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1. Préliminaires

La notion maintenant classique de systole unidimensionnelle tire son origine
des résultats de C. Loewner et de P. Pu, établis il y a plus de cinquante ans.

Rappelons brièvement les définitions principales (nous renvoyons le lecteur aux
articles [8], [9], [17]; pour plus d'information, voir aussi les livres [10], [19]).

Pour une variété riemannienne fermée non simplement connexe (M, g) de

dimension m, désignons par sys^/W. g) la plus petite longueur d'une ligne
géodesique fermée non contractile sur M. Cette valeur est appelée la systole

ou 1 -systole de M par rapport à la métrique g. La principale direction de
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recherche en géométrie et en topologie des systoles unidimensionnelles consiste

à étudier l'invariant numérique suivant de M :

&Ü a (M) — inf
a sySj(M, g)"'

où g parcourt l'ensemble des métriques riemannieimes lisses sur M. Le

nombre (1.1) est appelé constante systolique de M. Nous pouvons résumer

l'essentiel des recherches sur le sujet en deux questions :

L Quelles conditions topologiques sur M assurent cj{M) > 0

2. Sachant que a(M) > 0, peut-on évaluer o{M)

Line réponse satisfaisante à la première question a été établie par Gro-

mov [18] grâce à la notion de variété essentielle. Pour une variété quelconque

(non simplement connexe) M, il existe une application

(1.2) <h: M—t- KimiM), 1),

unique à homotopie près, où K(~\(M). 1) est l'espace bien connu d'Eilenberg-
MacLane, voir par exemple [28]. Soit [M]k la classe fondamentale de M
considérée à coefficients dans k Z si M est orientable et à coefficients
dans k Z2 sinon. Cette classe nous fournit un élément

dL([M]k)e/7,„(^ffii(M),l);k).

La variété M est dite essentielle si (L ([/V/|k) / 0, et non-essentielle sinon. Le
résultat suivant de [18], chap. 0 dorme une condition suffisante très maniable

sur M pour garantir la stricte positivité de a(M).

Théorème (Gromov). Pour chaque variété essentielle M,

a(M) > 0.

On trouve également dans [18], chap. 5, 6, des bornes inférieures (non
strictes) de a(M) pour certaines classes de variétés essentielles. Mais on est

encore bien loin du calcul précis de a(M), même pour des variétés de nature

topologique assez simple coimne les espaces projectifs ou un peu plus générale

coimne les espaces lenticulaires.

Pour les variétés orientables, il est en fait nécessaire que M soit essentielle

pour assurer la stricte positivité de a(M), coimne cela a été démontré

dans [2], §8. Dans cet article, l'invariance homotopique de a(M) a également
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été prouvée. En d'autres tenues, deux variétés équivalentes à homotopie près

ont la même constante systolique a.
La seconde question représente un problème très difficile. La valeur exacte

de a(M) n'est comme que dans les trois cas suivants :

• le tore : a(T2) — & (C. Loewner, voir [8]) ;

• le plan projectif : rj(RP2) - | (P. Pu [26]) ;

• la bouteille de Klein: a(K2) — (C. Bavard [7]).

Pour certaines variétés M, des bornes inférieures pour a(M) plus ou moins
satisfaisantes sont connues. Cette question est assez avancée dans le cas

des surfaces. On peut trouver plus d'infonnation à ce sujet dans [9], [14],
[17] et [18],

Le but principal de ce travail est de comparer les constantes systoliques
de deux variétés de dimension donnée ayant le même groupe fondamental. La

question sous-jacente à cet article est la suivante :

La donnée de f1>.. C [ /V/11< détermine-t-elle a(M)

Nous obtenons une réponse positive à cette question dans les deux cas

suivants :

THÉORÈME a. On se donne un groupe w de présentation finie. Soient

Mi, i — 1,2 deux variétés fermées, orientables de dimension m > 4, dont les

groupes fondamentaux sont isomorphes à 7r. Soient itfiMf) —> tt deux

isomorphismes et

Mi —> Kfiïï, XJj / 1,2

les applications caractéristiques induites par fij. Supposons que

*!:*([ATT) ®2*([M2]) G

est un élément d'ordre infini. Alors

cr(Mi) a(M2)

Remarquons que dans ce cas, wfiM) est forcément un groupe infini.
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THÉORÈME b. Soit n un groupe fini contenant k éléments. On considère

deux variétés orientables M., i — 1,2, de dimension m > 4 et de groupe
fondamental isomorphe à it. Supposons que, pour deux isomorphismes

Tti(Mj) —> 7r, on ait

ffifcjTMQ G Hm(tr,Z)

et que cet élément soit d'ordre k. Alors

cr(Mi) a(M2)

Ces deux cas couvrent de nombreux exemples intéressants. Les théorèmes

a et b sont les conséquences directes des théorèmes plus généraux A et B dont

les énoncés exacts se trouvent dans les sous-sections 2.1 et 2.2 ci-dessous.

L'essentiel de cet article est consacré aux démonstrations de ces résultats.

Pour des raisons techniques, nous supposons dans la suite que M est une

variété orientable de dimension m > 4, l'hypothèse dimensionnelle intervenant
essentiellement dans les démonstrations des théorèmes 3.8 et B. Pour des cas

particuliers de groupes, comme ir Z2, la restriction dimensionnelle peut
être abandonnée en utilisant une technique appropriée (voir [ l]),

Dans le but de comparer les constantes systoliques de deux variétés

distinctes, nous travaillons dans la classe des polyèdres. Les outils géométriques
et topologiques qui nous seront nécessaires sont présentés dans la section 3.

Nous aurons également besoin de comparer les constantes systoliques de

variétés dont les groupes fondamentaux diffèrent. Pour cela, nous introduisons
la notion de ^-systole ou systole relative. La systole homologique représente
alors un cas particulier de ^-systole.

2. Systoles relatives et homologie de groupes

On se donne un groupe 7r de présentation finie et une classe d'homologie
entière a G Hm(tt,Z). On dit que a est réalisable s'il existe une variété M
et une application d>: M —? K(~. 1 qui vérifie — a. Appelons
cette réalisation normalisée si de plus, d>, est un épimorphisme entre les

groupes fondamentaux. On sait que, pour certaines classes, aucune réalisation
n'existe. Cependant, si a est une classe quelconque, on peut toujours trouver
un entier N tel que /Va soit réalisable (voir R. Thom [30]). Pour une classe a

d'ordre infini, 011 obtient ainsi une suite arithmétique {/tïVa}/,pZ de classes

réalisables d'ordre infini dans l'homologie de ce groupe. Remarquons que,
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si une classe a G //,«(«. Z) est réalisable, il existe toujours des réalisations

normalisées. Soit

(2.1) </»: TTI(M) —s- 7T

un homomorpliisme. Il induit de manière unique à homotopie près une application

<ï>: M —I K(k. 1). Ainsi, pour chaque épimorphisme algébrique (2.1), nous

avons une représentation normalisée (M, d>) de la classe (lL ([/V/|) e //„,(". Z).
Dans la suite, nous ne nous intéresserons qu'aux réalisations normalisées.

Soient 7r un groupe de présentation finie et M une variété lisse de

dimension m tels qu'il existe un épimorphisme tp: tt\(M) —> 7r. Les classes

d'homotopie libre des lacets fermés sur M coincident avec les classes de

conjugaison de 7Ti(M). Soit e>: l'application induite par gj sur les classes

de conjugaison. On considère une métrique riemannienne g sur M. Nous
déûnissons la </>-systole de (M, g) en prenant la plus petite longueur d'une ligne
géodesique fermée non 4>- -triviale. Désignons cette valeur par sysö(/V/, g). Ceci

nous amène à définir la constante G-systolique analogue à (1.1)

(.2.2) P>(M) — inf VOl^'g:L
g sys0(M, gy»

où g parcourt l'ensemble des métriques riemanniennes lisses sur M. Dans le

cas où (}/ réalise un isomorphisms, nous supprimons l'indice <i> : on retrouve
ainsi les notions de systole et de constante systolique. On a l'inégalité évidente

(2.3) a^M) < a (M).

Nous obtiendrons de cette inégalité, dans le cas particulier de groupes
fondamentaux complexes, une borne inférieure sur a(M). Les constantes

systoliques relatives apparaissent naturellement.

Systole homologique. Soit M une variété et tt — fl) (M, k), où k — Z
ou Zp. Si 7Ti(M) —s- Ilt (M. k) est la projechon naturelle, la (/»-systole

correspondante est appelée systole homologique Z„-homologique si k — Z;,
Nous la désignons par lisys(/W. g) et notons ah(M) la constante systolique

correspondante.

Systole homologique libre. Pour une variété M quelconque, on pose
7T — II\ (M. 7g j'lors et on note

(2.4) </>': TTI(M) —§ 7T

la projection naturelle. La (/»'-systole correspondante est appelée systole

homologique libre. Nous la désignons par lsys(/W. g) et notons cr (M) la
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constante systolique correspondante. Remarquons que l'espace classifiant

correspondant est le tore K(it, 1) — T1'1, où b\ — /;\(M) est le premier
nombre de Betti.

SYSTOLE STABLE. Une seconde systole associée au groupe abélien libre

Il\(M. Z)/Tors est la systole stable. Ce type de systole est défini par un procédé
de moyenne. Soient M une variété, ~ — Il\ (M. Z)/' 'l ors et </ l'épimorphisme
défini ci-dessus. Pour une métrique g quelconque sur M et un élément a
de it, on note L(a) la plus petite longueur d'une ligne géodésique fermée •*§

sur (M,g) telle que — a. On pose alors

lai,, — lim tgika)

Il est bien coimu que pour chaque métrique g sur M, cette fonnule définit
une nonne | L sur le Z-module libre n. Cette nonne est appelée la norme
stable de 7r associée à g. Enfin, on définit la systole stable de (M, g) en

posant

stsys(M, g) infa^0 |a|9,

où a parcourt 7r \ {0}. La constante systolique stable conespondante est

notée as,(M). Tout connue a(M), crst(M) est un invariant homotopique de M
(voir [2], §8).

On peut remarquer que a. .(M) ne dépend que de kcr o. et donc que la

composition de (j) avec un automorphisme de 77 ne modifie pas la constante

^-systolique. Cependant, le but étant d'étudier le lien entre a,,(M) et la classe

homologique (fi,(|/W|) £ //,„<—. Z), la définition (2.2) est pertinente. Le choix
d'un point base pour le groupe fondamental ne conditionne ici en rien l'étude :

d'une part un changement de point base définit un automorphisme intérieur
de 7T, qui agit trivialement sur l'homologie de ce groupe, et, d'autre part,
la definition de <r0 ne dépend que des lacets libres (donc des classes de

conjugaison).
Par analogie avec la définition d'essentialité ci-dessus, une variété M est

dite (j) -essentielle si

<fi,([M|k) # 0

dans 11. (77. k). Remarquons qu'une variété M peut être essentielle au sens

absolu, et en même temps non cf) -essentielle pour un certain 0. Le théorème de

Gromov demeure vrai pour er,., en remplaçant "essentielle" par "^-essentielle".
La réciproque partielle établie dans [2], §8 pour les variétés orientables est

également valable: '\~>t(\M\/) — 0 implique 07, — 0.
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On fixe un groupe 7r de présentation finie. La fonction v0(M) est alors

une fonction positive à valeurs réelles du couple (M. ©). Si > 0, M est

appelée &-rigide, et (fi-souple dans le cas contraire.

2.1 Classes homologiques d'ordre infini; théorème A

Les groupes ~ de présentation finie possédant une classe d'homologie
d'ordre infini coincident avec les groupes qui vérifient II Jtt. R) / 0.
Les groupes fondamentaux des variétés admettant une métrique à courbure

sectiomielle négative ou nulle et les réseaux dans les groupes de Lie nilpotent
ou résoluble (simplement connexes) fournissent une source importante de ce

type de groupes. Cependant, ce sous-ensemble ne fournit que des exemples
de groupes de dimension liomologique réelle finie.

LTn autre sous-ensemble, et peut-être plus intéressant que le sous-ensemble

précédent, est celui des groupes ~ dont l'homologie k -dimcnsionnelle est non-
nulle pour une infinité de k. Cet ensemble est très riche, l'exemple le plus

éloquent étant le groupe F de R. Thompson (voir [13]) dont une présentation
est la suivante :

F — (a,b ; [ab-1, a~1ba],

Initialement, le groupe F est apparu connue le groupe des homéomorphismes
dyadiques de l'intervalle [0; 1]. On voit facilement de la représentation donnée

qu'on peut réaliser F comme le groupe fondamental d'une variété de dimension

m > 4 en faisant 2 chirurgies d'indice 1 sur Sm (ce qui nous fournit les

générateurs de F), puis deux chirurgies d'indice 2 en correspondance avec
les relations.

L'homologie de F a été calculée dans [12], voir aussi [16] pour la structure

multiplicative en cohomologie.

THÉORÈME (Brown, Geoghegan). //„(/' Z) ~ Z © Z pour tout n > 1.

On connaît actuellement de nombreux exemples de groupes de présentation
finie possédant des propriétés homologiques analogues à celles de F.

Soient 7r un groupe de présentation finie et a G Jtyjjr, Z) une classe

liomologique d'ordre infini. Supposons que cette classe soit réalisable par
une variété. La constante ©-systolique d'une variété réalisant a ne dépend

pas du choix de cette variété : le théorème suivant montre qu'elle ne dépend
naturellement que de a.
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THÉORÈME A. (1) Soient M\ et M2 deux variétés fermées, orientables
de dimension m > 4, fifi:: itfMi) —y it, i — 1,2, deux épimorphismes et

4),: M, —> K(~, 1)

les applications caractéristiques induites par pi. Supposons que

(I»2T[/V/2 |) G H„,(n,Z)

soit un élément d'ordre infini. Alors

'3fi {Ml) - (T. ,,(.W2).

(2) Supposons que M\ et M2 vérifient bfiMfi) — bfiMi) et que pi fi],
i — 1.2 (voir (2.4)). Si

I) - 4>2. ([/V/2|) g Hm(Tb\ Z),

alors

a'fMfi - ost(M2).

Chaque automorpliisme A : n —> it induit un automorphisme

A» : Hfi it, Z) —f Hfin, Z).

Si 7T est un groupe abélien libre de rang b, on peut associer à chaque

automorpliisme A de n une transformation de SL(b. Z).

COROLLAIRE AI. (1) Soient M\ et M2 deux m-variétés et fit : itfiMi) —> it
deux épimorphismes pour i — 1,2. Supposons que les classes homologiques
rf',,([/V/,|). i — 1,2 soient d'ordre infini dans Hm(jt,Z), et qu'il existe un

automorpliisme A : tt —> ir tel que

#1*(PÎ11 A ,($2,([M2])).

Alors

&4I(mi) - ct^fiMi).

(2) Supposons que M\ et M2 vérifient bfiMfi — /?i(M2) et que pi — p\,
i — 1,2 (voir (2.4)). S'il existe A G SL(bi,Z) tel que

4>r*([Mi]) AA<&2*([M2])),

alors
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2.2 Groupes fondamentaux finis; théorème B

Si 7r est un groupe fini, Fhomologie HJn, Z) est un module de torsion et le

comportement des constantes systoliques associées à ce groupe n'est pas clair
en général. Soit k - 17r le cardinal de tt, Rappelons que l'ordre de chaque
élément a G //.(t. Z) est un diviseur de k. Une classe naturelle et intéressante

de groupes finis est celle des groupes possédant une classe homologique d'ordre
maximal k. Cette classe coïncide avec celle des groupes dont chaque sous-

groupe abélien est cyclique. Nous pouvons donner une autre caractérisation :

c'est la classe des groupes dont l'homologie est périodique. Cette classe

contient des exemples intéressants comme le fameux groupe d'isométrie de

l'icosaèdre. Pour les détails et pour différents exemples de groupes non-
cycliques, nous renvoyons le lecteur à [11], chap.Vf.9. Le théorème suivant

montre que, pour une classe homologique d'ordre maximal 17r|, la constante

systolique ne dépend que de cette classe.

THÉORÈME B. Soient Mj et M2 deux variétés orientables de dimension

m >4 et <j)j: irfiMi) —> tt deux épimorphismes, où ir est un groupe fini
contenant k éléments. Supposons que

<Ï>2*([M2]) G MJi/t, Z)

et que cet élément soit d'ordre k. Alors

V<t>i (Ml) —

L'analogue du corollaire Al est également valable. Si 7r est un groupe
cyclique d'ordre k, 0 et toute classe d'ordre k admet une
réalisation normalisée par un espace lenticulaire.

COROLLAIRE Bl. Soient M une variété orientable de dimension impaire
m et <p: it\{M) —¥ Z^ un épimorphisme tel que <I>*([M]) G Z/,„(Z^,Z) soit
d'ordre k. Alors la constante systolique relative crest égale à la constante

systolique d'une variété lenticulaire réalisant la même classe homologique
de Zj.

Si p est un nombre premier, chaque classe homologique non nulle de //,(Z„. Z)
est d'ordre maximal et, d'après le théorème B, nous pouvons alors définir
correctement la fonction systolique <7: //,(Z;).Z) —¥ R. Remarquons que
<r(0) — 0 puisque l'on sait, que pour chaque variété orientable M, et chaque

épimorphisme q>\ ~, (M) —- 7r, quel que soit le groupe de présentation finie 7r,
la condition (I>, ([/Vf |) — 0 dans I1J.it, 7.) implique rrJM) — 0 (voir [2]).
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COROLLAIRE B2. Soient p > 2 un nombre premier; I > 3 un entier naturel

et d — PGDC(I,p — 1). A/ors /a fonction systolique a prend au plus d + 1

valeurs différentes sur H2i-i(Zp,Z) si est pair, et f-hl valeurs différentes

si est impair. Ici, PGDC désigne le plus grand diviseur commun.

Chaque épimorphisme f>: itfM) —r Zp définit un élément (j>* ë H1 (M, Z,,).
Cet élément caractérise les variétés ^-essentielles. Remarquons que pour un

groupe cyclique Z„, les variété orientables ^-essentielles n'apparaissent que

pour les dimensions impaires. Pour une variété orientable quelconque M de

dimension paire

«r*(M) 0,

quels que soient l'épimorphisme &: tti(M) —s- Zp et l'entier naturel p.

COROLLAIRE B3. Soient M une variété orientable de dimension 21—1 et

4>: 7Ti(M) —Zp

un épimorphisme. Alors est non nul si et seulement si

-ruw*)/-1 ^ o

dans Hll~i(M,Zp). Ici, ß désigne l'homomorphisme de Bockstein.

Le groupe Z2 diffère un peu des autres groupes cycliques. Pour chaque

dimension m, nous obtenons une seule variété lenticulaire KP'" dont nous

notons am om(RP'") la constante systolique.

COROLLAIRE B4. Soient M une variété orientable de dimension m et

<p: 7Ti(M) —f Z2

un épimorphisme. Alors &MM) ne peut prendre que les deux valeurs 0 et crm.

De plus, si m est pair, cr^(M) 0 pour chaque épimorphisme f>. Si m est

impair, a^iM) — crm si et seulement si (</>*)'" f 0 dans Zf).

Le cas non-orientable est plus subtil : nous reviendrons à cette question dans

la dernière partie.
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3. Géométrie dii eéren i ihi i.e sur lbs polyèdres
SIMPLICIAUX FINIS

Il n'est pas aisé de traiter les problèmes systoliques dans la catégorie des

variétés et des métriques lisses. Pour cette raison, nous plaçons notre étude dans

le cadre des polyèdres riemaniens finis et des CW-complexe s finis. L'efficacité
de cette approche a été montrée dans [1], [2], [4], [6], [20] et [21]. Définissons

d'abord les objets nécessaires, voir [24] et [28] pour plus de détails : un
polyèdre simplicial est un espace topologique muni d'une triangulation. Tous

les polyèdres considérés dans la suite seront des polyèdres finis et donc

compacts. Les complexes cellulaires (CW-complexes) utilisés seront de type
général. Par contre, chaque construction métrique utilisant des CW-complexes
dans la suite nous conduira à l'obtention d'un CW-complexe fini. La classe

de CW-complexes la plus utile ici est la classe des CW-complexes finis ayant
une seule cellule de dimension maximale.

DÉFINITION 3.1. I n complexe cellulaire fini X est dit muni d'une

triangulation compatible si :

1. X est triangulé;

2. pour chaque A -cellule (Bk, y) de X, \ /F y est un Sous-polyèdre

simplicial de X, où Bk(r) est la boule euclidienne A-dimensiomielle de

rayon r, Bk — Bk( 1 et \ est l'application caractéristique d'une cellule.

Chaque complexe cellulaire fini est équivalent à homotopie près à un complexe
cellulaire triangulé compatiblement (voir, par exemple, [25]) Si /': X —:• Y

est une application continue entre deux complexes cellulaires finis triangulés
compatiblement, alors elle est équivalente à homotopie près à une application
simultanément cellulaire et simpliciale. Tous les complexes cellulaires finis
considérés ci-dessous seront supposés triangulés compatiblement et toutes les

applications seront supposées cellulaires et simplicial Ö&

Soient P un polyèdre fini et r C P un simplexe de la triangulation
considérée. Ce simplexe est homéomorphe par définition au q-simplexe
standard

A9 - conv{Y0.8 «., eg} c R9+1
§

où conv désigne l'enveloppe convexe d'un ensemble et {e,}9_0 est un repère
orthononné. Les coordonnées cartésiennes i*}U de R9+1 fournissent les

coordonnées barycentriques de A9 et de r C F- On définit un voisinage
extérieur de r C F coimne un ouvert U de Y — 1 contemmt A9.
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DÉFINITION 3.2. Une métrique riemannienne sur un polyèdre P est une

famille de métriques riemanniennes {gr}rcp> °ù T parcourt l'ensemble des

siinplexes de P, vérifiant les conditions suivantes :

1. Chaque gT est une métrique riemannienne lisse sur un voisinage
extérieur de r.

2. Pour chaque paire de simplexes tï,T2 C P, on a l'égalité

liT\ T i
C l Ti k~l I

r '' r-.

considérée comme une égalité de deux formes quadratiques dans les

coordonnées barycentriques de r| 01%.

Une structure simpliciale sur P pennet de travailler avec les applications
continues et lisses par morceaux de l'intervalle 7(1) [0,1] dans P. Si P
est muni d'une métrique riemannienne g, on peut définir la longueur d'un
chemin lisse par morceaux o: /( 1 —> P en posant

lg(a) - f I a'\gdt.
J o

On utilise cette longueur pour définir la métrique sur P comme dans le cas

des variétés :

(3.1) pg{x,y) inf lg(a),
a.

où a parcourt l'ensemble des chemins lisses par morceaux joignant x. v G P.
Obtenu de cette façon, l'espace métrique (P. p,;) est un espace de longueur.
Considérons un polyèdre riemannien (P, g) et un épimorphisme (j>: ni(P) —s- 7r

où 7T est un groupe fixé de présentation finie.

Définition 3.3. La borne inférieure

sysriT5,#) inf

où 7 parcourt l'ensemble des courbes fermées, lisses par morceaux, non
é>; -triviales, est appelée la ip-systole de (P,g).

Pour un polyèdre riemannien quelconque (P, g) et pour chaque /c-simplexe

r G P, le k -volume Volk(t,g) de r est bien défini. Posons

Volt(P,g)= 2 Volk(r,g),
dim T—k

où r parcourt l'ensemble des A--simplexes de P. Remarquons que Yol/ÙP. g)
dépend de la métrique g ainsi que de la structure simpliciale considérée. Par
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exemple, Volk(P,g) (k < m) est modifié par line subdivision simpliciale. Si

dimP — m, la soimne totale des m-volumes de tous les m-simplexes est

appelée volume de P pour la métrique g. On note cette valeur Vol(P,g). Remarquons

que Vol(P, g) coincide avec la mesure de Hausdorff m -dimensionnelle

pour la métrique (3.1).
Définissons les constantes /-systolique et stable pour un polyèdre

quelconque P de dimension m coimne dans le cas des variétés par

• r Vo1(R,5) „ e Vol(P,g)
(3.2) CT<j,(P) ml ——— et a (P) ml ——

g sys.é(PxgT g syss,(P,g)'"

où g parcourt l'ensemble des métriques riemanniennes simpliciales sur P.
Comme dans le cas des variétés, on peut définir la notion de polyèdre

essentiel et démontrer un théorème analogue au théorème de Gromov, voir [18].
Nous n'allons pas nous servir de cette notion pour les polyèdres. Remarquons

seulement qu'il existe deux types d'essentialité pour les polyèdres :

l'essentialité algébrique, qui se définit à l'aide de la "classe fondamentale" du

polyèdre, et l'essentialité géométrique, qui se définit au moyen des applications
dans les complexes de dimension plus petite. Ces deux notions coincident pour
les variétés si on fait un choix convenable de coefficients en homologie. Elles

ne sont pas équivalentes pour un polyèdre arbitraire (nous reviendrons sur ce

sujet dans le dentier chapitre).

3.1 Principes de comparaison et d'extension

Soit /: X —> Y une application simpliciale entre deux polyèdres, Si g
est une métrique riemamtiemie sur Y, son image réciproque f'ig) est une

fonne quadratique symétrique positive, mais dégénérée en général si / n'est

pas un homéomorpltisme. Pour obtenir une vraie métrique sur X assez proche
de f (g), fixons une métrique h sur X. Par exemple, on peut choisir h coimne
la métrique induite par le plongemeut canonique X —I A'v_1 C R v, où N
est le nombre de sommets de X. Pour t > 0, on pose f'(g) =f*(g) + t2h.

Ceci définit une métrique riemamtiemie (simpliciale) sur X. Appelons cette

méùique la t-image réciproque de g (comparer avec [2], §2, où des métriques
analogues ont été construites). Il est évident que / contracte les distances par
rapport aux métriques f'(g) et g pour chaque t > 0, c'est-à-dire que

(3.3) Lip/'< 1, Vf > 0.

Nous allons travailler dans la suite avec de petites valeurs du paramètre t.
Par définition, une application /: X —> Y entre deux espaces topologiques

est dite monotone si l'image réciproque d'un point f~1 (v) est un sous-ensemble
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connexe de X, quel que soit ce point y g Y. Nous avons besoin d'une version
faible de cette définition adaptée aux applications simpliciales.

DÉFINITION 3.4. Une application simpliciale f: X —> Y entre deux

polyèdres simpliciaux est dite k-monotone, si pour tout A-simplexe r C Y et
° 1

pour tout point y & T f~ (y) est un sous-ensemble connexe de X.

Les applications m -monotones des polyèdres m -dimensionnels jouent un
rôle fondamental dans la suite. La m-monotonie signifie que l'image réciproque
d'un /»-simplexc ouvert quelconque est soit un m -sidiplexe ouvert, soit vide.

La proposition suivante est vérifiée (voir [2], §2):

LEHME 3.1. Soit f: X —> Y une application simpliciale, m-monotone
entre deux polyèdres m -dimensionnels. Alors pour chaque métrique riemanni-

enne g sur Y et chaque S > 0, il existe ö > 0, telle que l'inégalité suivante

soit vérifiée :

VolmÇi,f\g)) < Vol,„(F,g)+ e, t <6.

Proposition 3.2 (Principe de comparaison). Soient Kh i — 1,2, deux-

polyèdres m-dimensionnels et <pp. iti{Kî) —> ir deux épimorphismes. S'il
existe une application m-monotone f: K \ —t Ki telle que <fii 4>2°f*, alors

%jKj <

Démonstration. Fixons un e positif et soit g une métrique simpliciale
quelconque sur K2. Prenons t < d - ö(s) comme dans le lemme 3.1. De (3.3),

on obtient

s>s,, (Nj../•'(//)) > s\s ..(N;. //).

Ceci, avec le lemme 3.1, nous amène à l'inégalité suivante

WoKKuf (g))
<

Vol(K2,g) + ë

(sy%(Kuf'(g))y" ^ (sysH(K2,g))m
1

ce qui achève la démonstration, puisque est arbitraire. Q

Le principe de comparaison nous pennet de comparer les constantes

systoliques de deux variétés admettant une application de degré 1 entre

elles. Soient M et N deux variétés ni -dimensionnelles et /: M —» N une

application de degré absolu 1 [15]. On choisit deux triangulations sur ces

variétés. La stracture des applications de degré absolu 1 entre deux variétés
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simpliciales est bien étudiée. Le résultat principal de [31] montre qu'une telle

application / est équivalente à homotopie près à une application fx simpliciale
et monotone. En appliquant la proposition 3.2, nous obtenons (voir [2], §8)

COROLLAIRE 3.3. Soit /: M —> N une application de degré absolu 1

entre deux variétés m-dimensionnelles. Alors

dcßof,(M) < 'Y.(.V),

pour tout épimorphisme f>: 7Ti(ÏV) —> w.

COROLLAIRE 3.4. Soient Mp i — 1,2, deux variétés équivalentes à

homotopie près et (pp. iri(Mi) —? ir deux épimorphismes liés par cette

équivalence, alors

=*

Exemple 3.1. On considère la sphère

S2'""1 {|zr|2 + M2 + • • • + M2 - l ; zkec]

et l'isométrie A d'ordre p définie par:

• Uri z,„) «(e2n,^zi,. .,ïelmq~fz,n),

où les qi,. 1 < k < m, sont des entiers premiers à p. L'opérateur A définit une

action de 7p sur S2'"-1 et l'espace quotient est appelé espace lenticulaire : on
le note L(q\..... </„, ; p) ou L(q,p). La classification homotopique des espaces
lenticulaires [27] implique :

L(qu. .^qm\p) «5s L(q[, .,q'm,p)^qi qm ±kJ"q[ ,.q'm mod p

pour un k entier. On supposera dans la suite, pour des raisons géométriques,

que p est premier. Soit d PGDC(m,p— 1) le plus grand diviseur commun. On
associe à chaque espace lenticulaire L(cp,..., qm\p) l'élément qi... qm mod p
du groupe multiplicatif 7rp du corps Zp. Disons que deux éléments q et q'
de Z* sont équivalents si q ±k'"q' mod p pour un k G Z*. Nous voyons
donc que les classes d'équivalence homotopique des espaces lenticulaires
coïncident avec les classes d'équivalence des éléments dans Z*. Un calcul

facile dans le groupe cyclique Z* nous amène à d (si '-^p- est pair) ou |
(sinon) classes d'équivalence homotopique des espaces lenticulaires.
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Du corollaire 3.4 ci-dessus, nous obtenons finalement que la fonction

cr(q,p) o(L(q,p)) prend au maximum d (si est pair),
ou | (sinon) valeurs différentes non nulles sur les espaces lenticulaires

(2m — l)-dimensioimels de groupe fondamental Zp.

Pour comparer les constantes systoliques de variétés non-équivalentes, nous

avons besoin d'un procédé d'élargissement ou d'extension d'une variété.

Soient K un polyèdre et h: Sk~l —P K une application simpliciale. On

a riioméomorphisme évident

K ßk Z(h) U CS*
h Sk-i

où Z(h) est le cylindre de l'application h et CX est le cône sur l'espace X. En
considérant la triangulation du cylindre d'une application simpliciale [25] et

en prolongeant cette triangulation sur le cône, nous obtenons une triangulation
de K LJ Bk qui coïncide avec la triangulation donnée sur K. Nous utiliserons

h

toujours dans la suite ce procédé d'extension d'une triangulation donnée à une

cellule recollée par une application simpliciale.

LEMME 3.5 (Extension métrique). Soient K un polyèdre m-dimensionnel
et k >2. Soit h: Sk 1 —f K une application simpliciale et notons L — KUBk

h

le polyèdre obtenu en recollant à K le disque k-dimensionnel Bk par h. Pour
toute métrique riemannienne g sur K, il existe une métrique g' sur L qui
vérifie les propriétés suivantes:

1) g'W g;
2) pour tous points p,q G K et pour toute courbe 7(f) C L joignant ces

points dans L, il existe une courbe 71(f) C K joignant ces points dans

K, homotope à 7(f) dans L et telle que

Igill) < lg>{7)

Démonstration. On munit la sphère Sk 1 de la métrique ds\ à courbure

constante ^ avec R suffisamment grand pour avoir l'inégalité Lip h < 1. On
munit ensuite le cylindre Z — S k 1 x [0,2] de la métrique suivante :

f (h*(g)( 1 - m) + uds2R) -f du2, 0 < u < 1,
(3.4) g <

[dsjf + du 1 < u < 2.

Ici, u est la coordonnée de l'intervalle [0,2] et h*(g) est l'image réciproque
de la métrique g induite par l'application simpliciale h sur Sk~l.



TOPOLOGIE DES SYSTOLES UNIDIMENSIONNELLES 125

On recolle ensuite un chapeau deini-sphérique ft-dirnensionnel C de

rayon R sur le bord S k 1 x {2} du cylindre Z. Ceci nous prolonge la

métrique g' au disque Bk - Z !J C. Remarquons que la condition

/Ip-tspf. fi*(g)

nous assure le recollement métrique de g et g1 en une métrique définie sur
K LJ Bk. On note encore g' la métrique ainsi obtenue.

h

Soient p et q deux points de Ai et 7 une courbe de L joignant ces

deux points. Supposons tout d'abord que Jf intersecte l'intérieur de C

(noté intC). Si "fftj) et 7^2) sont deux points de dC consécutifs (i.e.

{7(f) ; q < t < t2} C intC), on remplace cette portion de l'arc 7 par un arc

géodésique joignant ces deux points dans dC. Il est alors évident que cette

opération diminue la longueur de 7. En répétant cette opération pour toutes
les paires (7, 7) telles que {7(f) ; 7 < f < h} t intC, nous obtenons une

nouvelle courbe 7'(t) C K{JZ homotope à 7(f) et vérifiant lg/(7') < lg*(7).
On peut donc supposer que 7 fj int C - 0. On procède alors ainsi : la

projection naturelle de Z sur S:k X {0} définit une rétraction par déformation

r : K (_ Z —> K, qui n'augmente pas les distances par construction de g'. On

projette alors 7 sur K par r et on obtient ainsi une courbe 71 — r 07 vérifiant
la propriété attendue. Les propriétés 1) et 2) sont donc bien vérifiées.

Proposition 3.6 (Principe d'extension). Soit K un polyèdre m-dïmen-

sionnel. Pour 2 <* k < m — 1 et pour toute application (sitnpliciale)
h: Sk~k —> K, soit L KUBk le polyèdre obtenu en recollant le disque

k-dimensionnel Bk par h.

1) Soit (j>; tti(K) —> 7r un épimorphisme. Si k 2, on suppose de plus

que {/;} G ker <^. Alors,

o^iK) t: (/.)

où <p est la factorisation naturelle de <f> (</) f <j> seulement dans le cas
où k 2 et {h} f 0).

2) On suppose k > 3 ou que h induit une application nulle de VHomologie
rationnelle unidimensionnelle dans le cas ft: — 2. Alors,

as'(K) crs'(L).
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Démonstration. L'inclusion K —> L vérifie les conditions de la proposition

3.2: ceci implique les inégalités

a^K) < a$(L) et as,(K) < os'(L).

Pour démontrer les inégalités réciproques, soit g une métrique s impliciaie

quelconque sur K et soit g' une extension de cette métrique à L vérifiant
le lemme 3.5. On considère une courbe fennée non contractile 7 sur L. Elle
intersecte forcément K, et par le lemme 3.5, on peut l'iiomotoper en une

autre courbe -/j C K telle que < lgt(7). Ceci implique

sysj(E, g') - sysÖ(K. g) et syssi(L, g') sysst(K, g).

Pour achever la démonstration, il reste à remarquer que, pour des raisons
de dimension, la cellule recollée ne contribue pas au volume: Yol(L. //') —

Vol(K,g).

Soit K un polyèdre de dimension m Un CIL-complexe fini X est une

extension de K s'il est le résultat du recollement sur K d'un nombre fini de

cellules de dimension comprise entre 3 et m — 1, c'est-à-dire

m— 1 qk

(3.5) * K U U
k—3 4—1

Les applications de recollement seront toujours supposées simpliciales. Line

extension possède ainsi une triangulation naturelle (extension de celle donnée

sur K). La proposition 3.6 implique

COROLLAIRE 3.7. Soit X une extension de K. Si 4>\ iti(K) —> tt est un

épimorphisme, alors

ïr-«PQ

D'autre part,
crs\K) - (TS'{X).

3.2 Existence des extensions

Dans la suite de ce chapitre, nous établissons un des points topologiques
principaux dans l'étude des constantes systoliques unidimensionnelles. On
considère deux /»-variétés (ni > 4) orientables M,, i — 1,2, de même groupe
fondamental 7r. Soient 0, : 7Ti(M,) —s- tt. / — 1,2, deux isomorphismes et

<!>,: M, —K(ir, 1),/ 1,2, les applications induites correspondantes.
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THÉORÈME 3.8. Si 'I'\ X\ M \ I) <l>z>(\M2 |) dans H„,(7r,Z), alors il
existe une extension Xi de et une application h: M2 —> Xy, telle que

l'application h„ induite sur les groupes fondamentaux vérifie h* — <f\lo<f>2-

Remarque. Dans la démonstration de ce théorème (voir ci-dessous),

nous utilisons de manière cruciale le fait que M2 soit une variété en

utilisant notamment la dualité de Poiucaré. Remarquons que ce théorème

n'est plus valable pour des complexes cellulaires orientables ayant une seule

m -cellule comme le montre l'exemple suivant. Posons M\ — RP3xS2 et

M2 — illA U Er, où b e 7r4(R/>4) est un générateur. On voit facilement que,
2b

pour cet exemple, <1>
i » | M i | — jj2, [ M2 | — 0. D'autre part, il n'existe pas

d'application de M2 dans un complexe de dimension strictement inférieure à 5

induisant un isomorphisms des groupes fondamentaux. En effet, le contraire

nous amène à une application f: M2 —> RRX telle que f(M2) G RR4

et f, est un isomorpliisme des groupes fondamentaux. Mais toute application

/: RR4 —s- RR4 induisant un isomorpliisme des groupes fondamentaux induit
sur le groupe 7r4(RR4) es Z un inonomorphisme qui consisté à multiplier
par un nombre impair. Cette application / ne se prolonge donc jamais sur
la 5-cellule B5 de M2. Cela signifie que le théorème 3.8 ne peut être vérifié

pour Mi et M2.

Le recollement de cellules de dimension strictement inférieure à m ne

modifie pas l'homologie «î-dimensiomielle. L'inclusion

(3.6) My C Xi

induit donc un isomorpliisme Hm(Xj,Z) m Hm(MlyZ) es Z, et la classe

fondamentale \Xt \ de X\ est bien définie. Nous choisissons \Xt \ correspondant
à [Mi] par l'application (3.6).

Corollaire 3.9. Si <hi*([Mi]) e Hm(K(ir, 1), Z) est un
élément d'ordre v, l'application h induit une application en homologie
m -dimensionnelle vérifiant

hfi\M2\) — l\Xi] avec I 1 mod v.

Si l'ordre v est infini, I — 1 et h* est un isomorpliisme.

Démonstration. Si on pose l — deg/;, on a: h,(\M2\) — l\X11.

L'application
Att : ^ K(n, 1)
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se prolonge en une application

îï : Xi —> K(TT, 1)

du fait de l'asphéricité de K(~. 1). On obtient de là dq .([A11) - <bj, ([;V/, |).

L'application composée

<l>i o h: M2 —> K(ir, 1)

induit le même isoinorphisme de groupes fondamentaux que l'application <f>2,

donc elles sont homotopes. On en déduit :

«l-Bprl) <!>:.(|M2|) O,:, o /r,([M2|) $U(/[X, |)

Donc / 1 mod r, puisque dq ,([M| |) fb2+([M2|) est un élément d'ordre v.
Si v QO, on obtient évidemment 1=1. Ceci achève la démonstration.

REMARQUE.! Pour la démonstration du tlréorème A, la non fmilude de

l'ordre de l'image de la classe fondamentale intervient exactement à cet endroit.

D'application h ci-dessus n'est pas uniquement définie, mais la condition de

non finitude garantit qu'elle soit toujours de degré 1.

Dans le cas où l'ordre v est fini, un exemple simple est Mi ;V/2 - R/j2/ + i

Il n'est pas nécessaire de recoller des cellules supplémentaires à Mt. Pour tout
entier impair /, on peut trouver une application h : M2 —S- M \ de degré /,
induisant un isomorphisme de groupes fondamentaux.

Démonstration du théorème 3.8. Notre prochain raisonnement est un peu
plus général que nécessaire pour le cas orientable. Il couvre également le

cas de deux variétés simultanément non-orientables. Pour cette raison, nous

préférons considérer les classes fondamentales à coefficients locaux. Deux
variétés M| et M2 sont dites simultanément non-orientables, si les sous-

groupes d'orientations G, <1 7Ti(M;), i 1,2, vérifient l'égalité:

(3.7) <MGi) 4>ï{G2) dans 7r.

Sous cette condition, nous pouvons utiliser trois systèmes <!>, -cohérents de

coefficients locaux sur M-, et K(k. 1), définis respectivement par les sous-

groupes G-,, i 1,2, et Oi(Gj).
Nous allons construire une CM-'-réalisation du K(tt. I en attachant des

cellules à M] Par hypothèse, 7Ti(Mi) — 7r. On commence par attacher des

cellules de dimension 3, de manière à annuler le 7r2(Mi). Nous obtenons un
nouveau CW-complexe que nous notons Mi(3) :

Mx(3) - Mi [J
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où à parcourt une base de 7T2(Mi) comme it -module. Ensuite, on attache

des cellules de dimension 4 à M\ (3) de manière à annuler le 7T3(Mj(3)).
Nous obtenons un nouvel espace /V/, (4). On itère ainsi le procédé en annulant
successivement les groupes d'homotopie pour A > 3 et on obtient ainsi une
suite de CW-complexes \Mt (k)}/, vérifiant les propriétés suivantes:

1) Mi C Mi(3) t M](4) C • • • ;

2) 7Ti(MI(À-)) — 7T, A — 3,4,... ;

3) ns(Mi(k)) 0, 2 < s <k — \

Remarquons que les complexes Mi{k) sont en général des Cil'-complexes
infinis, même pour k - 3 (voir [29]).

Pour un C11'-complexe A, notons A(k) son A-squelette. Soit

Mi Mf~° (J e'"

a.

une décomposition cellulaire de M\ possédant une unique m -cellule, où

a: S'"-1 —> Hf"- 1 ' est l'application de recollement. Le procédé {/V/, (/e)}/, >3

nous fournit une certaine décomposition cellulaire de l'espace d'Eilenberg-
MacLane K(~. 1) (comparer à [25]). Nous avons pour les complexes Mi(A)
(A — 3,4,... les égalités suivantes :

1) Mi{m 1) K(TT, l)0"-1' [J e'" ;

(3.8)

2) Mx(A) =K(n,lfy, k>m.
L'inclusion i: M1 —i- Mi(A) induit un isomorpliisme de groupes fondamentaux.

Soit 0/ un système de coefficients locaux défini sur M\ et M\(m - 1)

par le même sous-groupe d'indice 2. On considère l'application induite en

homologie

(3.9) i„ : Hm(MuOz) —> Hm{Mi{tn - 1), Oz).

De la suite exacte associée à une paire et de l'axiome d'excision pour les

coefficients locaux, on constate aussitôt que tm est un isomorpliisme. Soit [Mi\o
la classe fondamentale de M t dans le système O/. Nous appellerons "classe

fondamentale" de Mi(m — 1) l'image /,([/W| |0) G Il,„(Al\(m — 1 O/).
Eli appliquant le théorème d'approximation cellulaire, on remarque que

<I>2 induit une application

(3.10) g: M2—>Mi(m),

qui vérifie 'Iq o g, — <\>2, sur les groupes fondamentaux. Contrairement à

l'application caractéristique <f,2, l'application (3.10) n'est pas définie uniquement

à homotopie près. Cependant, nous pouvons la choisir convenablement :
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LeMME 3.10. Si (1»I,([/!/1 ko) ^2*([M2]o) e 1), Oz), on peut
choisir g dans (3.10) de sorte que

(3.11) g*([Mi\o) — i*{{Mi\o)

Démonstration. Remarquons tout d'abord que la strucUire cellulaire (3.8)

nous pennet de voir <ï>i comme une inclusion

(3.12) #| — /: Mi —t M\(k) pour k > m + 1.

Soit g une application quelconque induite par <ï>2 (voir (3.10)). Si X est un
CW-complexe et A est un système local de base Z sur X, alors pour toute

application
a: Sk—?!£,: k >2,

le système induit aJA) est trivial sur Sk, donc coincide avec Z. On voit de

là que rhomomorphisme d'Hurewicz

H:n(.X)^Hk(X,A), k> 2

est bien défini.

Deux applications g et g' obtenues coimne en (3.10) sont homotopes dans

Mi(m+ 1) et l'inclusion (3.8) 2) induit l'isomorphisme

+ 1), Oz) - Hm{K(ir, 1), Oz)

On considère le diagramme suivant de suites exactes pour la paire
(Mi(tn + 1), Mx(hî))

Km+iiMdm + '"+1
> 7r,„(M('w + D) 0

JfcH 1^
dH iH

Hm+\(Mi(m + l),Mi(m)- Oz) '"+'
> H„(Mi(w); Oz) ^ + 1); Oz),

où les homomorplnsmes verticaux sont les homomorphismes d'Hurewicz. Les

égalités — 1 M\(m)) - 0. k < m, impliquent que

K,„+i : 7rm+i(Mi(«i + 1), Mi (m)) —> Hm+i(Mi(tn + 1), Z)

est un épiinorphisnic. La propriété d'excision pour les coefficients locaux

implique

lim— I (M](m + 1), Mi (m); Z) ~ Hm+i(Mi(rn + 1), Mi(m)\ Oz)

Donc, la flèche verticale H„! r\ est aussi un épimorpliisme. De la première

ligne, nous voyons que 9^+1 est un épimorphisme sur ~m(Mt (m)) et de la
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deuxième ligne, nous obtenons que d]£+i est un épimorpliisme sur ker Ceci

implique que Hm est naturellement un épimorpliisme sur kcr /(^. Autrement
dit, chaque élément de kerj^ peut être représenté comme un cycle sphériquc.

D'après l'hypotlièse du lennne, chaque applicahon g de (3.10) vérilie :

-g*([M2]o) + G kerj^
Il existe donc une application

m: 5"' —>Uiim)
telle que

(3.13) «*(S) //.(|.W;Jc>) +
où s 6 H„,(Sm,Z) est la classe fondamentale de la sphère.

On considère 1" application g1 : M2 —f- M \ (m) déûnie par le diagraimne
suivant

(3.14) g':M2 f M2VS'" Mt(tn),
où l'application de gauche consiste à contracter le bord d'un m -disque local
dans M2. Il est évident que g et g' induisent le même homomorphisme de

groupes fondamentaux. On voit sans peine que

g'M-Miio) 9*([M2]o) + 'L(s) •

Avec (3.13), ceci implique

gl([M2\o) C(|W, |c?) •

Supposons l'application g: M2 —I choisie de sorte qu'elle
vérifie (3.11). On Va maintenant démontrer qu'elle est défonnable en une

application

g: M2 —¥ Mi{m — 1).

LEMME 3.11. Il existe une application

g: M2 —*- Mi(m - 1),

telle que g* et g* coïncident sur les groupes fondamentaux.

Démonstration. Prenons une décomposition cellulaire de M2 ayant une
seule /»-cellule, et choisissons g cellulaire. Soit

g(t"—l) : M(m-1) è Mi(w _ ,J

sa restriction au (ni — 1)-squelette. Posons

g(m- i) _ g(m^-M

et démontrons que cette application est prolongeable à M2.
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Considérons J* obstruction à prolonger cette application (voir, par exemple,

[22]). Soit

A - - l);.v)}

le système local des groupes homotopiques. Puisque l'application induit
un isomorpliisme de groupes fondamentaux, désignons par la même lettre A
le système local induit sur Il est également naturel de noter A la

restriction de ce système à M\ C M)(m — 1).
Soient b f? ir"(M2, „4) l'obstmction à prolonger g et a g A)

Y obstruction à prolonger l'application identité

id: M\{m — 1) —* M\{m — 1)

à M, (ni). Il est évident que b g*(a). On applique l'opérateur de dualité de

Poincaré à M2, et l'homomorpliisme 5# sur l'homologie O-dimensiomielle.

Ceci, avec (3.11), implique:

gÄWilo n b) gA\Mi]o n </*(a)) //,(|M2|£1) n a

- M\Mi lo) n a - lo) n /"(a)) - 0.

La dernière égalité est vraie, puisque l'obstruction à prolonger

i: Mi —b Mi (m - 1)

est triviale, et donc r(a) — 0.

Remarquons enfin que g* est un isomorpliisme en 0-homologie, et donc

que \M2 lo flb 0 dans //ufVL. .4 '/.? C'/.)- Par la dualité de Poincaré, nous

en déduisons que b — 0 dans II'"(Mi- .4).
Pour conclure la démonstration, il reste à remarquer que l'obstruction à

prolonger g°"~ '' est nulle. Cette application est donc prolongeable sur M2,
avec un changement éventuel de sur Mi"' 1 '. mais sans toucher
g(>n-2) sur Puisque m > 4, un tel changement ne modifie pas

l'application sur le 2-squelette, et le prolongement g ainsi obtenu induit
le même homomorpliisme de groupes fondamentaux que g. Ceci achève la

démonstration.

Pour conclure la démonstration du théorème 3.8, nous considérons
I" application

g: M2 —I Mi(m — 1).

Compte-tenu de la compacité de M2, nous voyons que l'image g(M2) est

compacte dans M\(m - 1) et, par une propriété générale des CH'-complexes,
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elle n'intersecte qu'un nombre fini de cellules de M\ (m — 1). Considérons
la collection finie de toutes ces cellules de dimensions 3,4L. Le

recollement de chaque cellule de cette collection fait intervenir un nombre fini
de cellules de dimension strictement inférieure à celle de la cellule considérée.

En réunissant toutes les cellules nécessaires pour ce procédé, nous obtenons un
sous-complexe fini de M\(m — 1) contenant l'image JpÇMj). La démonstration
du théorème est achevée.

3.3 Démonstration du théorème A

3.3.1 Réduction du groupe fondamental

LemME 3.12. Soient M une variété orientable de dimension m >4 et

fi: 7Ti(M) —> 7T un épimorphisme. Il existe une variété orientable M\ telle que

1) 7Ti(MI) =i 7T f
2) l'application caractéristique : M\ —} K(~. 1 vérifie „([AL |) —

(I>. (\M\) dans Ilm(K(~. 1 ); Z) ;

3) ct(Mx). Si 7T Hi(M, Z)/Tors, alors aS'(M) - as'(Mfi.

Démonstration. Les deux groupes iti(M) et ~ étant de présentation finie,

nous pouvons choisir pour chaque épimorphisme fi: tti(M) —> ir un nombre

fini d'éléments {/q,..., r, } E ker ç tels que

{tti(M) ; ti—- § i — 1,2,..,, %$=m.

Géométriquement, ceci signifie qu'on peut recoller .v cellules (disques)
2-dimensiomielles à M le long des v lacets {e,}, correspondant aux relations

{r,} )_,. Le complexe ainsi obtenu,

M M [J B]
Ii

vérifie la condition 7Ti(M) — 7r, et l'application caractéristique <1> : M —1 K(~. 1)

se prolonge à M. La proposition 3.6 implique

(3.15) cr$(M) — a(M) ; et as,{M) — <ys,{M), si ir — HfiM, Z)/Tors

On peut considérer les lacets {e,}, comme des cercles plongés disjoints.
L'orientabilité implique la trivialité des fibrés nonnaux de ces plongements.
Nous obtenons la variété désirée M\ en faisant des chirurgies d'indice 2 de M
le long des

i • Ceci signifie qu'on remplace les voisinages tabulaires

disjoints «g x B'"~l (1 < i < v) par des anses [/, B2 x S'"~2 (1 < i < s).
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Les propriétés 1) et 2) sont évidentes par construction. Pour démontrer la

propriété 3), remarquons que M\ admet une application m-monotone sur M
(projection de (/, sur B2). Alors la proposition 3.2 et (3.15) impliquent

(3.16) <j(Mx) < <j0(M); et as'(Mi) < as'(M), si n — Hi(M, Z)/Tors

On considère le complexe suivant:

(J BT1,
{0}x.S'"-2CL

où 0 a B2 est le centre du 2-disque correspondant aux anses 6',. 1 < i < s.
Remarquons qu'on peut obtenir M à partir de M| en faisant des cliirurgies
réciproques (d'indice m— 1): il existe alors une application m -monotone de M
sur Mi, et elle induit l'épimorphisme <\> sur les groupes fondamentaux. En

appliquant la proposition 3.2 à cette application et la proposition 3.6 à

on obtient les inégalités réciproques de (3.16):

< a(Mi) a(Mi) ;

<ts'(M) < ast(Mi) (/'(Mi), si 7T ~ Hi(M, Z)/Tors

Sous les hypothèses du théorème A, nous pouvons donc supposer
7Ti(Mj) ~ 7T, i 1,2. Les applications caractéristiques d>,: M, —? K(k. 1),
i 1,2, correspondent aux isomorphismes <pf. 7Tx(M,) —j- tt et déhnissent
donc un isomorpliisine entre 7Tx(Mx) et 7Ti(M2). Nous considérons cet iso-

morplrisme fixé pour la suite.

3.3.2 Transformation de l'application h

Soient maintenant X, une extension de M, et h: M2 —Aj l'application
vérifiant le théorème 3.8. Par le corollaire 3.9, on a deg h — 1.

PROPOSITION 3.13. L'application h est homotope à une application
m-monotone

h' : Mi — Xx.

Pour la démonstration, nous choisissons deux triangulations sur M2 et X|,
et, en appliquant le théorème d'approximation simpliciale, nous prenons h

simpliciale par rapport à ces deux triangulations. Le complexe Aj est une

variété relative orientable [28], et Mx est une variété fermée orientable. En
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appliquant littéralement la démonstration du théorème 4.1 [15] à cette situation,
nous pouvons déformer h en une application h de sorte que : il existe deux

m-simplexes tj et t~2 de et M2 respectivement, tels que la restriction
de h à 7~2 soit un hoinéoinorpliisme (linéaire) sur tj et /; '(n r2.
Nous pouvons toujours représenter M\ comme un complexe ayant une seule

m -cellule. Nous supposons la structure simpliciale choisie cohérente avec cette

structure cellulaire. Soit

m—1 qk

(3.15) ar'-^ULHl
k—3 i=l

le (m — 1)-squelette cellulaire de Xj Considérons enfin une équivalence

homotopique q: À) —t Ai, constante sur x\'"~ '', et qui contracte Xi \ T\

en X("'~ Après quelques subdivisions éventuelles de Ai, nous pouvons
choisir q simpliciale. Pour achever la démonstration, nous subdivisons autant
de fois que nécessaire M2, et posons finalement

h' — q o h

En appliquant le principe de comparaison à h', et le principe d'extension
à Xi, il vient :

ct(M2) < a(Xi) cr(Mi) ; as'(M2) < cts'(Ai) - as'(Mx).

Si on échange les rôles de M\ et M2 dans le raisonnement ci-dessus, on
obtient l'inégalité réciproque. Ceci achève la démonstration.

4. Systoles associées aux groupes finis

4.1 Démonstration du théorème B

En appliquant le lemme 3.12, nous pouvons supposer que 7Tx(Mi)

~\(M2) — 7r. Soient Xt une extension de M| et h: M2 —> Xi l'application
obtenue en appliquant le théorème 3.8. Si 7r contient k éléments, d'après

l'hypothèse du théorème B et compte tenu du corollaire 3.9, nous avons

(4.1) h*([M2]) - /[A, |. lu 1 mod k.

On considère le revêtement universel q : Mi —r M\. Prenons une
décomposition cellulaire possédant une unique m -cellule (et une 0-cellule) et

notons K son (m — 2)-squelette. La variété M, est simplement connexe,
et comme m >4, K est donc également simplement connexe.
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Soit CK le cone sur K. Posons

£ =XiU Cf.,
<i

où le recollement est effectué par F application q : K —} M \ C X|. Puisque

K est simplement connexe, X\ a le même groupe fondamental que À), et

comme dim K < m — 2, Xt est de nouveau une extension de Mt. L'inclusion
Xi C X| nous pennet de prolonger h, et (4.1) reste valable pour Xt. D'autre

part, nous avons l'application

q': if (J CK —? Mi (J CK C Èt,
K q

qui vérifie q'_(\M t (J CK\) — k\X( |. L'espace M| [J CK est équivalent à

homotopie près au complexe suivant:

S

y^ yjf^y^
M f

où s est le nombre de (m — 1)-cellules de Mj, le disque IV" correspond
à la m -cellule et / est l'application de recollement. La contraction du

(m — 2) -squelette ne modifie pas la m -Homologie : Hm(Y, Z) — Z. Ceci

implique que / est homotope à zéro, et donc que Y est équivalent à

homotopie près à un bouquet de sphères. Il existe donc une application

(4.2) q: S'"—> Xt

vérifiant

V,\Sm\ - k\Xt |.

Soit / — .vâ + 1. On considère la composition d'applications suivante :

(4.3) M2 i Mz V S'" -——4 M2 V S'" Xi,
où la première application consiste à contracter dans un point une sphère

5»'-i r_ m2 localement plongée et —s est une application de la sphère

S'" dans elle-même de degré — .v. Il est évident que l'application composée
h: Mz —f*Xi définie par (4.3) vérifie degù 1.

En appliquant la proposition 3.13, nous pouvons supposer l'application h

/»-monotone. Remarquons que, par construction, h induit un isomorphisme
de groupes fondamentaux. Du principe de comparaison pour h et du principe
d'extension pour X|, nous obtenons donc l'inégalité suivante:

<t(M2) < CT(Xx) a{Mi).
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L'inégalité réciproque s'obtient en inversant les rôles de M\ et M2 dans le

raisonnement ci-dessus. La démonstration est ainsi achevée.

Le corolhiire B1 est maintenant une conséquence directe du théorème B

(voir aussi l'exemple 3.1). LTn calcul du nombre de classes d'équivalence

homotopique des espaces lenticulaires implique le corollaire B2.

Soit a G Hl(Zp,Zp) un générateur, le groupe Hll~l{Zp,Zp) est engendré

par a U /7(a)' ~~1, où ß est l'homomorphisme de Bokstein (le dernier élément

se réduit à a* ~1 dans le cas où p — 2). Si M est tj>-essentielle, on a

<L*(a U ß(a)l~l) ^ 0 dans H2l~i{M,Zp). D'autre part, cj>* — <ï>*(a) pour un
choix convenable de générateur a. Ceci implique les corollaires B3 et B4.

4.2 Topologie des Z2-systoles

Les systoles associées au groupe Z2 possèdent des propriétés topologiques
particulières. On considère l'ensemble de toutes les paires {(M, 0)}, où M
est une variété orientable de dimension m et <fi: 7Ti(M) —;> Z2 est un
épimorphisme. Introduisons une structure de semi-groupe en posant

(4.4) (M, 4>) + (N, 4>) (M#N, <j> * #
où <j) * est le produit libre des deux homomorphismes çf) et i< agissant sur

ni(M#N) 7rx(M) * 7T1 (iV)

(si m > 2), Pour m - 2, û> + v désigne le produit amalgamé. Notons A4'"
ce semi-groupe. Suivant la tliéorie du bordisme, nous ne considérons ici que
la soimne connexe de deux variétés, choix justifié par la nature géométrique
du problème. Définissons ensuite l'application

(4.5) Z2

par la formule 2„,(M, è) — mod 2.

THÉORÈME 4.1. L'application 2„, est un homomorphisme.

Démonstration. On obtient du corollaire B4 que 2„, - 0 si m est pair.
Considérons deux paires (M,. 0,). i — 1,2, la dimension m étant impaire.
Soient '!>, : M, —> KP'" C R/rx / 1,2 les applications correspondantes.

Remarquons que ticg '!>, est impair si M, est essentielle, et qu'il est pair
sinon. En appliquant la construction (4.3) ci-dessus à M,, avec X1 — KP'"
et q de (4.2) étant le (double) revêtement canonique, nous pouvons supposer

que le degré de '!>, est 1, ou bien 0, selon l'essentialité de M,
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On considère la composition d'applications

(4-6) Mi# M2 ——> MJVMJ RP'" V RI"" ——> RP>"

où h contracte en un point la sphère de recollement, et où p agit connue
l'identité sur chaque composante du bouquet. Il est évident que

(p o (cbx V <ï>2) ° Uh <j>\ * (f>2 et deg(p o (<hx V <b2) ° h) ~ deg <I>x + deg <h2

Si deg<ï>x deg <f>2 1. on tire de la construction (4.3) l'existence d'une

autre application /: Mx#M2 —? RP" telle que f> — è\ * Q2 et degf 0. Si

deg<l>i + degd>2 <2, on prend pour / l'application définie par (4.6). Dans

les deux cas, nous obtenons une application

/: Mi#M2 —f RP"

induisant l'application <t>\ * Q2 sur les groupes fondamentaux et qui vérifie la

congruence suivante :

deg/ (deg <ï>x + deg <J>2) mod 2.

Le théorème est maintenant immédiat d'après le corollaire B4.

5. Remarques finales et questions ouvertes

1. Pour chaque variété essentielle M de dimension m, a(M) > 0 et une
borne inférieure universelle a été trouvée par M. Gromov dans [18], chap. 0.

Il a établi l'inégalité suivante ne dépendant que de la dimension de la variété

essentielle M :

(J{M) > w
(f(m + 1 Y"m'" ((m + 1)!)ï

Actuellement, c'est la meilleure borne inférieure comme pour les constantes

systoliques dans les dimensions m > 3. Néamnoins, elle paraît loin d'être

optimale. On sait ([18], chap.5) que pour toute surface M de groupe
fondamental infini, a(M) > |. De plus, la meilleure borne inférieure
dans le cas deux-dimensiomiel est ct(RP2) — I .a constante systolique

pour l'espace projectif m-dimensionnel a„, — a(RP'") semble un bon
candidat pour être la meilleure borne inférieure en dimension m. Cette

conjecture est complètement ouverte pour m > 3, et on ne connaît ni le

comportement asymptotique de am, ni d'estimée raisonnable de nm. D'après
le corollaire B4, la conjecùire est vérifiée pour les variétés orientables possédant
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certaines propriétés topologiques : si M est orientable et admet un élément

a 6 //' (M, l2), tel que om / 0 dans ll'"(M. Z2), alors

a(M) > a„,.

On sait actuellement très peu de choses sur les constantes systoliques
fondamentales qui apparaissent naturellement (voir le théorème B et ses

corollaires). Par exemple, on ne sait ni comparer les constantes systoliques

a(L(q;p)) d'espaces lenticulaires différents, ni si la fonction a(L(q;p)) est

croissante en p. Une réponse affirmative à cette question semblerait très

naturelle.

2. La comparaison des constantes systoliques pour les variétés non-
orientables pose certaines difficultés topologiques. Pour deux variétés m -diinen-
sionnelleS de même groupe fondamental n, les sous-groupes d'orientation
ne sont en général pas cohérents par un automorphisme du tt (voir la

démonstration du théorème 3.8). La situation se complique encore si les

variétés considérées admettent des épimorphismes sur un groupe ûxé 7r.

Même si les variétés représentent la même classe d'homologie de tt, les

sous-groupes d'orientation peuvent ne pas concorder avec les noyaux
correspondants. Ce phénomène est déjà visible dans le cas 2 -dimensionnel avec

tt — Z2. Dans le cas tt — Z2, nous ne pouvons énoncer que la version faible
du corollaire B4 (voir [1]) :

Soient M une variété non-orientable de dimension m et <j>: tti(M) —> Z2

un épimorphisme. Alors cr^iM) vérifie l'inégalité suivante

<7<j>(M) < a„,.

Si m est impair et M^ est orientable, alors <r^(M) 0.

Ici Mdésigne le revêtement double correspondant à kerçi,

3. Pour démontrer des résultats sur l'égalité de constantes sytoliques,
nous avons utilisé des CIL-complexes spéciaux: les extensions. Ce sont des

complexes (orientables) ayant une unique cellule de dimension maximale m

Ceci nous ramène au problème de comparaison des constantes systoliques des

CW-complexes ayant une cellule de dimension maximale (comparer avec le

théorème 3.8). Malheureusement, notre approche ne fournit pas de résultats,
même pour le groupe le plus élémentaire n — Z2.
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Ln exemple assez simple, et intéressant, est donné par le polyèdre suivant

A-(3) - R/'2 IJ «3

3h

où h (z 7T2(RP2) est un générateur. On peut choisir une application 3-monotone

/: RP3 —ï ^(3)» induisant l'identité sur les groupes fondamentaux. Ceci

justifie l'inégalité:
c(^f(3)) > Ö3

Pour démontrer l'inégalité réciproque dans le cadre de notre approche, nous

avons besoin de construire une application 3 -monotone de X^ dans RP3 : une

telle application n'existe pas. La question de savoir si cette dernière inégalité
est stricte demeure ouverte.

Cet exemple nous amène à poser la question suivante :

Soient X un polyèdre fini orientable et fi: itfiX) —y Z2 un épimorphisme.
Quel est l'ensemble des valeurs possibles pour la constante systolique er<j,(X)

en fonction de X et de fi

L'essentialité de Gromov est un invariant algébrique. Cet invariant est

hé à l'essentialité géométrique. Soient X un polyèdre fini (orientable) de

dimension m, tt un groupe de présentation finie et fi: itfiX) —y w un
épimorphisme. X est dit géométriquement fi-essentiel s'il n'existe aucune

application f: X —y K, où K est un polyèdre, qui vérifie les conditions
suivantes :

1) dimX > dim K ; 2) tvi(K) tt ; 3) kcr/i - kcrrp

L'essentialité algébrique de Gromov implique évidemment l'essentialité

géométrique. Dans le cas des variétés orientables, ces deux notions d'essentialité

sont équivalentes [2]. L'exemple suivant nous montre que, dans le cas général,
c'est-à-dire pour un polyèdre quelconque, les deux notions peuvent différer.
Posons

X(2) rp2{Jb3
2b

On peut voir facilement que X(2j est géométriquement essentiel. D'autre part,
si h: X(2j —y R/rx' est l'application canonique, alors l'application induite

h: //d.Vcpk) —> HfiRP'X! ; k)

est triviale quels que soient les coefficients k. Ceci nous conduit à poser la

question suivante :
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Est-ce qu'il existe des paires (X,<p), où X est un polyèdre (orientable)
géométriquement <f> -essentiel, telles que cr^ÇC) — 0
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