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A HOMOTOPIC INTERSECTION THEORY ON SURFACES:
APPLICATIONS TO MAPPING CLASS GROUP AND BRAIDS

by Bernard PERRON

§0 INTRODUCTION

(0.1) Tet S,, be a compact, connected, oriented surface of genus g,
with b boundary components (5 > 1). Denote by S,,, (n > 0) the
surface S, , with n points {P,P,...,P,} removed in the interior of S, ;. Fix
a base point s, in one of the boundary components and set I' = 71(S;.5.4 ; So0)-
Thus I' 1s a free group with m = 29 + n + b — 1 generators. Denote
by H the abelianization of T". Denote by M, , , the mapping class group
of the surface S;p,, 1.e. the group of isotopy classes of homeomorphisms
of S, 5., equal to identity on the boundary and keeping invariant the set of
points {Py,Ps,...,P,}.

(0.2) There is a well-known integral, skew-symmetric bilinear form on H,
denoted by ( , ), defined as follows: let «v, 3 € H be represented by immersed,
oriented loops with only transversal self-intersection points. Put «, 3 in general
position. Then define («,3) by

<C“7ﬁ> - Z Ep,

Pealllp

where the sum is taken over all intersection points P and ¢p is equal to +1
(resp. —1) if the framing (ZTpa, Tpg) gives the right (resp. opposite) orientation
of Sy 5., where Tpa denotes a tangent vector to « at P, with the orientation
given by «.
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(0.3) Let Z[T'] be the group ring of T" with integer coefficients : this is
the free abelian group generated by I', with the multiplication inherited from
that of T'. Let ¢: Z[I'| — Z be the canonical homomorphism defined by

E(Z i’lig,') — Z n;.
Then the main result of this paper is

THEOREM 0.1. There exists a map w: I’ x I' — Z[['] (the homotopic
intersection form) making the following diagram commutative :

CxI —— Z[I]

l I

oxm

and such that:
1) w(y,x) =—wly)+-DHa"" -1,

2) wlxy,z) = wlx, 2) +xw(y,2),

3) wlx,y2) = wlx,y) + wlx, )y,

where (): Z[T] — ZIT] is the anti-isomorphism given by > n;q; =

>omgrt
REMARK. w can be extended by bilinearity to Z[T'] x Z[I'].

(0.4) 1In the terminology of ([Pap], §4), w is a biderivation on Z[I'],
using points 2) and 3) of Theorem O.1.

Given a free basis (z1,...,z,) of I', we associate to w a m X m matrix A
with coefficients in Z[I'], whose (i,j) entry is w(z;, z;). Standard arguments
of Fox free differential calculus show that

wix,y) = 0x' x A x Oy,
Ox Ox

where Ox i1s the column (—

d g
PRI (9_)t (Here — denotes the Fox partial
Zl Zm

8zi

derivative ; see [F].)

(0.5) In a suitable free basis, the above matrix A takes a particularly
simple form in the case of S, 0 (see Lemma 2.4) and in the case of
Soan(=D*—{Py,...,P,}) (see Lemma 2.5).
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(0.6) The main interest of Theorem 0.1 is perhaps in its applications.
It allows us to reprove very quickly and simply some classical results and to
prove some New ONes.

Here are some of these applications.

(0.7) APPLICATION A). The intersection form w is closely related to the
Reidemeister pairing (see [Pap] or [H]).

Let S be a compact, connected, oriented surface, s; a base point and
N a normal subgroup of I" = m(S; s¢). Denote by T the quotient I'/N and
let x: I' — T be the canonical map. Let S be the regular covering of S
corresponding to N.

(0.8) The Reidemeister pairing is the bilinear map
¢: Hi(Ss Z) x Hi(S; Z) — ZIT]
defined by
Plo, B) =D (o, 1.B)1,

€T
where ¢.;3 denotes the action of + € 7 on the 1-chain § and (, ) is the usual
algebraic intersection form on S.

Denote by & the composition

NXN— H,(S:Z) x H(S: Z) -2 Z[T].

(0.9) Then elementary properties of coverings show that (Lemma 2.6)
b=xow|NxXN.
Using (0.4) and (0.5) we immediately get the fundamental formula of
([Pap], Theorem 10.13; see also [H], Theorem 3.3),
(*) D(u,v) = x(Ou' x A x Ov) for u,v € N.
From this formula (), Papakyriakopoulos obtains the main result of ([Pap],

Theorem 11.1), which is a necessary and sufficient condition for the covering S
to be planar.

(0.10) APPLICATION B). From the very definition of the form w on
Sy b.n» we have for any (isotopy class of) homeomorphism f of S, ; ., equal
to identity on JS and permuting the points {Py,...,P,}:
() w(f(x),f(¥) = fw(x,y) for any x,y € T' = 71(Sg,p,0 5 50)

(f is identified with the isomorphism induced on T').




162 B. PERRON

(0.11) Given a free basis {z;;i=1,...,m} of T, define the Fox matrix
B(f) of f by

J

of(z))

o =t B(f) € GL,(ZIT)).

(0.12) In the case of §,;, for the free basis given in Lemma 2.4, the
relation (x:x) above translates into matrix language using (0.4) as

‘B(f) x A x B(f) =7A.

We thus recover almost tautologically Theorem 5.3 of [Moq |. This shows the
“symplectic” character of the Fox matrix of the elements of the mapping class
group My of S, (Mg stands for My 10).

(0.13) AppLICATION C). Applying the abelianization homomorphism
"= 771(59,1 : S()) — H = Hl(SgJ 3 Z),

the Fox matrix B(f) of f € M, becomes a matrix B®(f) € GLy,(Z[H]).
It is easy to see that the map

B*: M, — GLy,(Z[H]),

when restricted to the Torelli subgroup Z,; of M, ;, is a homomorphism
(recall that f € Z,; if f induces identity at the homological level).

(0.14) S. Morita ([Mo, ], problem 6.23) asks whether
B?: T, 1 — GLy,(Z[H])

is injective or not.

In [Su], Suzuki exhibits an element of Z,; in the kernel of ol using
lengthy computations.

We produce here, using the form w, a geometric way of obtaining elements
in the kernel of B%, explaining geometrically, without computation why
Suzuki’s example works.

Moreover we obtain many more explicit elements in the kernel of B,
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(0.15)  APPLICATION D). Observe that the mapping class group Mo 1,
1s the usuval braid group B, with »n strings (see [Bi]).

For ¢ € B,, we define as above the matrix B*(c) € GL,(Z[H]), where
H =H(D* - {Py,...,P,};Z). This matrix is known as the Gassner matrix
of . The map B*: B, — GL,(Z[H]) becomes a (true) homomorphism,
when restricted to the pure braid group P, C B,.

(0.16) Translated into matrix language, the relation (**) of (0.10) above
becomes

T ab
B%(o) x Q, x B(@) = Q,

for any ¢ € P, C B,, where &, is the following matrix of GL,(Z[H]),
mentioned in (0.5):

1— ! 0 o0 0
(1 —w)(1 —u7h 1—u;? 0 0
Q, = _
(1 — us)(1 —u; ") . 0
A—w)d—uhy A—u)A—uzh) ... ... 1 —ut

(0.17) Under the mapping H — Z = (t) sending each generator
w;(i = 1,...,n) of H onto t, the Gassner matrix of ¢ € B, becomes
the (unreduced) Burau matrix Bu(c) (see [Bi], Chapter 3). The matrix €2,
of (0.16) becomes, after simplification by (1 —¢~1),

1 0 0 ... 0

1—-1 1 0 ... 0

1-2

(1;o u;n . (1= o

(0.18) REMARK. Our Gassner and Burau matrices are those of [Bi], up
to transposition.




164 B. PERRON

(0.19) By considering the “hermitian” matrix €2, +§; (resp. én + 52;)
and sending u;(i = 1,...,n) (resp. t) to appropriate complex numbers of the
unit circle, we can see that the group of Gassner (resp. Burau) matrices is
conjugated to a subgroup of the unitary group U,(C).

In the case of Burau, this was first proved by Squier [Sq]. But our
matrix Qn 1s much simpler than that of Squier: €, is triangular and belongs
to GL(Z[t,t~']), instead of GL,(Z[t='/2]).

(0.20) The fact that €2, (resp. én) 18 triangular imposes strong constraints
on a matrix to be a Gassner (resp. Burau) matrix. In the case of Burau, these
contraints are stronger that the one imposed by Squier. For example, we have
a generalization of Theorem 1.1 of [LP].

PROPOSITION. Let B be the Gassner (resp. Burau) matrix of some ¢ € B,
such that

a ? ?7 7 ¥ ? 7
0
B=1o0 a, 7 79
Anep
0 0 0

Then B must be equal to

1 0 0 0
0 10 0 0
0
E Anp
0 0
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§1 DEFINITION OF THE INTERSECTION FORM w
We are going to prove Theorem 0.1.

(1.1) Let x,y € I' = m1(Sy.6,n; So) be represented by oriented immersed
closed curves with normal crossings, based at so € S, 5 .

Push a little bit the base point s, into a point s; € 0S5, 5, , in the positive
direction of JS,, , (oriented like the boundary of S, ,). Push also a little
bit the curve y onto a curve y' based at s; (see Figure 1). Put x and )" in
general position and define w(x,y) by

wExy)= Y cpgp € Z[IT,
Pex m b2
where ¢p was defined in (0.2) and gp € T 1is defined as follows: go from sg
to P along x in the positive direction of x, then go from P to s; along ¥
in the negative direction, then go from s;, to sy along JS, ., in the negative
direction of 05, ,, (Figure 2).

S0 So

FIGURE 1 FIGURE 2
(gp is represented in Figure 2 by the oriented dotted line)

(1.2) We first have to prove that w is well-defined, that is depends only
on the homotopy classes of x and y. For this, fix x and let yg, y; be two
oriented immersed curves with normal crossings which are homotopic in S, 4, ,,.
Deform y, and y; onto y; and y| as above.

Then it is easy to see that we can pass from y; to y| by finite compositions
of three types of elementary moves, with respect to x:

Move 1
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1

Move 11 ! — |
|
|

1 Yo x X A

Move III: Regular homotopy from y; to y; far from x.

It 1s then easy to see that each of these three operations does not affect
the form w(x,y).

(1.3) To prove point 1) of Theorem 0.1, we proceed as follows.
To compute w(x,y), we use x and y of Figure 3. To compute w(y,x),
we can use ¥y’ and x of Figure 3.

FIGURE 3

This amounts to introducing four extra intersection points between x and
y',P1, Py, Q1,Q>. For the intersection points P of xMNy" the contribution in
w(x,y) 18 €p gp, while iIn w(y,x) 1t is —ep ggl. In the configuration of
Figure 3 we have for the four extra points of y”’ M x:

Epp — — 1= —£€p
gg, = 1= —¢q,
gp, = ¥s gp, = 1
~1. -1
90; = Y% "5 o =% "

So the contribution of the four extra points in the configuration of Figure 3 1s:

(y— D@t —1).
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The result is the same in any other configuration (by changing the
orientation of x and/or y).
The proof of points 2) and 3) of Theorem 0.1 is straightforward.

DEFINITION 1.1.  An oriented embedded loop based at sy is said to be
of type I or 1I, if 1 a neighbourhood of s, it looks like

~ - TN
S
s A d h
) / !
! 1 J
g | ,
{ e ¢
\/ N \/\
> -~
YY) as 8o a8

4y an

The next lemma can be seen as an obstruction for an element of
Ti(Sy.6.n 5 S0) to be represented by an embedded loop.

LEMMA 12 If x € T = 7(Sy6n5 S0) is represented by an embedded
based loop then w(x,x) =1 —x (resp. 1 —x7') if x is of type I (resp. 11).

Proof. Suppose x is of type I. Then, by pushing x along a normal vector
field v, such that ¥ followed by the orientation of x gives the positive
orientation of S, ,, we may suppose that x and x’ meet only at two points
P and Q shown in Figure 4.

FIGURE 4

Then ep = —1 = —¢£g, gr = X, go = 1. The lemma is proved.




168 B. PERRON
§2 THE INTERSECTION FORM w AND FOX FREE DIFFERENTIAL CALCULUS

We review some basic facts about Fox free differential calculus [F]. Let T
be a free group with free basis z1,...,24.

(2.1) DEFINITION. A derivation (resp. an antiderivation) 1s a map
D: Z[I'l — Z[I'] such that

1) D is additive,

2) D(uv) = e(v)D(u) + uD(v), where e¢: Z|[T'] — Z 1is defined in (0.3)
(resp. D(uv) = e(v)D(u) + D(v)ii).

The fundamental example of a derivation 1s the partial derivative

ai: Z|I'] — ZITI'] defined by:
<

. 0z
1) 8_;, = iy

(i1) i 1s additive

aZf

(2.2) DEFINITION. A map 6: Z[T'] x Z[T'] — Z|T'] 1s called a bideriva-
tion if :

1) 6 is bilinear for +

2) @ 1s a derivation (resp. antuderivation) with respect to the first (resp. sec-
ond) variable.

(2.3) Given a biderivation ¢ and a free basis z1,...,z, for ', we can
associate a m x m matrix A, with coefficients in Z[I'], in the following way :
the (i,j) entry #; of A is given by 6; = 0(z;, ).

0 Ou \*
For u € Z[I'], let du denote the column (_u " ) . Then we have

Zl gowiey @
the following easy lemma.

LEMMA 2.3. Let 0 be a biderivation on the free group T equipped with
a free basis (21, ...,2m). Then for (u,v) € Z|I'] x ZI'] we have
() O(u,v) = Ou' x A x dv,

where Ouv is the column conjugate of dv and A is the matrix of 0 with
respect to the free basis (zy,...,2%m)-
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Proof. Formula (x) is true, by definition of &, for u = zl-il, v = zj?tl.
Then proceed by induction on the length of u# and v with respect to the free

basis (Z1,-..,Zm).

(2.4) FUNDAMENTAL REMARK. The intersection form w: I'xI" — Z[I'],
extended by bilinearity to Z[I'] x Z[I'] is a biderivation, by points 2) and 3)
of Theorem 0.1.

(2.5) TIIRST FUNDAMENTAL EXAMPLE. Consider S, o (also denoted
by S,.1), the compact, connected, oriented surface of genus g > 0, with
one boundary component. Then I' = 71(S,,1 ; So) 18 a free group of rank 2g¢.
Choose the following “symplectic” free basis (x;,y;;i=1,2,...,g) given by

Figure 5.
B! \". ; Yg :.
h o 8S
Q)

FIGURE 5

LEMMA 2.4. The matrix Ay of the intersection form w on Z|I'| with
respect to the free basis (x;,y;;i=1,2,...,9) given by Figure 5 Is

Ji | J2
A, 1 =
g1 ( J3 J4 )
where Ji, i = 1,2,3,4 are the following g X g matrices with coefficients

in ZIT'] :

1—x 0 0

(1 —x)(1 —x7hH 1—x 0

S

(1 —x)(1—x7h (1 —x)

(1 —wdl — ) A —ml =8 w.. T—mHl—2" . 1—x
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Xy 0 0 0
(1 —x)(1 —yH xay; . 0 0
J = :
(1 —x)1 -y hH Xy
L—x)L =3 Q=—xxdL =y, A=x)d =¥ oo x5,
1—x' =y 0 ..0... 0
(1 — yo)(1 —x7") 1—x "~ 0
J3 = " p
(1—y)d —x") 0
L=yl —x) A=—y)d—xD... .. 1-x'—y,
1 -yt 0 ..0... 0
(1 —y2)(1 =y 1—y! 0
Ju— . .
(I =yl —y; ) 0
A=y )1 —y7H A=y —yH... l—yg‘l

Proof. This follows immediately from the definition and properties of w,
together with Lemma 1.2 (observe that x; is of type I and y; of type II).

(2.6) REMARK. The matrix A, ; appeared first in the work of Papaky-
riakopoulos ([Pap], §9); see also Hempel ([H], Theorem 3.3), but has no
interpretation as the matrix of a geometric biderivation (see §3 below).




A HOMOTOPIC INTERSECTION THEORY ON SURFACES 171

(2.7) REMARK. The integer matrix e(A, ;) is of course the standard
antisymmeltric matrix
0 |1
(=)

where I, is the g x g identity matrix.

(2.8) SECOND FUNDAMENTAL EXAMPLE. §q ; , is the 2-disk with » points
Py, Py,...,P, removed. Let (u,...,u,) be the free basis of 71(So,1..: s0)
given by Figure 6.

FIGURE 6

LEMMA 2.5. The matrix, denoted by Q,, of the intersection form w on
Soan =D*—{Py,...,P,}, with respect to the free basis (u1,ua, . .., u,) given
by Figure 6 is:

1—ut 0 .0, 0
(1= u)(1 —uy) 1—u;!

(1= us)(1 —uy ")

(1— un)(.l —urhy (1 - u,n)(ll— 7 e PO 1 —‘u,;l
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§3 RELATION BETWEEN THE HOMOTOPIC INTERSECTION FORM
AND REIDEMEISTER PAIRING ([Pap], [H])

(3.1) Let S be a compact, connected, oriented surface, so a base point
and N a normal subgroup of 71(S; so9). Consider the canonical exact sequence

0—N— m(S; 50) =T — 0.

(3.2) Let § be the covering surface associated to N. Choose a lifting
5o € S of so. Of course N ~ 71'1(5; so) and T acts on S as the group of
covering transformations of S —» §. Thus Hy(S; Z) inherits a structure of
ZT -module.

(3.3) Define the Reidemeister pairing ¢: Hl(:S‘V, Z) x H1(§, Z) — Z[T]
as

$lo, ) = (o, t.8)t,

teT
where ¢.3 denotes the action of + on § and (,) is the usual algebraic

intersection number in §.
Denote by ®: N x N — ZT the composition

NxX NS Z) « Hi(S; 2)-252T

where % is the Hurewicz map (abelianization).

(3.4) The relation between the intersection form w and Reidemeister
pairing is given by

LEMMA 3.1. If S is a surface with boundary, then ®(u,v) = x(w(u,v))
for any u,v € N (where x is the canonical map m(S; sq) — T).

Proof. Let u,v be oriented based loops, v’ be the loop based at sf, by
pushing v slightly as in § 1. Suppose u and ¢’ are in general position and
let P be a point of u M v'.

Call u,v (resp. ') the lifts of u, v (resp. v') starting from sq (resp. ;{)).

(3.5) Let % be the lift of sj close to sg. Let uy (resp. vy) be the arc
on u (resp. v') going from so (resp. s;) to P along the positive direction
of u (resp. v") (see Figure 7).
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S0 5] 50
'Ul
P 50
" P
] U
!
So
x(gp).s)
\f
a8 4 .
oS
FIGURE 7

Let u; (resp. 171) be the lift of u;, starting from sy (resp. :vz)) and let P
be the end of u;. Denote by 12 the lift of »{ ending at P. Then the starting

point of q;i is x(gp)-sy, where gp is the loop u; o U;_l o~y (here v denotes
the small arc [sg,s;] on AS and composition of paths are written from left

to right). So Ji = X(gp).’l;i and

epx(gp) = (u, x(gp)-0)5 x(gp)

(where {, )7 denotes the algebraic intersection number at ﬁ). This proves
Lemma 2.6.

(3.60) REMARK. From the Reidemeister pairing © defined on N x N,
with values in 7 = ['/N, one cannot recover our intersection form w, since
T=T/N={1} when N=T.

(3.7) In the case of S, 10, using Lemmas 2.3, 2.4 and 3.1, we recover the
fundamental formula of [Pap], Theorem 10.13 (see also [H], Theorem 3.3),
given by

COROLLARY 3.2. With the notations of Lemma 3.I we have, for
(u,v) € N x N,

(+) D, v) = (' X Aygq x Ov).

From formula (x) of Corollary 3.2, Papakyriakopoulos deduces the main
result of [Pap]:
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PROPOSITION 3.3. (Theorem 11.1 of [Pap].) The covering S, corresponding
to the normal subgroup N, is planar (e.g. homeomorphic to a subset of the
plane) if and only if x(Ou' x A x Jv) =0 for any u,v € N.

Proof. A surface § is planar if and only (a,3) = 0, for any «, €
H\(S;Z), where {,) is the usual algebraic intersection number. Then
Proposition 2.8 follows immediately from Corollary 3.2.

§4 APPLICATION TO MAPPING CLASS GROUPS

(4.1) Denote by M, , the mapping class group of the surface S, .,
that is the group of isotopy classes of homeomorphisms of the surface S;5,
equal to identity on 05, and preserving (globally) a set of n points in the
interior of S, p.

4.2) Given f € M,4,, we denote by the same letter the 1somorphism

mduced on I = m(Sy 5, ; S0), since it is well-known that the mapping
My pn — Aut(m1(Sy pa 5 S0))

1s injective.

LEMMA 4.1. Let w be the homotopic intersection form on Sy, and
fe Mgpa. Then w(f(x),f(¥) = flwx,y) for any x,y € I' = 71(Sgp.1: S0)-

Proof. This 1s by definition of w.

(4.3) On the other hand, for f representing an element of M, ,, we
associate its Fox matrix (see [Mo;], §5 or [Pe], Chapter 3) as follows.

Choose a free basis {x;,y;,u;;i=1,2,...,9,j=1,2,...,n} for the free
group ' given by Figure 8.

A/
B

FIGURE 8
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Set
Xi, i<i<g
=Yg, 9g+1<i<2g
w29, 2g+1<i<2g-+n.

Then f(z;) €T is a word in the variables z;.
The Fox matrix B(f) of f 1s the (2g+r) x (2g+n) matrix with coefficients
in Z[I'] given by

J

T
il ... J(;—zz,j | =B,

where () is the anti-isomorphism of Z[T'| defined in Theorem 0.1 and 6%
is the Fox partial derivative defined in §2.

Livmma 4.2,  (Proposition 5.2 of [Mo;], or Lemma 3.2 of [Pe].)
For f,g € Mgy, we have

B(f o g) = B(f) x'B(g),
where % denotes the usual matrix multiplication and 'B(g) is defined by
'B(g) ='(ay) = (flay)) (ay € ZIT).

Consequently, B(f) belongs to GLy,,(Z[I']), the group of invertible matrices
with coefficients in Z[I'].

Combining Lemmas 2.3, 24 and 4.1, we get a tautological proof of
Theorem 5.3 of [Mo |:

PROPOSITION 4.3. Let f € My ;. Then
BUA) % Aga % B =TAga1,

where Ay is the matrix of the form w with respect to the free basis
{x,yi36=1,2,...,9} given in Lemma 24 (YA, is defined in Lemma 4.2).
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(4.4) Note that My, is the usual braid group B, (see [Bi]). Using
Lemmas 2.3, 2.4, 4.1 again we get

COROLLARY 44. Let f € Moy, = B,. Then
BGF) x Qu x B(f) ='Q,,

where €2, is the matrix defined in Lemma 2.5.

(4.5) Denote by I the abelianization of T'. For f € M, ; ,, denote by f,
the isomorphism of H induced by f, and by B*(f) the image of the Fox
matrix of f under the canonical homomorphism GL(Z[T']) — GL(Z[H]).

The advantage in considering Z[H] is that it is a commutative ring, but
of course we lose information.

For u € Z[T'], denote by dyu the image of the column Ju (defined in §2)
under the map Z[I'] — Z[H].

Lemma 4.2, Proposition 4.3 and Corollary 4.4 become under the mapping
r —o:

() B(f o g) = B® (f) x-B(g).
(i) BP(F) x A%, x BE(f) =1 A%, (f € M,,).
(iii) BL(H) x Q, x BU(f) = QP (f € B).

(4.6) Let Z,,, be the normal subgroup of M, , consisting of home-
omorphisms such that f, = idgy. This subgroup is usually called the Torelli
group of S;5,.

In the case ¢ =0,h = 1,n> 0, Ty, 1s usually denoted by P,, the pure
braid group of index n (recall that M0,1,n is the braid group B,).

By (i) of (4.5), B%: Zypn — Glyg o(Z[H]) 13 a true homomorphism.

In the case g =0,g=1,n> 1, B®: P, — GL,(Z[H]) is the so-called
Gassner representation.

In ([Mo ], problem 6.23, §6.8), Morita asks the following question:

Is the representation B : Ty1 = Tg10 — Glay(Z[H]) mjective ?

In [Su], Suzuki answers this question negatively, by exhibiting, using
lengthy computations, a non-zero element in the kernel of B, for any g > 2.

In the remaining part of this paragraph, using our form w, we produce
a geomelric way of obtaining elements in the kernel of B“, explaining
geometrically, without computation, why Suzuki’s example works.




A HOMOTOPIC INTERSECTION THEORY ON SURFACES 177

REMARK. The question of injectivity of B Zo1,0 = Pp — GL,(Z[H])
(the Gassner representation) is still open for n > 4.

4.7y The following lemma holds :

LEMMA 45. Let I' be a free group with basis (21,...,2p), H its
abelianization. Let o € T' be homologous to 0 (e.g. the image of o in H
is 0). Then for any g € T,

Or(gag™) = gou(a),

d 0
where O(a) is the p-column (a—g, < § —a)’ and Og(«) is its image under
2 Zp

the map I' — H.

Proof. 'This follows easily from the properties of the partial derivative.

(4.8) Let ¢ be a simple closed curve on a surface S, 1 = S,,1,0. Denote
by D{(c) the Dehn twist along ¢ (see [Bi], Chapter 4) defining an element
of M, ;. By a bounding curve of genus p we mean a curve bounding a
subsurface of genus p. Then we have:

PROPOSITION 4.6. Let ¢ be a simple closed bounding curve on a

surface Sg.1. Then B*(D(c)) = Ly +0na X (Ona) x A%,

to conjugation and orientation) is the element of I = m(S, 1 ; s0) represented

where o (defined up

by ¢, and A?]bl is the image under I — H of the matrix A, given in
Lemma 2.4.

Proof. Observe that dyo x (9g) depends only on the conjugacy class
of a, by Lemma 4.5 and does not depend on the orientation of «.

We first prove Proposition 4.6 for ¢ = f,, where f, is the closed simple
bounding curve of genus p defined by Figure 8.

(4.9) The circle f,, oriented and equipped with the path as indicated by
Figure 8, represents the element

s X yp—1,%p—-11- - - [y1,x1]

of I' = m1(84,1; s0), where [a,b] denotes the commutator aba='b~'. The
action of the Dehn twist D(f,) on the free basis {x;,y;; 1,2,...,¢} is given by

D(f,)@) = foaf, ' for 5 = x, i (1 <k <p),
D(f)z) =z for zx=x, e p<k<yg).
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(4.10) For simplicity, we will make computations in case p =1 (so we
may suppose g = 1).
Easy computations show that

ey (L= A==y ==y
B(D(f1)) = ( a _lxl—l)z ' 1+ (1 — xl_l)l(l — yfl))

-1

_ |
Ofi x Ofi = ()171_ x—1> =1, 1 —x)

1

1—x x; vyt
ab 1 1%
Ag,l = (1 _x1—1 gy 1 yl_l) (by Lemma 2.4).

Proposition 4.6 1s easily venfied for ¢ = f;.

(4.11) Let ¢ be a simple, closed, bounding curve of genus p. Then it is
easy to find a homeomorphism ¢ of M, ; such that ¢ = ¢(f,).

We claim that:

() D) = poD(f)opt,

(i) dna = BP(p) x *dufy,
where « € T is represented by ¢ (up to conjugation and orientation), .. is
the isomorphism induced by ¢ at the homological level, and ¢+Jgf, is the
image of the column Jyf, under ¢, .

(1) is well known.
(i1) follows from the more general formula

Op() = B(p) x “0u,

where u € I'. This last formula can easily be proved by induction on the
length of u, in terms of a basis of T .

(4.12) We are now ready to prove Proposition 4.6:

BY(D(c)) = B(g o D(fy) 0 ™)
= B"(¢) x “BYD(fy) x £ PW BT
= B"(p) x #* BU(D(f)) x " B(p)™




A HOMOTOPIC INTERSECTION THEORY ON SURFACES 179

(since B(o~Y) = (7 B(¢))~! by Lemma 4.2). Hence
BY(D(c)) = B™(p) x = BU(D(f)) x BY(p)™"
(since D(c), = idg)
= BY(p) x ?*[I+ g f, X O £ x Ag1]l x B()~!
=T+ O X (Fpa) x (BP(p)~ 1" Mgy x B(p)™!
(by (@.11) (ii))
=1+ Oga x (Oga) x Ay

(by Proposition 4.3).

COROLLARY 4.7. Let c¢,d be two simple, closed, bounding curves. Then

B(D(c) o D(d)) = —I + B*(D(c)) + B*(D(d))

+wn(or, B) D x OB x AL,

where o € ' (resp. [3) is represented by ¢ (resp. d), up to conjugation and
orientation.

Proof. By Lemma 4.2 (D(c). = idy) and Proposition 4.6 we have

B(D(c) o D(d)) = —I + B*(D(c)) + B*(D(d))
+ Ogo X (Oga’ X AZ{’I X Og3) x O 3 x Agf’l i

The parenthesis in the last term above 1s exactly wy(«v, 3), by Lemmas 2.3
and 2.4.

COROLLARY 4.8. Let c¢,d be two simple closed, bounding curves of Sy 1
such that wg(a, 3) = 0. Then B°®(D(c)) and B (D(d)) commute (¢, 3 are
defined as in Corollary 4.7).

PROPOSITION 4.9. The homomorphism B Ly — GLy,(ZIH]) is not
injective, for g > 2.

Proof. By Corollary 4.8, it 1s sufficient to find a pair of simple, closed,
bounding curves c¢.d such that wg(a, ) = 0, and such that D(c) and D(d)
do not commute. Here are three examples of such pairs.
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EXAMPLE 1. ¢ is the circle given by Figure 9:

- -

-

FIGURE 9
d is the image of ¢ by the Dehn twist along the circle y).

EXAMPLE 2. ¢ and d are given by Figure 10:

(olek

FiGure 10

- e

EXAMPLE 3. ¢ and d are given by Figure 11:

I v _.,.,.ﬂ::..._.
o[BI

Ficure 11
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In each case, it is easy to see that the corresponding wg(a, 3) is zero
in Z[H], while D(c) and D(d) do not commute. To prove this last point, we
use the well-known result (see, for example [PaR], Prop. 3.7) that two Dehn
twists commute if and only if the curves ¢ and 4 can be disjoined, up to
1sotopy.

The first example is given in [Su] where it is shown that B*(D(c)) and
B*(D(d)) commute, using lengthy explicit computations.

REMARK. Our method for proving the non injectivity of B® resembles
the method used by Moody [Moo], Long-Paton [LP] and Bigelow [Bg] to
prove the non injectivity of the Burau representation. Our Corollary 4.8 plays
the role of Theorem 1 of [Moo], and Theorem 1.5 of [LP].

§5 APPLICATIONS TO THE BRAID GROUPS

(5.1) Recall that the braid group B, 1s the mapping class group Mo,
e.g. the group of homeomorphisms of the 2-disk D?, fixing pointwise the
boundary dD? and leaving invariant a set of n points Py, P,,...,P, in the
interior of D?.

(5.2) A set of generators of B, is defined as follows. et Py, P,, ..., P,
be n points in the horizontal diameter of D?* (Figure 12).

FIGURE 12
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Let g; be the “half Dehn twist” along the segment 7; = [P;, Pi+1], equal
to identity outside a regular neighbourhood of 7; and which sends a vertical

segment meeting 7; as indicated by Figure 13.

Py
Ti B

Py Pi

. e

FIGURE 13

(5.3) The action of o; on the free basis (uy, ..., u,) of T = m(D*—{P;}; 50)
defined by Figure 12 is as follows:
O'i(blj):uj J#l7 l—|—1
0','(14,’) = I/ti—l Ui U;
oi(Uir1) = u;

(composition of paths are from left to right).

So the Fox matrix of o; with respect to the free basis {u; ; 1,2,...,n}
i1s given by
i i+1
I 0 0 0
0 —u; + ulq_ll i 1 0 i
Bo= | ¢ u; 0| o i1
0 0 0 li—i—2

(54) For ¢ € B,, denote by o, the isomorphism induced at the
homological level; of course ¢, is a permutation matrix, corresponding to
the permutation of the points {Py,...,P,} under o. By definition the pure
braid group P, is the normal subgroup of B,, consisting of braids such
that o, =1d.

By Lemma 4.2, the map B*: P, — GL,(Z[H]) is a homomorphism,
called the Gassner representation of P, .
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PROPOSITION 5.1. For any o € P,, the Gassner representation B®
satisfies

BV (0) x Q% x B(0) = Q%
where €2, is the n x n matrix defined in Lemma 2.5.

Proof. Follows immediately from Corollary 4.4.

(5.5) REMARK. By sending #; on appropriate 7; € S' C C (so that

T, L

proposition shows that the image of the Gassner representation 1s conjugated
to a subgroup of the unitary group U,(C).

: ; 8 ; ——ab
= 7;), and considering the “hermitian” matrix Q% + (Qna ), the above

(5.6) REMARK. The fact that Q% is triangular imposes strong conditions
for a matrix of GL,(Z[H]) to be the Gassner matrix of some pure braid.

For example we have the following easy lemma which generalizes Theorem
1.1 of [LP].

COROLLARY 5.2. Suppose the Gassner matrix M of o € P, has the form

o X X X
0 op X X
M=
0 0
(An—p)
0 0
Then M is equal to
L 0...0
0 0
M=
As—p
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Proof : Using Proposition 5.1 and the fact that Q9 is triangular, it is easy
to see that

(8 4] 0...0
M=1]20 ap 0

; D An,

0 0

To show that a; = 1, proceed as follows. By definition of M, its first column
S— —
g (3U(M1) Do (u) )t

ou, =~ Bu,
By the fundamental formula of Fox differential calculus,

n

oty 1= 307 gy,

i=1 !

we have o(u)® — 1 = @p(u, — 1). But since o € P,, a(u)® = u,.

(57) Let 6: H = {uy,...,upy — Z =< t > be the homomorphism
defined by 6(u;) =1t.

By definition of B,, any e¢lement ¢ € B, makes the following diagram
commutative :

H -2y H
0N, S0
4

The homomorphism € induces a homomorphism 6: Z[H] — Z[Z] ~
Z[t,t7'].

Denote by Bu: B, — GL,(Z[t,t~']) the (true) homomorphism defined
by the composition

Bu: B, GL,@[H]) -%> GL.(ZI[,r']).

This is the (unreduced) Burau representation of B, .
From Corollary 4.4 we deduce

COROLLARY 5.3. For any o € By, its Burau matrix satisfies

Bu() x Q, x B,(0) = Q,,
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where
1 0 0
én: 1—1¢ 1
0
1
1—1¢ 1—1¢ 1

REMARK. Squier [Sq] gives an “hermitian” matrix M, such that
Bu(or)t X M, x Bu(c) = M,

but our matrix Qn is much simpler for two reasons :

(a) Q, € GL,(Z[t,+~]), whereas M, € GL(Z[F*]);

(b) 52,1 18 triallgular.

The fact that €2, is triangular imposes more constraints on a matrix to be
a Burau matrix, than that of Squier. This will help to understand the group

of Burau matrices (recall that we know that the Burau representation is not
faithful for n > 5 by [Moo], [L; P], [Bg]).

COROLLARY 5.4. Corollary 5.2 is true, if Gassner matrices are replaced
by Burau matrices.

Added in proof. After this paper had been written, the author was informed
(in June 2005) that Theorem 0.1 and l.emma 1.2 were obtained previously
by V. Turaev in a paper “Intersection loops in two-dimensional manifolds”,
which appeared in Mathematics of the USSR Sbornik 35 (1979).
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