e (le diamètre de chaque cellule g{eî) étant majoré par e) et

K (J g(D)
§63,

(2.2) B(g(Xi), ip(p)) C gU'i), Vi, Ag

P

(2.3)

ce qui achève la démonstration.



198 B. KOLEV

THÉORÈME 2.5. Soit G un sous-groupe compact d'homéomorphismes de

la sphère S2 et x0 un point fixe de G. Alors il existe un système fondamental
de voisinages de x$, constitué par des disques topologiques invariants par G.

Remarque 2.6. D'après le théorème 2.1, G laisse invariant une
distance 5. On peut donc être tenté de croire que les boules (pour cette
distance 5), centrées au point .r(l, fournissent ce système de disques invariants.
Mais ceci ne fonctionne pas car on ne sait rien, a priori, de cette distance

invariante ö obtenue en moyennant par G la distance euclidienne : elle n'a

pas de raison d'être riemannienne.

La démonstration du théorème 2.5 repose sur un résultat classique de

topologie du plan qui se démontre à la fois par des méthodes purement
topologiques [17, 24] et par des méthodes issues de la géométrie complexe [18].

THÉORÈME 2.7. Soit K un compact, connexe, localement connexe, non
vide de S2, non réduit à un point et sans point de coupure2). Alors la frontière
de chaque composante de S2 \K est une courbe fermée simple.

Démonstration du Théorème 2.5. Donnons-nous arbitrairement e > 0.
Nous pouvons trouver § > 0 tel que :

(2.4) d(.\. y) - S dinix). g(y)) < e ,f Vx,J ; S2. :g ; G f

puis q > 0 tel que

(2.5) d(x, y) <q^ d(g(x| g(y)) < ô, Va\ y £ S2, Vg £ G

Soit D le disque euclidien (fermé) de centre Xq et de rayon q. Fonnons le

compact, connexe, invariant:

K - (J g(D).
gec

D'après (2.4), on a K G B(xo,ô). Désignons par V7X. la composante de S2\K
qui contient S2 \ B(xq. à). Soit g £ G. En vertu de (2.5), on a

g(S2\B(x0,e))cS2\B(x0,Ô).

Par conséquent:
g(Sz X B(x0, s)) C L» H g(V.x)

2) Un point x G K est un point de coupure si K \ {x} n'est pas connexe.
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et donc //( l\ lN
Par ailleurs, d'après le lemme 2.4, K est localement connexe. On pourra

vérifier que l'adhérence d'un ouvert connexe, non vide de la sphère ne possède

pas de point de coupure. Il en est donc ainsi de K qui est l'adhérence de

l'ouvert connexe, non vide

U [J fj(un(D))
a eu

Par suite, chaque composante connexe du complémentaire de K est un disque

topologique en vertu du théorème 2.7. En particulier, la frontière de F«, est

une courbe fermée simple invariante et le disque topologique bordé par cette

courbe et contenant .v() est invariant et contenu dans la boule B(xa, s).

3. Sous-groupes compacts d'homéomorphismes du cerclé

Commençons par démontrer les résultats élémentaires suivants :

Lemme 3.1. Soit / : [0, i] -a [O, i] un homéomorphisme régulier et

croissant, alors f Id.
Soit f : S1 —i S1 un homéomorphisme régulier, qui préserve l'orientation

et possède un point fixe, alors f — Id.

Démonstration. Soit / : [0,1] [0,1] un homéomorphisme régulier et

croissant. Par l'absurde, supposons / / Id. et soit \a. h\ une composante de

[0,1] \ Fix(f On a f{a) — a, f(b) — h et (par exemple) :

f(x) > x, Va G]o, b[.

Alors, l'orbite par / de tout point de \a. h\ converge vers b, ce qui entre en

contradiction avec la régularité de / qui impose que l'orbite d'un point voisin
de a reste proche de a.

Soit maintenant / : S1 —> S1 un homéomorphisme régulier, qui préserve
l'orientation et possède un point fixe. L'étude d'un relèvement de /,

/: R —s- R

qui possède un point fixe À, nous ramène au résultat précédent en considérant

la restriction de f à l'intervalle [v, À + 1],
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Soit / un bontéomorphisine de S1 qui préserve rorientatiou et /: R —» R
un relèvement de /. On rappelle que la limite

(3.1) «</)
» n

ylexiste toujours et ne dépend pas du point || R (voir [11]). Si f est un
autre relèvement de / alors 0(f) — 0(f est un entier. On note p(f) la
classe résiduelle de ces nombres modulo Z et on l'appelle le nombre de

rotation de /.

LßMMH 3.2. Soit G un sous-groupe compact d'homéomorphismes du

cercle 'S qui préservent l'orientation, alors l'application nombre de rotation

fi: G -9 U(l)

est un morphisme continu et injectif.

Démonstration. En moyennant les images par G de la mesure canonique
de .S'1 à l'aide de la mesure de Haar sur G, on obtient une mesure de

probabilité // sur le cercle invariante par G.

Soit / G G. On peut réécrire l'expression (3.1) sous la forme

(3.2) 9(f) lim X]
n z—' n

k—0

où ipj : S1 —> R est la fonction induite par l'application périodique

x i—> f(x) — x, ,v f- R

Par conséquent, d'après le théorème ergodique de Birkhoff (voir par exemple

[22]), on a

(3.3) 8(f) — jf (fj dp.

Enfin, on démontre sans difficulté, à partir de la définition de gy, la relation
de cocycle :

ff°9 + 'Pg-

Par suite, si / et g sont deux éléments quelconques du groupe G, on obtient

(3.4) 0(fog) pjo g dp + I ipg dp. 9(f) + 9(g)
Js1 Js1

ce qui établit que p est bien un morpliismc de groupe.
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L'injectivité est une conséquence du Leimne 3.1 et du fait qu'un
homéomorphisme du cercle qui a pour nombre de rotation 0, possède un
point fixe (voir [11]).

La continuité résulte de l'inégalité suivante :

d(f, M) < ip{e) 0(f) < s,

qui est elle-même conséquence de l'équicontinuité d'un élément / du

groupe G.

4. SOUS-GROUPES COMPACTS D'HOMÉOMORPHISMES DU DISQUE

Le résultat suivant généralise un résultat connu pour les homéomorpliismes
périodiques du disque [7].

LEMME 4.1. Un homéomorphisme régulier du disque D2 qui est l'identité
sur le bord est l'identité sur le disque tout entier.

Démonstration. Formons le double de /, qui est un homéomorphisme de

la sphère et que nous continuerons de désigner par f. Nous obtenons ainsi un
homéomorphisme régulier, qui est l'identité sur une courbe fermée simple J

(correspondant au bord de D1) et que nous pouvons supposer être l'équateur.
Choisissons sur J deux points diamétralement opposés que nous noterons

a et b. Soit d un cercle arbitraire séparant les points a et b. Reprenons
la construction donnée dans la démonstration du Théorème 2.5, en prenant

pour G, la fermeture dans Homéo(5'2) du groupe engendré par / et pour D, le

disque (fermé) délimité par d et contenant a. Notons, comme précédemment

K U 9(D)
aec

et désignons par A la composante de b dans S2 \ K. Alors A est un disque

topologique invariant bordé par une courbe fennée simple que nous noterons ö.

Cette courbe sépare les points a et ft et rencontre donc nécessairement la
courbe J. Par conséquent, en utilisant à nouveau le leimne 3.1, on en déduit

que f — Mt sur ö. Or, par construction

ö C [J g(d),
sec

et donc S C d (car 5 C Fix(G) ce qui n'est possible que si 5 — d. Le
cercle d ayant été choisi arbitrairement, ceci montre que / — Id sur S2.
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COROLLAIRE 4.2. Soit f G PIoméo+(D2) un homéomorphisme régulier,
différent de l'identité. Alors f possède un point fixe unique et ce point est

situé à l'intérieur du disque.

Démonstration. D'après le théorème du point fixe de Brouwer, f possède

au moins un point fixe .v(). Si f f Id, il résulte du lemine 4.1 et du lemme 3.1

que ce point fixe se trouve à l'intérieur du disque.
Nous allons maintenant montrer que si / possède un second point fixe Xj

alors f kl. Pour cela, construisons à l'aide du théorème 2.5, une courbe

fermée simple invariante J G int(D2) qui sépare les deux points fixes et borde

un disque topologique (ouvert) A contenant x0. Par construction, l'anneau

topologique (fermé) A — D2 \ À et invariant par / et contient l'autre point
fixe, Jêj, Soit

un relèvement de la restriction tic / à A. On peut vérifier que f est un
homéomorphisme régulier de R x [0,1] (pour la métrique standard). Soit

tpj : A —> R la fonction définie par

où pi est la projection sur le premier facteur du produit R x [0,1]. La

régularité de f implique l'existence et l'unicité (indépendance par rapport
à x) de la limite

que nous noterons 0(f coimne dans la preuve du lemme 3.2. Soit % un
relèvement de et choisissons pour / un relèvement de / qui fixe Xq. Alors

on a nécessairement 0(f) - 0 et ceci impose à / d'avoir un point fixe sur
Ol)1 (voir [11]). Il résulte alors du lemme 3.1 que / est l'identité sur dD2,

puis que que / est l'identité sur le disque d'après le lemme 4.1.

COROLLAIRE 4.3. Soit G un sous-groupe compact d'homéomorphismes
du disque D2. La restriction au bord

R : G Homéo(ÔD2)

est un morphisme continu et injectif.

f : R x [0,1] — R x [0,1]

n— 1

Démonstration. La restriction au bord d'un sous-groupe d'homéomorphismes

du disque est toujours un morphisme continu mais n'est pas injectif
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en général. Soit g G G un élément du noyau de R. Comme g est régulier,
alors g Id en vertu du leimne 4.1 et donc R est injectif si G est compact.

En combinant le corollaire 4.3 avec le leimne 3.2, on obtient :

COROLLAIRE 4.4. Tout sous-groupe compact G de Hornéo+(D2) est

isomorphe (en tant que groupe topologique) à un sous-groupe fermé de U(l).

Si G est fini, il est engendré par un élément périodique /. Dans ce cas,

on montre que / est conjugué à une rotation euclidienne (voir [7]). Sinon,
G — U(l) et nous allons établir le résultat suivant:

THÉORÈME 4.5. Toute action continue et fidèle du groupe U(l) sur le

disque est topologiquement conjuguée à l'action standard de SO(2).

Nous diviserons la démonstration de ce résultat en deux étapes : nous

montrerons d'abord que la structure des orbites d'un tel groupe est identique
à celle de l'action standard et ensuite, ce qui est la partie la plus délicate,

qu'il existe un arc transverse aux orbites, ce qui nous permettra de conclure.

Lemme 4.6. Les orbites de toute action continue et fidèle de U(l) sur
le disque D2 sont constituées par un point fixe unique x0 à l'intérieur du

disque et des courbes fermées simples qui entourent ce point.

Démonstration. Soit G l'image de U(l) dans Homéo(D2) et f £ G un
élément d'ordre infini. L'unique point fixe de / donné par le corollaire 4.2

est également un point fixe de G car les itérés de / forment un ensemble

dense dans G. Par conséquent, .v(l est également l'unique point fixe de tout
autre élément g fi- la de G. Il en résulte que la G-orbite de tout point x
différent de .v» est une courbe fennée simple. Cette courbe est invariante par /
et borde un disque qui contient nécessairement un point fixe de /, en vertu
du théorème du point fixe de Brouwer. Ce point fixe ne peut être que H, ce

qui achève la démonstration du leimne 4.6.

LEMME 4.7. Etant donné une action topologique et fidèle de U( 1) sur le

disque D2, il existe un arc simple rencontrant chaque orbite en un point et

un seul.
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REMARQUE 4.8. Je ne connais pas de preuve élémentaire de ce lemme.

La démonstration proposée ici est une construction «à la main» de cet arc
transverse. On pourra remarquer que ce résultat n'est pas une conséquence
immédiate du lemme 4.6. Il existe en effet des partitions de l'anneau par
des familles de courbes fennées simples essentielles qui n'admettent pas de

transversale. On pourra consulter [23] pour plus de détails sur le sujet.

Soit G l'image de U(l) dans IIoméo(7J2) et v0, l'unique point fixe de G.
Pour tout x G D2, on note -, (x) la G -orbite de x.

SODS-LEMME 4.9. Pour tout s > 0, il existe 5 > 0 tel que si x et y sont
deux points distincts d'une même G-orbite 7 et d(x,y) < S, alors un des

deux arcs délimités par x et y sur 7 a un diamètre inférieur à i.
Démonstration. Notons Jq,, Punique point fixe de G. Soit 0 > 0 et A

un disque contenant invariant par G et de diamètre inférieur à 0 (voir
théorème 2.5). On pose A — D2 \ A. Il suffit de démontrer le sous-lemme

pour les orbites contenues dans Panneau A, ce qui résulte de l'observation
suivante. Il existe un voisinage ouvert connexe V de l'identité dans G tel que

pour tous x G A et g £ V. Comme de plus G agit librement sur A, il existe

5 > 0 tel que :

pour tous x G A et g G G\V. Par conséquent, si x et y sont deux points
d'une même G-orbite 7 C A tels que d(x.y)) < ö alors y — g(x) avec g £ V
et l'arc {</(.v): g G V} de 7 a un diamètre inférieur à 0.

On munit l'ensemble des orbites de G d'un ordre total en définissant la

relation suivante: 7 < 7' (respectivement 7 < 7') si et seulement si 7 est

contenue dans le disque fermé (respectivement ouvert) bordé par 7' (avec la

convention < %)..

DÉFINITION 4.10. Étant donnés deux points x, y G D2 tels que v) < 7(y),
on appelle g,-chaîne monotone de j à y une collection x,Xi,... ,x„ — y}
de points de D2 tels que

(4.1) d(x, g(x)) < e/2,

(4.2) d(x, g{x)) > ö,

d(xk,xk+i) < p et -(c) < ytri+i),

pour A 0 n 1.
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Soi> I I.MME 4.11. Pour tout g > 0, il existe 5 > 0 tel que deux points
quelconques X, y n 'appartenant pas à la même orbite et vérifiant d(x. y) < 5

peuvent être joints par une p -chaîne monotone de diamètre inférieur à e

pour tout p > 0.

Démonstration. Soit g > 0 et choisissons S > 0 (5 <e) connue dans le

sous-lemme 4.9. Soient ayf deux points tels que ffjr) < 7(y) cl dfx,y) <5/2.
Etant domié p > 0 (// < 5), on peut trouver une suite finie de G-orbites

telle que la distance3) de llausdorjf d/fp^.p^f de deux courbes consécutives

de la suite soit inférieure à p/3,
Le segment xy rencontre chacune des courbes intermédiaires jp. Choisissons

pour chaque k P {1..... h — 1} un point

Si d(\\.X)t+i) < p pour tout k, nous avons construit notre //-chaîne de

diamètre inférieur à g ; sinon, voilà comment raffiner cette chaîne pour en

obtenir une.

Soit xr,xr+1, une paire de points consécutifs tels que d(xr,xr+i) > p.
Coimne du(-<r. *, • i < ft/3, on peut trouver un point x'r+1 sur fi+i tel que

et donc:

ût(Xc^i,v'.+1) < dix,. |,.vr) + < 5/2 + p./3 < <5.

Alors, d'après le sous-lemme 4.9, un des deux arcs délimités par ,v)+1 et

,v;'+| sur 7,+i a un diamètre inférieur à g Subdivisons cet arc en .v sous-arcs
de diamètre inférieur à p/3 et notons les points intermédiaires de la façon
suivante :

7o 7W < 7i < ' ' ' < 7« 7(7)

Sfe C xy Cl 7k

d(xr,xJr+l) < p/3,

Choisissons ensuite des courbes

7,• 7° < 7J < • • • < 7S 7,.+i.

3 La distance de Hausdorff est définie sur les parties fermées d'un espace métrique compact
(X,d) par la formule:

B) max : d(b, A)
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Comme i < //./'3 et qr < ji < pour 1 < / < .v — 1, il est

possible de trouver, sur chaque courbe intermédiaire 77, un point xJr+l tel

que d(x'l+]. r/+1) < /r/3, La suite

Xr — jÇjd ' • " • ' 2r+i -U+1

est donc une /i-chaîne joignant x, et a>_i qui appartient à un 2e-voisinage
du segment x,xr+i. En effectuant les corrections nécessaires pour chaque

paire xr, a>_i telle que d(xr,xr+1) > ß, on obtient finalement une p chaîne

monotone joignant x et y et de diamètre inférieur à 4e.

Preuve du Lemme 4.7. En utilisant le sous-lemme 4.11, on peut construire

une suite de nombres réels 5„ >0, qui tend vers 0, et telle que deux points
quelconques .v. y vérifiant d(x,y) < fi„, peuvent être joints, pour tout /i > 0,

par une /i -chaîne de diamètre inférieur à 1 fln.
Soit Xit une h'o chaîne monotone joignant .v(), le point fixe du groupe à

un point xx sur le bord du disque D2. Récursivement, ayant défini X„, on

joint chaque paire de points consécutifs at|, X'k+l de X„, par une fi,,. i chaîne

monotone de diamètre inférieur à 1/2" afin d'obtenir X„+i et on pose:

X [J Xn

nÇi N

C'est alors un exercice standard de topologie ([14, Theorem 2.27]) de montrer

que l'adhérence X de X dans D2 est un arc joignant Jäg et xx Cet arc est

simple et rencontre chaque orbite en un point unique, par construction, ce qui
achève la démonstration.

Preuve du théorème 4.5. Pour compléter la preuve du théorème 4.5, on
choisit un arc a, transverse aux orbites, donné par le lemme 4.7 et une

paramétrisation x(r). r G [0, lj de cet arc. L'application

h : re'e H- W(e,f> ,x(r)),

où *P : U(l) x D2 —> D2 dénote l'action, nous dorme alors une conjugaison
topologique avec le groupe des rotations euclidiennes, SO(2).

5. Un lemme de M. H. A. Newman

Avant d'entreprendre l'étude des sous-groupes compacts d'homéomor-

phismes de la sphère, nous présentons un lemme dû à M. H. A- Newman [16].
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I .EMMI. 5.1. Soit f un homéomorphisme périodique de S2 de période

p > I. alors parmi les itérés de /, il en existe un. disons f, tel que :

(5.1) d(f'\Id)> 1.

De plus :

(5.2) d(f,Id)>~.
P

Démonstration. Commençons par remarquer que (5.2) est une conséquence
de (5.1). En effet, dans (5.1), on peut supposer r < p/2 car l'inégalité (5.1)
est équivalente à

d(fp~r,Id) > 1

Par conséquent la négation de (5.2) conduit à

Or
d(f'(x), x) < V d(f'+] (x).f'(x)) < — < 1, Va,

P

et donc à la négation de (5.1).

La preuve de la première inégalité résulte de la remarque suivante :

supposons au contraire que d( fk. Id) < 1 pour tout k, alors l'orbite d'un
point quelconque x est entièrement contenue dans l'hémisphère de pôle x et

par suite, pour tout p-uplet (Ao, Ai,.,., Ap_i) de nombres positifs tels que

S — I :

p-1
(5.3) //.\(v) VA/(a )./.().

i=0

pour tout x. Ceci implique l'existence d'une homotopie dans R3 — {0} entre

l'identité et la fonction

1
P~l

(5.4) g(x) - Yfto. spU
ce qui est incompatible avec le fait que deg(g) — 0 modulo p.

COROLLAIRE 5.2. La boule unité fermée de I Ioméo(.S'2) ne contient aucun

sous-groupe compact non trivial.

Démonstration. En effet, si un tel groupe existait, on pourrait trouver un
élément non trivial / de ce groupe tel que

d(f",Id) < 1,
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pour tout n e Z. En vertu du lemine 5.1, / n'est pas périodique. Quitte à

remplacer / par son carré, on peut supposer que / préserve l'orientation et

donc possède au moins un point fixe. Alors, d'après le lemme 2.5, / laisse

invariant un disque topologique et la fermeture du groupe engendré par /
est isomorphe à U(l). Mais ce groupe contient des éléments périodiques g
vérifiant également

d{g"-, Id) < 1,

pour tout n e Z, ce qui est en contradiction avec le lemme 5.1.

Il en résulte qu'un sous-groupe compact d'homéomorphismes de la sphère

ne possède pas de petit sous-groupe. En vertu du théorème El, on peut donc

énoncer :

THÉORÈME 5.3. Tout sous-groupe compact d'homéomorphismes de la

sphère est un groupe de Lie

6. Preuve du théorème principal

Cette section est consacrée à la démonstration du théorème 1.2. Nous

envisagerons dans un premier temps le cas d'un sous-groupe compact G qui
ne contient que des éléments qui préservent l'orientation, puis le cas général.

6.1 G NE CONTIENT CP® DES ÉLÉMENTS QUI PRÉSERVENT L'ORIENTATION

LEMME 6.1. Soit G un sous-groupe compact de I Ioméo-(S2). Alors tout
élément de G est topologiquement conjugué à une rotation euclidienne d'ordre

fini ou non.

Démonstration. Soit g G G un élément non trivial. En tant qu'homéo-
morphisme qui préserve l'orientation de la sphère, g possède un point fixe %
(théorème de Lefschetz, par exemple). Du théorème 2.5, on déduit l'existence
d'un disque invariant A contenant a(i Le disque S2\A est également invariant
et contient donc un second point fixe itg de g. En vertu du corollaire 4.2,

Fix(g) est réduit à ces deux points.
Si g est d'ordre fini, il est conjugué à une rotation euclidienne d'ordre

fini (voir [7]). Sinon, l'adhérence H du groupe engendré par g est isomorphe
à U(l) (voir corollaire 4.4). Les orbites de H sont constituées par les deux

points fixes a(i a,1, et des courbes fermées simples qui séparent a(i et M Le
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lemme 4.7 nous assure l'existence d'un arc transverse aux orbites, joignant wo,

et Xq ce qui nous pennet, connue dans la preuve du théorème 4.5, d'établir

que g est topologiquement conjugué à une rotation euclidienne d'ordre infini.

Soit x 0 S2. Le stabilisateur de x, noté Stab(x), est le sous-groupe des

éléments g de G tels que g(x) — x. Le sous-groupe compact Stab(x) laisse

invariant un disque contenant x. Il est isomorphe à un sous-groupe fenné du

groupe U(l) en vertu du corollaire 4.4.

Inversement, soit H un sous-groupe fenné de G. Si Fix(H) / 0 alors

Fix(ll) contient exactement deux points .v(l. jË et H est isomorphe à un

sous-groupe fenné du groupe U(l).

LEMME 6.2. Si G est infini, il possède un sous-groupe isomorphe à U(l).

Démonstration. D'après le théorème 5.3, G est un groupe de Lie. Par

conséquent, si G est infini, sa dimension est supérieure à 1 (car G est

compact). Il possède donc un sous-groupe à un paramètre non trivial et

contient des éléments d'ordre infini. Soit g un tel élément. Alors l'adhérence
du groupe engendré par g est isomorphe à U(l).

Nous allons maintenant envisager les divers cas possibles.

6.1.1 Cas 1: G EST FINI. Chaque élément non trivial de G possède

exactement deux points fixes. Seulement un nombre fini de points de la

sphère ont un stabilisateur non trivial. Soit 2 cet ensemble, alors la projection
canonique tt : S2 —t S2/G est un revêtement ramifié et on a la formule de

Riemann-Hurwitz :

où n désigne le cardinal de G et v-s est le cardinal des stabilisateurs des

points de ramification s G s. De cette formule, il résulte que \(S2/G) — 2

et donc que S2/G est homéomorphe à S2. Ces revêtements sont entièrement

classifiés par l'action du groupe G sur l'ensemble fini 2. A chaque solution
donnée par la formule (6.1) correspond un sous-groupe fini de SO(3) et donc

une conjugaison topologique de G avec ce sous-groupe.

(6.1)
5ÇS/G

6.1.2 Cas 2: IL N'Y A qu'un STABILISATEUR INFINI. Soit H ce

stabilisateur et désignons par .vn et .v,* les points fixes de H. Soit g un élément
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quelconque du groupe G. Alors le point g(xo) est également d'indice infini
et donc nécessairement

g(x0) G mu) - {au. A,; ;

Si de plus g(xo) - J%, alors g G H.

- Si ceci se produit pour tous les éléments du groupe alors G — H
et le groupe G est topologiquement conjugué au sous-groupe des rotations
euclidiennes autour d'un axe donné.

- Sinon, on peut trouver un élément w dans G tel que a(xo) — Aq et

<t(Aq) — A'o. On a alors nécessairement a2 — Id et aha — h~l, pour tout
h G H. G est donc isomorphe au groupe diédral infini

Doo Z2 x U(l).

De plus, a induit une involution continue sur l'espace des orbites de H, qui
est lioméomorphe à un intervalle, et échange ses deux extrémités. Par suite, a
laisse invariante une et une seule des orbites de H. Les points fixes de a sont

nécessairement sur cette courbe. On construit alors facilement une conjugaison
entre ce groupe G est l'action euclidienne standard du groupe

6.1.3 Cas 3 : il y a au moins deux stabilisateurs infinis distincts.
Dans ce cas, le groupe G agit transitivement sur S2 en vertu du résultat
suivant.

LEMME 6.3. S'il existe deux stabilisateurs infinis distincts (en tant que

sous-groupes de G alors le groupe G agit transitivement sur Ici sphère.

Démonstration. Soient a et b deux points d'indice infini ayant des

stabilisateurs distincts II,, et ///, respectivement. L'orbite du point a sous

l'action du groupe ///,, que l'on notera IIfia) est une courbe fermée simple

passant par a et qui rencontre toutes les orbites du sous-groupe Ha assez

voisines de a. Par suite, la G-orbite du point a, G(a), est ouverte et fermée

dans S2, ce qui achève la démonstration.

Fixons donc un point a de la sphère et désignons par H le stabilisateur de

ce point (nécessairement isomorphe à U(l)). L'espace homogène, G/H — S2,

est muni naturellement d'une structure de variété analytique sur laquelle G

agit également de façon analytique. On a donc trouvé sur S2 une structure

analytique invariante par G. On peut alors construire, par moyennisation, une

métrique riemannierme sur S2 invariante par G. Coimne l'action de G est
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transitive, cette métrique est à courbure constante. Quitte à multiplier cette

métrique par une constante, on peut supposer que cette courbure est 1. Par

conséquent, cette variété riemannieune est isométrique à la sphère standard et

cette isométrie définit la conjugaison recherchée entre G et SO(3).

6.2 G CONTIENT DES ELEMENTS QUI RENVERSENT L'ORIENTATION

Commençons par rappeler les faits suivants. Soit .v un homéomorphisme
régulier de la sphère qui renverse l'orientation.

• Si s possède un point fixe, alors nécessairement s2 — Ici et v est

topologiquement conjugué à une réflexion orthogonale [7].
• Si .v2 — Ici mais 5 est sans point fixe, alors S2/s est homéomorphe au

plan projectif et par suite, du fait de l'unicité du revêtement universel, v

est topologiquement conjugué à la symétrie centrale X -A —x.
Soit Go le sous-groupe de G des éléments qui préservent l'orientation.

Go est un sous-groupe distingué d'indice 2. Quitte à effectuer une première
conjugaison, on peut supposer que Go C SO(3).

6.2.1 Cas Ï! Go« SO(3). Soit s G G \ Go. Tout cercle (euclidien) de

S2 est une orbite du stabilisateur Stab(x) d'un point dans Go. Par conséquent,

l'image par v de tout cercle de S2 est un cercle. D'après un résultat bien

connu, ceci entraîne que v est une anti-homographie de la sphère. Coimne
de plus v est régulier, v appartient nécessairement à 0(3) et ceci pennet de

conclure que G — 0(3)

6.2.2 Cas 2: Go — SO(2). Désignons par x0 et M; lés points fixes
de Go et soit s G G \ Go. Alors, v pennute les orbites de Go et induit un
homéomorphisme sur le quotient .S'2/Go qui est un intervalle. Il y a donc

deux possibilités :

- Si v fixe xfl et af|, alors s2 -- Id et v est conjugué à une réflexion. G

est un produit semi-direct de Z2 par U( 1) et sgs — g~l pour tout g G Go-

En effet, sinon on aurait sgs — g pour tout g G Go et la courbe Fix(s)
qui contient ,v0 et x'() serait une orbite de Go, ce qui n'est pas possible.
Par ailleurs, v induit un homéomorphisme croissant sur l'intervalle .S'2/G0 de

période 2 qui ne peut donc être que l'identité. Par suite, v préserve les orbites
de Go- Chaque orbite non triviale de Go rencontre Fix(s) en deux points au

moins. Mais si x et y sont deux points distincts de Fix(s) appartenant à la

même orbite de Go, alors y — g(x) pour un certain g G Go et la relation

sgs — g-1 nous donne g2(x) — x. Donc g est nécessairement d'ordre 2
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et ceci nous pennet de conclure que chaque orbite non triviale de Go ne

rencontre Fix(s) qu'en deux points seulement. On est alors en mesure de

construire une conjugaison entre G et le sous-groupe de 0(3) engendré par
les rotations autour de l'axe et la réflexion par rapport à un équateur
contenant cet axe.

- Si v échange Xo et #§ < alors v induit un homéomorphisme décroissant sur
l'intervalle S2/Go - Cet homéomorphisme a un unique point fixe qui correspond
à une orbite J de Go invariante par .v. Alors, quitte à composer .v avec une

rotation de Go on peut supposer que v a un point fixe sur J et donc se

ramener encore une fois au cas où s2 — Id et v est conjugué à une réflexion.
On a /ï.v(.v) - J et donc sgs — g pour tout g Go- Dans ce cas, G est

le produit direct de Z2 par U(l) et on construit facilement une conjugaison
entre G et le sous-groupe de 0(3) engendré par les rotations autour de l'axe

et la réflexion par rapport à l'équateur orthogonal à cet axe.

6.2.3 CAS 3 : Go — D« • Dans ce cas Go est engendré par le groupe
des rotations autour d'un axe jqjasg et par un retournement p qui échange .v0

et .v,j et dont l'axe est perpendiculaire à la droite ..vo.v0. Soit s G\Go, alors

v permute également les points % et ,v(j car le sous-groupe des rotations

autour de l'axe ÉâM est invariant par v. Quitte à composer s avec p, 011

peut supposer que .v(.vo) — % et ,v(.vfj — ,v(j et donc que v est une réflexion

topologique. En conjuguant v par une rotation d'axe Xo-Q, on peut supposer
également que Fix(s) contient les points fixes de p. Alors sps — p. On
construit alors facilement une conjugaison entre G et le sous-groupe de 0(3)
engendré par Go et la réflexion plane par rapport au plan contenant l'axe
.vo-v,j et l'axe du retournement p.

6.2.4 CAS 4: Go EST FINI. Dans ce cas Go appartient à un des cinq
types bien connus de sous-groupes finis de SO(3) [1]. Il y a deux possibilités :

- G\Go ne contient aucune réflexion topologique, autrement dit, Fix{s) — 0
pour tout .v e G \ Go. Alors S2/G est homéomorphe au plan projectif et la

projection canonique x : S2 -A S2/G est un revêtement ramifié, ce qui pennet
de conclure que G est conjugué à un sous-groupe fini de 0(3).

- G\Go contient une réflexion topologique. Dans ce cas, G est un produit
semi-direct

Z2 ix Go.

Par ailleurs, si v et s' sont deux réflexions topologiques distinctes dans G alors

le cardinal de l'ensemble Fix(s) H Fix(.é) est égal à 2. Eli effet, un point fixe
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commun à s et s' est un point fixe de la rotation .v.v' qui en possède au plus 2

et si les deux courbes Fix(s) et Fix(s') ne s'intersectent pas, ou seulement

en un point, alors la rotation .v.v' envoie un disque fermé à l'intérieur de

lui-même (à l'exclusion éventuellement d'un point du bord), ce qui n'est pas

possible pour une rotation. On est alors en mesure de construire «à la main»,
dans chacune des cinq situations possibles, des domaines fondamentaux et

de montrer, chaque fois, que G est conjugué à un sous-groupe fini de 0(3)
(voir [7] et [8]).
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