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1. PRELIMINAIRES

La notion maintenant classique de systole unidimensionnelle tire son origine
des résultats de C. Loewner et de P. Pu, ¢établis 1l y a plus de cinquante ans.
Rappelons brievement les définitions principales (nous renvoyons le lecteur aux
articles [8], [9], [17]; pour plus d’information, voir aussi les livres [10], [19]).

Pour une variété riemannienne fermée non simplement connexe (M, g) de
dimension m, désignons par sys,(M,g) la plus petite longueur d’une ligne
géodesique fermée non contractile sur M. Cette valeur est appelée la systole
ou 1-systole de M par rapport a la métrique g. La principale direction de
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recherche en géométrie et en topologie des systoles unidimensionnelles consiste
a étudier I'invariant numérique suivant de M :

. . Vol(M,
(1.1) O'(M):lnf(—g)m,
g SySI(M ’ g)
ol g parcourt I’ensemble des métriques rnemanniennes lisses sur M. le
nombre (1.1) est appelé constante systolique de M. Nous pouvons résumer
I’essentiel des recherches sur le sujet en deux questions:

1. Quelles conditions topologiques sur M assurent oc(M) > 07?
2. Sachant que o(M) > 0, peut-on évaluer o(M) ?

Une réponse satisfaisante a la premiere question a été établie par Gro-
mov [18] grace a la notion de variété essentielle. Pour une variété quelconque
(non simplement connexe) M, il existe une application

(1.2) ©: M — K(m(M), 1),

unique a homotopie pres, ot K(m(M), 1) est I'espace bien connu d’Eilenberg-
MacLane, voir par exemple [28]. Soit [M]x la classe fondamentale de M
considérée a coefficients dans k = Z s1 M est orientable et a coefficients
dans k = Z, sinon. Cette classe nous fournit un élément

O, ([M]e) € Hu(K(m1 (M), 1); k).

La variété M est dite essentielle s1 D.([M]x) # O, et non-essentielle sinon. Le
résultat suivant de [18], chap. O donne une condition suffisante trés maniable
sur M pour garantir la stricte positivité de o(M).

THEOREME (Gromov). Pour chaque variété essentielle M,

oM) > 0.

On trouve également dans [18], chap. 5, 6, des bornes inférieures (non
strictes) de o(M) pour certaines classes de variéiés essentielles. Mais on est
encore bien loin du calcul précis de o(M), méme pour des variétés de nature
topologique assez simple comme les espaces projectifs ou un peu plus générale
comme les espaces lenticulaires.

Pour les variétés orientables, 1l est en fait nécessaire que M soit essentielle
pour assurer la stricte positivité de o(M), comme cela a éié démontré
dans [2], §8. Dans cet article, I’invariance homotopique de o(M) a également
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été prouvée. En d’autres termes, deux variétés équivalentes & homotopie pres
ont la méme constante systolique o.

La seconde question représente un probléme tres difficile. La valeur exacte
de o(M) n’est connue que dans les trois cas suivants:

e le tore: o(T?) = ? (C. Loewner, voir [8]);
* le plan projectif: o(RP?) = 2 (P. Pu [26]);
+ la bouteille de Klein: ¢(K?) = ZT‘/E (C. Bavard [7]).

Pour certaines variétés M, des bomes inférieures pour (M) plus ou moins
satisfaisantes sont connues. Cette question est assez avancée dans le cas
des surfaces. On peut trouver plus d’information & ce sujet dans [9], [14],
[17] et [18].

Le but principal de ce travail est de comparer les constantes systoliques
de deux variétés de dimension donnée ayant le méme groupe fondamental. La
question sous-jacente a cet article est la suivante :

La donnée de D,.(|M]x) détermine-t-elle o(M) ?

Nous obtenons une réponse positive a cette question dans les deux cas
suivants :

THEOREME a. On se donne un groupe © de présentation finie. Soient
M;, i = 1,2 deux variétés fermées, orientables de dimension m > 4, dont les
groupes fondamentaux sont isomorphes a w. Soient ¢;: mi(M;) — 7m deux
isomorphismes et

D, M; — K(m,1), i=1,2
les applications caractéristiques induites par ¢;. Supposons que
Oy ([M1]) = P2 ([M2]) € Hu(r, Z)
est un élément d’ordre infini. Alors

o(M;) = o(M>).

Remarquons que dans ce cas, m(M) est forcément un groupe infini.
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THEOREME b. Soit © un groupe fini contenant k éléments. On considére
deux variétés orientables M;, i = 1,2, de dimension m > 4 et de groupe
Jondamental isomorphe a w. Supposons que, pour deux isomorphismes
;1 m(M;) — 7, on ait

Oy, ([M1]) = P2.([M2]) € Hu(w,Z)
et que cet élément soit d’ordre k. Alors

o(M,) = a(M>).

Ces deux cas couvrent de nombreux exemples intéressants. Les théoréemes
a et b sont les conséquences directes des théoremes plus généraux A et B dont
les énoncés exacts se trouvent dans les sous-sections 2.1 et 2.2 ci-dessous.
L’essentiel de cet article est consacré aux démonstrations de ces résultats.

Pour des raisons techniques, nous supposons dans la suite que M est une
variété orientable de dimension m > 4, I’hypothése dimensionnelle intervenant
essentiellement dans les démonstrations des théoremes 3.8 et B. Pour des cas
particuliers de groupes, comme 7 = Z,, la restricion dimensionnelle peut
étre abandommée en utilisant une technique appropriée (voir [1]).

Dans le but de comparer les constantes systoliques de deux variétés
distinctes, nous travaillons dans la classe des polyedres. Les outils géométriques
et topologiques qui nous seront nécessaires sont présentés dans la section 3.
Nous aurons également besoin de comparer les constantes systoliques de
variétés dont les groupes fondamentaux différent. Pour cela, nous introduisons
la notion de ¢-systole ou systole relative. La systole homologique représente
alors un cas particulier de ¢-systole.

2. SYSTOLES RELATIVES ET HOMOLOGIE DE GROUPES

On se domne un groupe 7 de présentation finie et une classe d’homologie
enticre a € H,,(w,Z). On dit que a est réalisable s’1l existe une variété M
et une application ®: M — K(m,1) qui vérifie @ ([M]) = a. Appelons
cette réalisation normalisée s1 de plus, @, est un épimorphisme entre les
groupes fondamentaux. On sait que, pour certaines classes, aucune réalisation
n’existe. Cependant, si a est une classe quelconque, on peut toujours trouver
un entier N tel que Na soit réalisable (voir R. Thom [30]). Pour une classe a
d’ordre infini, on obtient ainsi une suite arithmétique {kNa},cz de classes
réalisables d’ordre infini dans I"homologie de ce groupe. Remarquons que,
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si une classe a € H,,(m,Z) est réalisable, il existe toujours des réalisations
normalisées. Soit

(2.1) o: (M) — 7

un homomorphisme. Il induit de maniére unique a homotopie pres une applica-
tion ®: M — K(m, 1). Ainsi, pour chaque épimorphisme algébrique (2.1), nous
avons une représentation normalisée (M, ®) de la classe P.([M]) € H, (7, Z).
Dans la suite, nous ne nous intéresserons qu’aux réalisations normalisées.

Sotent 7© un groupe de présentation finie et M une varété lisse de
dimension m tels qu’il existe un épimorphisme ¢: m(M) — 7. Les classes
d’homotopie libre des lacets fermés sur M coincident avec les classes de
conjugaison de m(M). Soit ¢4 I'application induite par ¢ sur les classes
de conjugaison. On considere une métrique riemannienne ¢ sur M. Nous
définissons la ¢ -systole de (M, g) en prenant la plus petite longueur d’une ligne
géodesique fermée non ¢y -triviale. Désignons cette valeur par sys (M, g). Ceci
nous amene a définir la constante ¢-systolique analogue a (1.1)

. . Vol(M,g)
(2.2) op(M) = inf —————
g Sysc/)(Mﬂ g)
ou g parcourt I’ensemble des métriques riemanniennes lisses sur M. Dans le
cas ol ¢ réalise un isomorphisme, nous supprimons 'indice ¢ : on retrouve
ainsi les notions de systole et de constante systolique. On a I'inégalité évidente

(2.3) oy(M) < a(M).

Nous obtiendrons de cette inégalité, dans le cas particulier de groupes
fondamentaux complexes, une borne inferieure sur o(M). Les constantes
systoliques relatives apparaissent naturellement.

SYSTOLE HOMOLOGIQUE. Soit M une variété et 7 = Hi(M,k), ot k =1Z
ou Z,. Si ¢: m(M) — H;(M,k) est la projection naturelle, la ¢-systole
correspondante est appelée systole homologique (Z,-homologique si k = Z,).
Nous la désignons par hsys(M, g) et notons o”(M) la constante systolique
correspondante.

SYSTOLE HOMOLOGIQUE LIBRE. Pour une variété M quelconque, on pose
m = H1(M,Z)/ Tors et on note
2.4) o' m(M) —

la projection naturelle. La ¢‘-sysiole correspondante est appelée systole
homologique libre. Nous la désignons par lsys(M,g) et notons o'(M) la
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constante systolique correspondante. Remarquons que D’espace classifiant
correspondant est le tore K(m, 1) = TP on b, = b (M) est le premier
nombre de Betti.

SYSTOLE STABLE. Une seconde systole associée au groupe abélien libre
H(M,Z)/ Tors estla systole stable. Ce type de systole est défini par un procédé
de moyenne. Soient M une variété, 7 = Hy(M,Z)/ Tors et ¢' I’épimorphisme
défimi ci-dessus. Pour une métrique g quelconque sur M et un élément a
de 7, on note [ ,(a) la plus petite longueur d’une ligne géodésique fermée -~y
sur (M, g) telle que ¢y(v) =a. On pose alors

L, (k
al, = lim M.
k—oc k
Il est bien connu que pour chaque métrique g sur M, cette formule définit
une norme | |, sur le Z-module libre 7. Cette norme est appelée la norme
stable de w associée a ¢. Enfin, on définit la systole stable de (M,g) en
posant
StSyS(Ma g) — infa;éO ’a|ga

ol a parcourt 7 \ {0}. La constante systolique stable correspondante est
notée o*(M). Tout comme o(M), (M) est un invariant homotopique de M
(voir [2], §8).

On peut remarquer que o4(M) ne dépend que de ker ¢, et donc que la
composition de ¢ avec un automorphisme de 7 ne modifie pas la constante
¢ -systolique. Cependant, le but étant d’étudier le lien entre ¢4(M) et la classe
homologique @, ([M]) € H, (7w, Z), la défimition (2.2) est pertinente. Le choix
d’un point base pour le groupe fondamental ne conditionne ici en rien 1’étude :
d’une part , un changement de point base définit un automorphisme intérieur
de 7, qu agit trivialement sur I’homologie de ce groupe, et, d’autre part,
la définition de o, ne dépend que des lacets libres (donc des classes de
conjugaison).

Par analogie avec la définition d’essentialité ci-dessus, une variété M est
dite ¢-essentielle si

P.([M]) # 0

dans . (m,k). Remarquons quune variét€é M peut €ire essentielle au sens
absolu, et en méme temps non ¢-essentielle pour un certain ¢. Le théoréme de
Gromov demeure vrai pour o en remplagant “essentielle” par “¢-essentelle”.
La réciproque particlle établie dans [2], §8 pour les variéi€s orientables est
¢galement valable: ®,([M]z) — O implique o, — 0.
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On fixe un groupe 7 de présentation finie. L.a fonction o4(M) est alors
une fonction positive a valeurs réelles du couple (M, ¢). S1 o4(M) > 0, M est
appelée ¢-rigide, et ¢-souple dans le cas contraire.

2.1 CLASSES HOMOLOGIQUES D’ORDRE INFINI; THEOREME A

Les groupes 7 de présentation finie possédant une classe d’homologie
d’ordre infini coincident avec les groupes qui vérifient H.(7,R) # 0.
Les groupes fondamentaux des variétés admettant une métrique a courbure
sectionnelle négative ou nulle et les réseaux dans les groupes de Lie nilpotent
ou résoluble (simplement connexes) fournissent une source importante de ce
type de groupes. Cependant, ce sous-ensemble ne fournit que des exemples
de groupes de dimension homologique réelle finie.

Un autre sous-ensemble, et peut-€ire plus intéressant que le sous-ensemble
précédent, est celui des groupes 7 dont ’homologie k-dimensionnelle est non-
nulle pour une infinit€é de k. Cet ensemble est tres riche, 1’exemple le plus
éloquent étant le groupe F de R. Thompson (voir [13]) dont une présentation
est la suivante :

F = <a,b; [ab™!, a bal, [ab_l,a_zba2]>.

Initialement, le groupe F est apparu comme le groupe des homéomorphismes
dyadiques de I'intervalle [0; 1]. On voit facilement de la représentation donnée
qu’on peut réaliser F comme le groupe fondamental d’une variéié de dimension
m > 4 en faisant 2 chirurgies d’indice 1 sur §” (ce qui nous fournit les
générateurs de F'), puis deux chirurgies d’indice 2 en correspondance avec
les relations.

L’homologie de F a été calculée dans [12], voir aussi [16] pour la structure
multiplicative en cohomologie.

THEOREME (Brown, Geoghegan). H,(F,Z) ~ Z ®& Z pour tout n > 1.

On comnait actuellement de nombreux exemples de groupes de présentation
finie possédant des propriétés homologiques analogues a celles de F.

Soient ©# un groupe de présentation finie et a € H,(w,Z) une classe
homologique d’ordre infini. Supposons que cette classe soit réalisable par
une variété. La constante ¢-systolique d’une variété¢ réalisant a ne dépend
pas du choix de cette variété: le théoreme suivant montre qu’elle ne dépend
naturellement que de a.
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THEOREME A. (1) Soient M, et M, deux variétés fermées, orientables
de dimension m > 4, ¢;: mi(M;) — =, i = 1,2, deux épimorphismes et
D, M, — K(m, 1)
les applications caractéristiques induites par ¢;. Supposons que
D1 ([M1]) = P2 ([M2]) € Hu(r, Z)
soit un élément d’ordre infini. Alors
o (M) = 04,(M3).

(2) Supposons que M, et M, vérifient by(M,) = by(My) et que ¢; = ¢,
i=1,2 (voir (2.4)). Si

D1 ([My]) = o ([Ma]) € Hu(T, Z),

alors
a*'(My) = o™ (M) .

Chaque automorphisme A: m — 7 induit un automorphisme

A Hor,Z) — H.(x,7Z).

N

Si 7 est un groupe abélien libre de rang b, on peut associer & chaque
automorphisme A de 7 une transformation de SL(b,Z).

COROLLAIRE Al. (1) Soient M, et M, deux m-variétés et ¢;: mi(M;)) —
deux épimorphismes pour [ = 1,2. Supposons que les classes homologiques
D ([M;]), | = 1,2 soient d’ordre infini dans H,(mw,ZL), et qu’il existe un
automorphisme A: m — 7 tel que

D1 ([M1]) = A (P2 ([M2])) .

Alors
o4, (M) = 04,(M3).

(2) Supposons que M, et M, vérifient by(M,) = by(My) et que ¢; = ¢,
i=1,2 (voir (2.4)). §’il existe A € SL(by,Z) tel que

O ([M]) = Au(D2.([M2]))

alors
o™(My) = o (M) .
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2.2  GROUPES FONDAMENTAUX FINIS; THEOREME B

Si 7 est un groupe fini, I’homologie H.(w,Z) est un module de torsion et le
comportement des constantes systoliques associées a ce groupe n’est pas clair
en général. Soit k = |7| le cardinal de 7. Rappelons que 1’ordre de chaque
élément a € H,(mw,Z) est un diviseur de k. Une classe naturelle et intéressante
de groupes finis est celle des groupes possédant une classe homologique d’ordre
maximal k. Cette classe coincide avec celle des groupes dont chaque sous-
groupe abélien est cyclique. Nous pouvons donner une autre caractérisation:
c’est la classe des groupes dont I'homologie est périodique. Cette classe
contient des exemples intéressants comme le fameux groupe d’isométrie de
I'icosaédre. Pour les détails et pour différents exemples de groupes non-
cycliques, nous renvoyons le lecteur a [11], chap.VL.9. Le théoréme suivant
montre que, pour une classe homologique d’ordre maximal |r|, la constante
systolique ne dépend que de cette classe.

THEOREME B. Soient M, et M, deux variétés orientables de dimension
m >4 et ¢;0 m(M;)) — 7w deux épimorphismes, ou w est un groupe fini
contenant k éléments. Supposons que

©. ([M]) = ©2.(IM2]) € Hu(7,Z)
et que cet élément soit d’ordre k. Alors

U¢1(M1) — O, (M2) .

I’analogue du corollaire Al est également valable. S1 7 est un groupe
cyclique d'ordre k, Hyy,(m,Z) = 0 et toute classe d’ordre k& admet une
réalisation normalisée par un espace lenticulaire.

COROLLAIRE B1. Soient M une variété orientable de dimension impaire
m et ¢: (M) — Zy un épimorphisme tel que ®.((M]) € H,(Z;,Z) soit
d’ordre k. Alors la constante systolique relative o,(M) est égale a la constante

systolique d’une variété lenticulaire réalisant la méme classe homologique
de Zk.

Si p est un nombre premier, chaque classe homologique non nulle de H.(Z,, Z)
est d’ordre maximal et, d’apres le théoreme B, nous pouvons alors définir
correctement la fonction systolique o: H,(Z,,Z) — R. Remarquons que
0(0) = O puisque I’on sait, que pour chaque variété orientable M, et chaque
épimorphisme ¢: m (M) — 7, quel que soit le groupe de présentation finie 7,
la condition @, ([M]) =0 dans H,(x,Z) implique o4(M) — O (voir [2]).
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COROLLAIRE B2. Soient p > 2 un nombre premier, | > 3 un entier naturel
et d =PGDC(l,p—1). Alors la fonction systolique o prend au plus d 41

valeurs différentes sur Hy_(Z,,Z) si =L gy pair, et %4—1 valeurs différentes

d
si "%1 est impair. Ici, PGDC désigne le plus grand diviseur commun.

Chaque épimorphisme ¢: 71(M) — Z, définit un élément ¢* € H' (M, Z,).
Cet élément caractérise les variétés ¢-essentielles. Remarquons que pour un
groupe cyclique Z,, les variété orientables ¢-essentielles n’apparaissent que
pour les dimensions impaires. Pour une variét¢ orientable quelconque M de
dimension paire

Uc/J(M) - 07

quels que soient I'épimorphisme ¢: 7(M) — Z, et I'entier naturel p.

COROLLAIRE B3. Soient M une variété orientable de dimension 21— 1 et

¢: m(M) — Z,

un épimorphisme. Alors c,(M) est non nul si et seulement si

¢"UB(p")) T #£ 0

dans H*~'(M, Z,). Ici, B désigne I’homomorphisme de Bockstein.

Le groupe Z, differe un peu des autres groupes cycliques. Pour chaque
dimension #, nous obtenons une seule variété lenticulaire RP” dont nous
notons ¢, = ¢, (RP™) la constante systolique.

COROLLAIRE B4. Soient M une variéié orientable de dimension m ei

¢ mM) — 7

un épimorphisme. Alors o ,(M) ne peut prendre que les deux valeurs O et oy,
De plus, si m est pair, 64(M) =0 pour chaque épimorphisme ¢. Si m est
impair, 04(M) = 0, si et seulement si (¢*)" # 0 dans H"(M;Z,).

Le cas non-orientable est plus subtil: nous reviendrons a cette question dans
la derniere partie.
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3. GEOMETRIE DIFFERENTIFLLE SUR LES POLYEDRES
SIMPLICIAUX FINTS

Il n’est pas aisé de traiter les problemes systoliques dans la catégorie des
vari€tés et des métriques lisses. Pour cette raison, nous placons notre étude dans
le cadre des polyedres riemaniens finis et des CW -complexes finis. 'efficacité
de cette approche a été montrée dans [1], [2], [4], [6], [20] et [21]. Définissons
d’abord les objets nécessaires, voir [24] et [28] pour plus de détails: un
polyedre simplicial est un espace topologique muni d’une triangulation. Tous
les polyeédres considérés dans la suite seront des polyedres finis et donc
compacts. Les complexes cellulaires (CW -complexes) utilisés seront de type
général. Par contre, chaque construction métrique utilisant des CW -complexes
dans la suite nous conduira a 1’obtention d’un CW -complexe fini. La classe
de CW -complexes la plus utile ici est la classe des CW -complexes finis ayant
une seule cellule de dimension maximale.

DEFINITION 3.1. Un complexe cellulaire fini X est dit muni d’une
triangulation compatible si:

1. X est triangulé;

2. pour chaque k-cellule (B*,y) de X, X(Bk(%)) est un sous-polvedre
simplicial de X, ot B*(r) est la boule euclidienne k-dimensionnelle de
rayon r, B = B*(1) et y est I'application caractéristique d’une cellule.

Chaque complexe cellulaire fini est équivalent & homotopie pres a un complexe
cellulaire triangulé compatiblement (voir, par exemple, [25]) . Si f: X — ¥V
est une application continue entre deux complexes cellulaires finis triangulés
compatiblement, alors elle est équivalente 2 homotopie pres a une application
simultanément cellulaire et simpliciale. Tous les complexes cellulaires finis
considérés ci-dessous seront supposés triangulés compatiblement et toutes les
applications seront supposées cellulaires et simpliciales.

Soient P un polyedre fini et 7 C P un simplexe de la triangulation
considérée. Ce simplexe est homéomorphe par définition au ¢-simplexe
standard

A7 = conv{ey,...,e,} CRITH

ot conv désigne I’enveloppe convexe d'un ensemble et {e;}7 , est un repere
orthonormé. Les coordonnées cartésiennes {x;}7 , de RYT' fournissent les
coordonnées barycentriques de A? et de 7 C P. On définit un voisinage
extérieur de 7 C P comme un ouvert U de 3.7  x;, = 1 contenant A9.
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DEFINITION 3.2.  Une métrique riemannienne sur un polyédre P est une
famille de métriques riemanniennes {g.},cp, ot 7 parcourt I’ensemble des
simplexes de P, vérifiant les conditions suivantes :

1. Chaque g, est une métrique riemannienne lisse sur un voisinage

extérieur de 7.

2. Pour chaque paire de simplexes 71,7 C P, on a [’égalité

4n ‘T]ﬂTz = 9n |T]ﬁT2

considérée comme une égalité de deux formes quadratiques dans les
coordonnées barycentriques de 71 N 7.

Une structure simpliciale sur P permet de travailler avec les applications
continues et lisses par morceaux de l'intervalle 7(1) = [0,1] dans P. Si P
est muni d’une métrique riemannienne g, on peut définir la longueur dun
chemin lisse par morceaux «: I(1) — P en posant

1
lg(a)—/ | ,dt .
0

On utlise cette longueur pour définir la métrique sur £ comme dans le cas
des variéiés:

G.1) pg(x,y) = inf ly(ev),

ot a parcourt I’ensemble des chemins lisses par morceaux joignant x,y € P.
Obtenu de cette fagon, I'espace métrique (P, p,) est un espace de longueur.
Considérons un polyedre riemannien (P, g) et un épimorphisme ¢: m(P) — 7
ot 7 est un groupe fixé de présentation finie.

DEFINITION 3.3. La borne inféricure
Sysf/)(P: g) - lg-f lg(’Y) ?

ou ~ parcourt I’ensemble des courbes fermées, lisses par morceaux, non
¢y -triviales, est appelée la ¢-systole de (P, g).

Pour un polyedre riemannien quelconque (P, g) et pour chaque k-simplexe
7€ P, le k-volume Vol (7,g9) de 7 est bien défimi. Posons
Volu(Pg) = £ Volu(r.9).
ol 7 parcourt I’ensemble des k-simplexes de P. Remarquons que Vol (P, g)
dépend de la métrique ¢ ainsi que de la structure simpliciale considérée. Par




TOPOLOGIE DES SYSTOLES UNIDIMENSIONNELLES 121

exemple, Vol (P, g) (k < m) est modifié par une subdivision simpliciale. Si
dim P = m, la somme totale des m-volumes de tous les m-simplexes est ap-
pelée volume de P pour la métrique g. On note cette valeur Vol(P, g). Remar-
quons que Vol(P, g) coincide avec la mesure de Hausdorfl m -dimensionnelle
pour la métrique (3.1).

Définissons les constantes ¢-systolique et stable pour un polyedre quel-
conque P de dimension m comme dans le cas des variétés par

(3.2) oo(P) = inf B9 psiipy g OB D)
g 8ys,(P, gy g sys*(P, g)"
oll g parcourt I’ensemble des métriques riemanniennes simpliciales sur P.
Comme dans le cas des variétés, on peut définir la notion de polyedre es-
sentiel et démontrer un théoréeme analogue au théoreme de Gromov, voir [18].
Nous n’allons pas nous servir de cette notion pour les polyedres. Remar-
quons seulement qu’il existe deux types d’essentialité pour les polyedres:
I’essentialité algébrique, qui se définit a 1’aide de la “classe fondamentale” du
polyedre, et I’essentialité géométrique, qui se définit au moyen des applications
dans les complexes de dimension plus petite. Ces deux notions coincident pour
les variétés si on fait un choix convenable de coefficients en homologie. Elles
ne sont pas équivalentes pour un polyedre arbitraire (nous reviendrons sur ce
sujet dans le dernier chapitre).

3.1 PRINCIPES DE COMPARAISON ET D’EXTENSION

Soit f: X — Y une application simpliciale entre deux polyedres. Si g
est une métrique riemannienne sur Y, son image réciproque f*(g) est une
forme quadratique syméirique positive, mais dégénérée en général si f n’est
pas un homéomorphisme. Pour obtenir une vraie métrique sur X assez proche
de f*(g), fixons une métrique / sur X. Par exemple, on peut choisir # comme
la métrique induite par le plongement canonique X — AY~! c RV, ot N
est le nombre de sommets de X. Pour ¢ > 0, on pose f'(g9) = f*(g) + 2h.
Cect défimt une métrique riemannienne (simpliciale) sur X. Appelons cette
métrique la t-image réciproque de g (comparer avec [2], §2, ol des métriques
analogues ont été construites). Il est évident que f contracte les distances par
rapport aux métriques f'(g) et g pour chaque 7 > 0, ¢’est-a-dire que

(3.3) Lipf' <1, ¥t>0.

Nous allons travailler dans la suite avec de petites valeurs du parametre .
Par définition, une application f: X — Y enire deux espaces topologiques
est dite monotone si I'image réciproque d’un point £ ~!(y) est un sous-ensemble
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connexe de X, quel que soit ce point y € Y. Nous avons besoin d"une version
faible de cette définition adaptée aux applications simpliciales.

DEFINITION 3.4. Une application simpliciale f: X — Y entre deux
polyedres simpliciaux est dite k-monotone, si pour tout k-simplexe 7 C Y et

pour tout point y € T, F~1(y) est un sous-ensemble connexe de X.

Les applications m-monotones des polyedres m-dimensionnels jouent un
rdle fondamental dans la suite. [.a m-monotonie signifie que 1’image réciproque
d’un m-simplexe ouvert quelconque est soit un m-simplexe ouvert, soit vide.
La proposition suivante est vérifiée (voir [2], §2):

LEMME 3.1. Soit f: X — Y une application simpliciale, m-monotone
entre deux polyedres m-dimensionnels. Alors pour chaque métrique riemanni-
enne g sur Y et chaque ¢ >0, il existe § > 0, telle que I'inégalité suivante
soit vérifiée :

Vol,(X,f ' (g)) < Vol (Y,q9) +e, t<4.

PROPOSITION 3.2 (PRINCIPE DE COMPARAISON). Soient K;, i = 1,2, deux
polyédres m-dimensionnels et ¢;: m(K;)) — 7w deux épimorphismes. S’il
existe une application m-monotone . K1 — K, telle que ¢ = ¢p0f,, alors

06, (K1) < 04,(K3).

Démonstration. Fixons un ¢ positif et soit g une métrique simpliciale
quelconque sur K. Prenons ¢ < 4 = () comme dans le lemme 3.1. De (3.3),
on obtient

sys,, (K1 (@) > sysy, (K2, 9).

Cect, avec le lemme 3.1, nous amene a 'inégalité suivante

Vol(ki () _ NoltKz,g) +¢
Gys, KT~ Gys,, Kz )"

ce qui acheéve la démonstration, puisque ¢ est arbitraire. [

Le principe de comparaison nous permet de comparer les constantes
systoliques de deux variétés admettant une application de degré 1 entre
elles. Soient M et N deux variétés m-dimensionnelles et f: M — N une
application de degré absolu 1 [15]. On choisit deux triangulations sur ces
variétés. La structure des applications de degré absolu 1 entre deux variétés
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simpliciales est bien étudiée. Le résultat principal de [31] montre qu'une telle
application f est équivalente a homotopie pres a une application f; simpliciale
et monotone. En appliquant la proposition 3.2, nous obtenons (voir [2], §8)

COROLLAIRE 3.3. Soit f: M — N une application de degré absolu 1
entre deux variétés m-dimensionnelles. Alors

T o, (M) < a4(N),

pour tout épimorphisme ¢: m(N) — 7.

COROLLAIRE 3.4. Soient M;, i = 1.2, deux variétés équivalentes a
homotopie pres et ¢;: m(M;) — 7 deux épimorphismes liés par cette
équivalence, alors

O'(/)l(Ml) = Uqbg(MZ)-
EXEMPLE 3.1. On considere la sphere
S ={laf +al* + | =1; % eC}

et 'isométrie A d’ordre p définie par:

Al 2ridn

yri
A(Zla"'vzin):(eTnpzla"'?e pZm):

oules g, 1 <k < m, sont des entiers premiers a p. 'opérateur A définit une
action de Z, sur S~ ! et espace quotient est appelé espace lenticulaire : on
le note L(q1,...,qm;:p) ou L(q,p). La classification homotopique des espaces
lenticulaires [27] implique :

LG, qmiP) = LG5 @i P) == G - -G = K" ... g, mod P,

pour un k entier. On supposera dans la suite, pour des raisons géoméiriques,
que p est premier. Soit d = PGDC(m, p—1) le plus grand diviseur commun. On
associe a chaque espace lenticulaire (g1, ..., qn:p) 'élément g, ... g, mod p
du groupe multiplicatif Z; du corps Z,. Disons que deux €éléments g et ¢’
de Z; sont équivalents s1 g = +k"¢’ mod p pour un k € Z;. Nous voyons
donc que les classes d’équivalence homotopique des espaces lenticulaires
coincident avec les classes d’¢quivalence des éléments dans Z,. Un calcul

2 d

facile dans le groupe cyclique Z; nous amene a d (si %1 est pair) ou 7

(sinon) classes d’équivalence homotopique des espaces lenticulaires.
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Du corollaire 3.4 ci-dessus, nous obtenons finalement que la fonc-
ton o(q,p) = o(l(q,p)) prend au maximum d (si ’%1 est pair),
ou % (sinon) valeurs différentes non nulles sur les espaces lenticulaires

(2m — 1)-dimensionnels de groupe fondamental Z,.

Pour comparer les constantes systoliques de variétés non-équivalentes, nous
avons besoin d'un procédé d’élargissement ou d’extension d’une variété.

Soient K un polyedre et h: S*~! — K une application simpliciale. On
a ’homéomorphisme évident

KUB' =7y U Cs 1,
h Sk—1

ou Z(h) est le cylindre de ’application /i et CX est le cone sur 'espace X. En
considérant la triangulation du cylindre d’une application simpliciale [25] et
en prolongeant cette triangulation sur le cone, nous obtenons une triangulation
de K iJBk qui coincide avec la triangulation donnée sur K. Nous utiliserons

toyjours dans la suite ce procédé d’extension d’une triangulation donnée a une
cellule recollée par une application simpliciale.

LEMME 3.5 (Extension métrique). Soient K un polyédre m-dimensionnel
et k > 2. Soit h: S*=' — K une application simpliciale et notons L = K%Bk

le polyédre obtenu en recollant a K le disque k-dimensionnel B* par h. Pour
toute métrique riemannienne g sur K, il existe une métrique ¢' sur L qui
Vérifie les propriétés suivantes :

D dlk=g:

2) pour tous points p,q € K et pour toute courbe ~(t) C L joignant ces
points dans L, il existe une courbe ~v1(t) C K joignant ces points dans
K, homotope a ~(t) dans L et telle que

lg(y) < g ().

Démonstration. On munit la sphére S*~! de la métrique ds% i courbure

constante % avec R suffisamment grand pour avoir I'inégalité Tiph < 1. On

munit ensuite le cylindre Z = S$*~! x [0,2] de la métrique suivante :

(3.4) g (@00 +udsy+ i, 0<u<l,
. ds% + du?, 1<u<?2.

Ici, u est la coordonnée de I'intervalle [0,2] et A£*(g) est I'image réciproque
de la métrique ¢ induite par I’application simpliciale & sur $* 1.
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On recolle ensuite un chapeau demi-sphérique k-dimensionnel C de
rayon R sur le bord S*!' x {2} du cylindre Z. Ceci nous prolonge la
métrique ¢’ au disque B* = Z|JC. Remarquons que la condition

9 |si-1x 0y = H"(g)

nous assure le recollement métrique de ¢ et ¢’ en une métrique définie sur
K %Bk' On note encore ¢’ la métrique ainsi obtenue.

Soient p et g deux points de K et ~ une courbe de L joignant ces
deux points. Supposons tout d’abord que -~ intersecte lintérieur de C
(noté¢ intC). Si ~(#;) et ~(f,) sont deux points de OC consécutifs (i.c.
{v(®); 11 <t <t} CintC), on remplace cette portion de ’arc ~ par un arc
géodésique joignant ces deux points dans JC. 11 est alors évident que cette
opération diminue la longueur de ~. En répétant cette opération pour toutes
les paires (t1,1;) telles que {v(t); t, <t < ,} C intC, nous obtenons une
nouvelle courbe ~/(r) C K|JZ homotope a ~(f) et vérifiant [, (v") < [, ().

On peut donc supposer que ~[|intC = &. On procede alors ainsi: la
projection naturelle de Z sur S*~! x {0} définit une rétraction par déformation
r: K|JZ — K, qui n’augmente pas les distances par construction de g’. On
projette alors ~ sur K par r et on obtient ainsi une courbe ~; = ro+y vérifiant
la propriété attendue. Les propriétés 1) et 2) sont donc bien vérifiées. L]

PROPOSITION 3.6 (Principe d’extension). Soit K un polyédre m-dimen-
sionnel. Pour 2 < k < m — 1 et pour toute application (simpliciale)
h: §&1 — K, soit L = K%ZJB]‘ le polyedre obtenu en recollant le disque

k-dimensionnel B* par h.
1) Soit ¢: m(K) — 7 un épimorphisme. Si k = 2, on suppose de plus
que {h} € ker¢. Alors,
oK) = a3,

ou (E est la factorisation naturelle de ¢ (gg # ¢ seulement dans le cas
ou k=2 et {h} #0).

2) On suppose k > 3 ou que h induit une application nulle de I’homologie
rationnelle unidimensionnelle dans le cas k = 2. Alors,

oK) = o™(L).
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Démonstration. 1linclusion K — L vérifie les conditions de la proposi-
tion 3.2: ceci implique les inégalités

os(K) < oz(l) et ' (K) < ¢'(L).

Pour démontrer les inégalités réciproques, soit g une métrique simpliciale
quelconque sur K et soit g’ une extension de cette métrique a L vérifiant
le lemme 3.5. On considére une courbe fermée non contractile ~ sur L. Elle
intersecte forcément K, et par le lemme 3.5, on peut I’homotoper en une
autre courbe v; C K telle que [ (1) < ly(7y). Ceci implique

sys;(L, q) = sysa(K,g) et sys (L, g) =sys,(K,g).

Pour achever la démonstration, il reste & remarquer que, pour des raisons
de dimension, la cellule recollée ne contribue pas au volume: Vol(L,qg") =
Vol(K,g). O

Soit K un polyedre de dimension m. Un CW-complexe fini X est une
extension de K s’il est le résultat du recollement sur K d’un nombre fini de
cellules de dimension comprise entre 3 et m — 1, c¢’est-a-dire

m—1 qr

(3.5) x=x]JJB;.
k

=3 =1

Les applications de recollement seront toujours supposées simpliciales. Une
extension posseéde ainsi une triangulation naturelle (extension de celle donnée
sur K). La proposition 3.6 implique

COROLLAIRE 3.7. Soit X une extension de K. Si ¢: m(K) — 7 est un
épimorphisme, alors
04(K) = g4(X).

D’autre part,
a(K) = o”(X).

3.2 EXISTENCE DES EXTENSIONS

Dans la suite de ce chapitre, nous établissons un des points topologiques
principaux dans I’étude des constantes systoliques unidimensionnelles. On
considere deux m-variétés (m > 4) orientables M;, i = 1,2, de méme groupe
fondamental 7. Soient ¢;: m(M;) — 7,i = 1,2, deux isomorphismes et
D;: M; — K(m,1),i = 1,2, les applications induites correspondantes.
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THEOREME 3.8. Si . ([M]) = o ([Ma]) dans H,(x,Z), alors il
existe une extension X, de M, et une application h: M, — X, telle que
Uapplication h, induite sur les groupes fondamentaux vérifie h, = gbl_lo D .

REMARQUE. Dans la démonstraion de ce théoréme (voir ci-dessous),
nous utilisons de manie¢re cruciale le fait que M; soit une variété en
utilisant notamment la dualit¢ de Poincaré. Remarquons que ce théoréme
n’est plus valable pour des complexes cellulaires orientables ayant une seule
m-cellule comme le montre 'exemple suivant. Posons M; = RPxS? et
M, = RP*|JB®, ot b € my(RP*) est un générateur. On voit facilement que,

2b

pour cet exemple, @, ([M]) = $».([M>]) = 0. D’autre part, il n’existe pas
d’application de M, dans un complexe de dimension strictement inférieure & 5
induisant un isomorphisme des groupes fondamentaux. En effet, le contraire
nous ameéne a une application f: M, — RP>® telle que f(M,) C RP*
et f. est un 1somorphisme des groupes fondamentaux. Mais toute application
f: RP* — RP?* induisant un isomorphisme des groupes fondamentaux induit
sur le groupe m4(RP*) ~ Z un monomorphisme qui consiste a multiplier
par un nombre impair. Cette application f ne se prolonge donc jamais sur
la 5-cellule B> de M,. Cela signifie que le théoreme 3.8 ne peut étre vérifié
pour M; et M,.

lLe recollement de cellules de dimension strictement inférieure &4 m ne
modifie pas I"homologie m-dimensionnelle. 1. inclusion

(3.6) M, C X

induit donc un isomorphisme H,(X,,Z) ~ H,(M,,Z) ~ Z, et la classe
fondamentale [X;] de X; est bien défime. Nous choisissons [X;] correspondant
a [M;] par 'application (3.6).

COROLLAIRE 3.9. §i @1, .([M1]) = ©2.(IM2]) € Hu(K(w,1),Z) est un
élément d’ordre v, Uapplication h induit une application en homologie
m-dimensionnelle vérifiant

ho(IMa]) = l[X;] avec I=1mod v.
Si lordre v est infini, | =1 et h, est un isomorphisme.

Démonstration. St on pose [ = degh, on a: h([M]) = IX].
[ application
(I)liMl —)K(ﬂ', 1)
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se prolonge en une application
@, X, — K(r, 1)

du fait de 1’asphéricité de K(w,1). On obtient de la E)\l*([Xl]) = O ([Mq]).
[’ application composée

®, 0 h: My — K(r, 1)

induit le méme isomorphisme de groupes fondamentaux que I’application @, ,
donc elles sont homotopes. On en dédut:

Oy (M) = Dy, (IMs]) = Dy, 0 o ((Ms]) = Dp, (I[X, ) = 1Dy, (M, ]).

Donc / = 1 mod v, puisque @, ,([M]) = ®,,.([M>]) est un élément d’ ordre v .
Si v = oc, on obtient évidemment [ = 1. Ceci acheve la démonstration. [

REMARQUE. Pour la démonstration du théor¢eme A, la non finitude de
I’ordre de I’'image de la classe fondamentale intervient exactement a cet endroit.
[application A ci-dessus n’est pas uniquement définie, mais la condition de
non finitude garantit qu’elle soit toujours de degré 1.

Dans le cas ot 'ordre v est fini, un exemple simple est M; = M, = RP¥*+!,
Il n’est pas nécessaire de recoller des cellules supplémentaires a M, . Pour tout
entier impair [, on peut trouver une application h: My, — M, de degré [,
mduisant un 1somorphisme de groupes fondamentaux.

Démonstration du théoreme 3.8. Notre prochain raisonnement est un peu
plus général que nécessaire pour le cas orientable. Tl couvre également le
cas de deux variétés simultanément non-orientables. Pour cette raison, nous
préférons considérer les classes fondamentales & coefficients locaux. Deux
variétés M; et M, sont dites simultanément non-orientables, si les sous-
groupes d’orientations G; < w1 (M;), i = 1,2, vérifient 1’égalité:

(3.7) ¢1(G1) = ¢2(G) dans 7.

Sous cette condition, nous pouvons utiliser trois systemes @;-cohérents de
coefficients locaux sur M; et K(w, 1), définis respectivement par les sous-
groupes G;, I = 1,2, et 9(Gy).

Nous allons construire une CW -réalisation du K(w, 1) en attachant des
cellules a M;. Par hypothese, (M) = m. On commence par attacher des
cellules de dimension 3, de mani¢re a annuler le 7,(M;). Nous obtenons un

nouveau CW -complexe que nous notons M;(3):

Mi(3) = My | JB],,
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oll @ parcourt une base de m,(M;) comme w-module. Ensuite, on attache
des cellules de dimension 4 & M;(3) de maniere a annuler le m3(M;(3)).
Nous obtenons un nouvel espace M;(4). On itere ainsi le procédé en annulant
successivement les groupes d’homotopie pour k& > 3 et on obtient ainsi une
suite de CW -complexes {M;(k)};~5 vérifiant les propriétés suivantes:

) My CMi3) CMEHBC---;
2) mMik) =7, k=3,4,...;
3) m((Mi(k)) =0, 2<s<k-1
Remarquons que les complexes M;(k) sont en général des CW-complexes
infinis, méme pour k = 3 (voir [29]).
Pour un CW-complexe A, notons A® son k-squelette. Soit

Ml — M(lm_l) U em .
o

une décomposition cellulaire de M; possédant une unique m-cellule, ou
o §1 —» Mm_l) est I'application de recollement. Le procédé {M;(k)}(>3
nous fournit une certaine décomposition cellulaire de I’espace d’Eilenberg-
Macl.ane K(m, 1) (comparer a [25]). Nous avons pour les complexes M, (k)
(k=3,4,...) les égalités suivantes:

) Mym—1) = K@@, )"V Jem:
(3.8) o
2y Mi(k) =K@ D®, k>m.

I’inclusion i: M; — M, (k) induit un isomorphisme de groupes fondamen-
taux. Soit Oz un systeme de coefficients locaux défini sur M; et M;(m— 1)
par le méme sous-groupe d’indice 2. On consideére 1’application induite en
homologie

(3.9) iv: Hy(My,Oz) — H,(Mi(m —1),0z) .

De la suite exacte associée a une paire et de I"axiome d’excision pour les co-
efficients locaux, on constate aussitot que i, est un isomorphisme. Soit [M;]a
la classe fondamentale de M; dans le systeme (7. Nous appellerons “classe
fondamentale” de M (m — 1) 'image i,([M]lp) € H,,(M(m — 1), Oy).

En appliquant le théoréme d’ approximation cellulaire, on remarque que
@, induit une application

(3.10) g: My — My(m),

qu vérifie @, o g, = P,, sur les groupes fondamentaux. Contrairement a
" application caractéristique P, I'application (3.10) n’est pas définie unique-
ment & homotopie prés. Cependant, nous pouvons la choisir convenablement :
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LEMME 3.10. 8i @4, ([M1]o) = ©2.([M2]o) € Hu(K(m, 1), Oz), on peut
choisir g dans (3.10) de sorte que

(3.11) 9:(IMz]o) = i([Mi]o) -

Démonstration. Remarquons tout d’abord que la structure cellulaire (3.8)
nous permet de voir ®; comme une inclusion

(3.12) Dy =i: My — My(k) pour k >m+ 1.

Soit g une application quelconque induite par @, (voir (3.10)). Si X est un
CW -complexe et A est un systeme local de base Z sur X, alors pour toute
application

a: $F—Xx, k>2,

le systeme induit a,(A) est trivial sur S*, donc coincide avec Z. On voit de
la que I"homomorphisme dHurewicz

H: (X)) — Hi (X, A), k&2

est bien défini.
Deux applications ¢ et ¢’ obtenues comme en (3.10) sont homotopes dans
Mi(m + 1) et I'inclusion (3.8) 2) induit I’'isomorphisme

Hm(Ml(m =+ 1)7 OZ) = Hm(K(ﬂ-: 1)7 OZ) £

On considere le diagramme suivant de suites exactes pour la paire
(My(m + 1), M, (m))

o7
dm+1

Tt (Mi(m+ 1), Mi(m)) ———  7wu.(Mi(m)) L) Tm(Mi(m+ 1)) =0

e - e

al H
Hyyp1(Mi(m 4 1), M (m); Oz) —+1> H, (M (m); Oz) j—m> Hy(M(m + 1); Og)

ol les homomorphismes verticaux sont les homomorphismes d’Hurewicz. Les
égalités m(M(m + 1), M (m)) = 0, k < m, impliquent que
Hpt1: Fmpr(Mi(m + 1), Mi(m)) — Hpp 1 (Mi(m + 1), My (m); Z)

est un épimorphisme. La propriété d’excision pour les coefficients locaux
implique

Hy i (Mi(m + 1), My(m); Z) ~ Hyp i (Mi(m + 1), My(m); Oz).

Donc, la fleche verticale H,,; est aussi un épimorphisme. De la premicre
ligne, nous voyons que &7, est un €pimorphisme sur m,(M;(m)) et de la
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deuxieme ligne, nous obtenons que 8n?j+1 est un épimorphisme sur ker j?*. Ceci
implique que H,, est naturellement un épimorphisme sur kerj*. Autrement
dit, chaque élément de kerj7' peut étre représenté comme un cycle sphérique.
D’ apres I"hypothese du lemme, chaque application g de (3.10) vérifie:
~g:([M2]0) + (1M1 o) € kerjj; .
Il existe donc une application
w: 8" — My(m)
telle que

(3.13) i (8) = —g«([Mzlo) + i([Milo),
ol s € H,(S™,Z) est la classe fondamentale de la sphere.
On considere I'application ¢': M, — M;(m) définie par le diagramme
suivant
3.14) g My —— My Vv S™ - L Mi(m),
ou I'application de gauche consiste & contracter le bord d'un m-disque local

dans M, . 1l est évident que g et ¢’ induisent le méme homomorphisme de
groupes fondamentaux. On voit sans peine que

9:(IM2]0) = g-(IM2]0) + u.(s) .
Avec (3.13), ceci implique
9.(IMzlo) = i(Mile). O

Supposons I'application g: M, — M;(m) choisie de sorte qu’elle
vérifie (3.11). On va maintenant démontrer qu’elle est déformable en une
application

gl M, —» Ml(m — 1)

LEMME 3.11. 1l existe une application
gi M, — M](m — 1),

telle que g. et G, coincident sur les groupes fondamentaux.

Démonstration. Prenons une décomposition cellulaire de M, ayant une
seule m-cellule, et choisissons g cellulaire. Soit
g MY — My(m — 1)

sa restriction au (m — 1)-squelette. Posons

-1 -1
b = g,

et démontrons que cette application est prolongeable a M,;.
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Considérons 1'obstruction a prolonger cette application (voir, par exem-
ple, [22]). Soit
A = {mp_1(Mi(m — 1); 0}

le systéme local des groupes homotopiques. Puisque 1" application g™~ induit
un isomorphisme de groupes fondamentaux, désignons par la méme lettre A
le systeme local induit sur Mg”_l). Il est également naturel de noter A la
restriction de ce systtme a M; C My(m — 1).

Soient b € H™(M,, A) I’ obstruction i prolonger g ™~ eta € H"(M,(m), A)
I’ obstruction a prolonger I’ application identité

id: Mi(m— 1) — Mi(n— 1)

a Mi(m). Il est évident que b = g*(a). On applique |’ opérateur de dualité de
Poincaré a M,, et ’homomorphisme g, sur 1’homologie 0-dimensionnelle.
Cect, avec (3.11), implique :

g«([Ma]lo Nb) = g ([M2]lo N g* @) = g.([M2lo) Na
= i.([Mi]o) Na = i([Milo)Ni*(a) = 0.

La dermiére égalité est vraie, puisque I'obstruction a prolonger
i M — Ml(m — 1)

est triviale, et donc *(a) = 0.

Remarquons enfin que ¢, est un isomorphisme en O-homologie, et donc
que [Mz]o Nb =0 dans Hy(M,, A ® Oz). Par la dualit¢ de Poincaré, nous
en déduisons que b = 0 dans H"(M;, A).

Pour conclure la démonstration, il reste a remarquer que 1’ obstruction a
prolonger ¢~ est nulle. Cette application est donc prolongeable sur M, ,
avec un changement éventuel de ¢V sur M(Zm_l), mais sans toucher
g sur M ®. Puisque m > 4, un tel changement ne modifie pas
I"application sur le 2-squelette, et le prolongement ¢ ainsi obtenu induit
le méme homomorphisme de groupes fondamentaux que g. Ceci acheve la
démonstration.  []

Pour conclure la démonstration du théoréeme 3.8, nous considérons
I’ application
gi My — Mi(m—1).

Compte-tenu de la compacité de M,, nous voyons que I'image g(M,) est
compacte dans M;(m — 1) et, par une propriété générale des CW -complexes,
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elle n’intersecte qu'un nombre fini de cellules de M;(m — 1). Considérons
la collection finie de toutes ces cellules de dimensions 3,4.....m — 1. Le
recollement de chaque cellule de cette collection fait intervenir un nombre fin
de cellules de dimension strictement inférieure a celle de la cellule considérée.
En réunissant toutes les cellules nécessaires pour ce procédé, nous obtenons un
sous-complexe fini de M (m — 1) contenant I'image g(M,). La démonstration
du théoreme est achevée. [

3.3 DEMONSTRATION DU THEOREME A

3.3.1 REDUCTION DU GROUPE FONDAMENTAL

LEMME 3.12. Soient M une variété orientable de dimension m > 4 et
¢ m (M) — 7w un épimorphisme. Il existe une variété orientable M, telle que

) mMy)=mn;

2) Uapplication caractéristique ®,: My — K(m, 1) vérifie @1 .([M1]) =
d.([M]) dans H(K(m,1);Z) ;

3) 04,(M)=o(My). Si 7 = H(M,Z)/ Tors, alors " (M) = o*'(M,).

Démonstration. Les deux groupes 7;(M) et 7 étant de présentation finie,
nous pouvons choisir pour chaque épimorphisme ¢: 71(M) — 7 un nombre
fini d’éléments {ry,...,r;} € ker¢ tels que

tmtllys li—=ge =1, 2,0, 80— m,

Géomériquement, ceci signifie qu’on peut recoller s cellules (disques)
2-dimensionnelles a M le long des s lacets {~;}’_; correspondant aux relations
{ri};_,. Le complexe ainsi obtenu,

M=wm| B,
i

vérifie la condition 7r1(1\2) = m, et application caractéristique ®: M — K(x, 1)
se prolonge a M. La proposition 3.6 implique

(3.15) ou,(M)=o(); et o"(M)=c"(M), si == H;(M,Z)/Tors .

On peut considérer les lacets {~;}:_, comme des cercles plongés disjoints.
D’orientabilit¢ implique la trivialité des fibrés normaux de ces plongements.
Nous obtenons la variété désirée M; en faisant des chirurgies d'indice 2 de M
le long des {v;}i_,. Ceci signifie qu'on remplace les voisinages tubulaires
disjoints y; x B™~! (1 < i < s5) par des anses U; = B* x $"72 (1 < i < s).
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Les propriétés 1) et 2) sont évidentes par construction. Pour démontrer la
propriété 3), remarquons que M; admet une application m-monotone sur M
(projection de U; sur B?). Alors la proposition 3.2 et (3.15) impliquent

(3.16) o(My) < oy(M); et o”(My) <o (M), si m=H|(M,Z)/Tors .
On considere le complexe suivant:

M, =M, U B!,
{0} xSm—2CU;

olt 0 € B? est le centre du 2-disque correspondant aux anses U;, 1 < i <.
Remarquons qu’on peut obtenir M A partir de M; en faisant des chirurgies
réciproques (d’indice m—1): 1l existe alors une application m-monotone de M
sur M, et elle induit I’épimorphisme ¢ sur les groupes fondamentaux. En
appliquant la proposition 3.2 4 cette application et la proposition 3.6 a M,
on obtient les négalités réciproques de (3.16):

oo(M) < o(M)) = o(My);

(M) < o”(My) = o*'(My), si m=H(M,Z)/Tors. [

Sous les hypothe¢ses du théoreme A, nous pouvons donc supposer
m(M;) ~ m, i = 1,2. Les applications caractéristiques ®;: M; — K(m, 1),
i = 1,2, correspondent aux isomorphismes ¢;: m(M;) — 7 et défimssent
donc un isomorphisme entre 7(M;) et m(M,). Nous considérons cet iso-
morphisme fixé pour la suite.

3.3.2 TRANSFORMATION DE I APPLICATION h

Soient maintenant X; une extension de M; et h: M, — X; application
vérifiant le théoreme 3.8. Par le corollaire 3.9, on a degh = 1.

PrOPOSITION 3.13. L’application h est homotope a une application
m-monoione
h: M, — X;.

Pour la démonstration, nous choisissons deux triangulations sur M, et X,
et, en appliquant le théoreme d’approximation simpliciale, nous prenons
simpliciale par rapport a ces deux triangulations. I.e complexe X; est une
vari€té relative orientable [28], et M; est une variété fermée orientable. En
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appliquant littéralement la démonstration du théoréeme 4.1 [15] a cette situation,
nous pouvons déformer 4 en une application h de sorte que: il existe deux
m- 31mplexes 71 et 7 de X; et M, respectivement, tels que la restrlctlon
de h a 72 soit un homéomorphisme (linéaire) sur 7 et h 1(7'1) = 7.
Nous pouvons toujours représenter M; comme un complexe ayant une seule
m-cellule. Nous supposons la structure simpliciale choisie cohérente avec cette
structure cellulaire. Soit

m—1 qr
(3.15) xp~t=mpt | el

k=3 i=1
le (m — 1)-squelette cellulaire de X;. Considérons enfin une équivalence
homotopique ¢: X; — X, constante sur Xim_l), et qui contracte X; \ n
n Xim_l). Apres quelques subdivisions éventuelles de X;, nous pouvons
choisir g simpliciale. Pour achever la démonstration, nous subdivisons autant
de fois que nécessaire M, et posons finalement

W :qoﬁ.

En appliquant le principe de comparaison a /i, et le principe d’extension
a Xq, il vient:

o(My) < o(Xy) = o(My); (M) < 0”'(X)) = ¢ (My).

Si on échange les roles de M; et M, dans le raisonnement ci-dessus, on
obtient I’'inégalité réciproque. Ceci acheéve la démonstration. [

4. SYSTOLES ASSOCIFES AUX GROUPES FINIS

4.1 DEMONSTRATION DU THEOREME B

En appliquant le lemme 3.12, nous pouvons supposer que w(M;) =
m(Mp) = w. Solent X; une extension de M; et h: M, — X; ’application
obtenue en appliquant le théor¢me 3.8. Si 7 contient k éléments, d’apres
I’hypothese du théoreme B et compte tenu du corollaire 3.9, nous avons

“.1) h(Ma]) = I[X:], [=1modk.

On consideére le revétement universel g: M 1 — M. Prenons une décom-
position cellulaire possédant une unique m-cellule (et une O-cellule) et
notons K son (m — 2)-squelette. La variété M, est simplement connexe,
et comme m >4, K est donc également simplement connexe.
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Soit CK le cone sur K. Posons

X =x | Jek,
q
ou le recollement est effectué par 'application g: K — M; C X;. Puisque
K est simplement connexe, X, a le méme groupe fondamental que X, et
comme dmK < m—2, 5(] est de nouveau une extension de M, . I’ inclusion
X, C X; nous permet de prolonger 4, et (4.1) reste valable pour X,. D’ autre
part, nous avons I’application

q’: M1UCK—>M1UCKC5Z1,
K q

qui vérifie ¢L([M;|JCK]) = k[X1]. Lespace My |JCK est équivalent 2
homotopie pres au complexe suivant:

y — \S/Sim—l UBm’
i=1 f

oil s est le nombre de (m — 1)-cellules de M, le disque B™ correspond
a la m-cellule et f est application de recollement. L.a contraction du
(m — 2)-squelette ne modifie pas la m-homologie: H,(¥Y,Z) = Z. Ceci
immplique que f est homotope a zéro, et donc que Y est équivalent a
homotopie pres & un bouquet de spheres. Il existe donc une application

4.2) g:s" — X,

vérifiant
q.[S™] = k[X4].

Soit [ = sk+ 1. On considere la composition d applications suivante :

idv{—s} hvg
—_—

4.3) My — M,V S™ MyvSm 0 X

ou la premiere application consiste a contracter dans un point une sphére
§m=1 C M, localement plongée et —s est une application de la sphere
S™ dans elle-méme de degré —s. Il est évident que I'application composée
h: My — X, définie par (4.3) vérifie deg/ﬁ = 1.

En appliquant la proposition 3.13, nous pouvons supposer 1" application h
m-monotone. Remarquons que, par construction, h induit un isomorphisme

de groupes fondamentaux. Du principe de comparaison pour 2 et du principe
d’extension pour X;, nous obtenons donc I'inégalité suivante :

o(My) < o(X,) = a(M,) .
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L’inégalité réciproque s’obtient en inversant les réles de M; et M, dans le
raisonnement ci-dessus. La démonstration est ainsi achevée. [

Le corollaire B1 est maintenant une conséquence directe du théoréeme B
(voir aussi 1’exemple 3.1). Un calcul du nombre de classes d’équivalence
homotopique des espaces lenticulaires implique le corollaire B2.

Soit a € HY(Z,,Z,) un générateur, le groupe H*~1(Z,,Z,) est engendré
par alU 8@, ou 3 est I’homomorphisme de Bokstein (le dernier élément
se réduit & a*~! dans le cas on p = 2). Si M est ¢-essentielle, on a
d*(aU f@)") £ 0 dans H¥~'(M,Z,). D’autre part, ¢* = ®*(a) pour un
choix convenable de générateur a. Ceci 1mplique les corollaires B3 et B4.

4.2 TOPOLOGIE DES Z,-SYSTOLES

Les systoles associées au groupe Z, possedent des propriétés topologiques
particulieres. On considere 1’ensemble de toutes les paires {(M,¢)}, o M
est une variété orientable de dimension m et ¢: m (M) — Z, est un
épimorphisme. Introduisons une structure de semi-groupe en posant

44 (M, ¢) + N, ) = (M#N, ¢ % ),
olt ¢y est le produit libre des deux homomorphismes ¢ et 1) agissant sur
T1(M#N) = 71 (M) * 71 (N)

(st m > 2). Pour m = 2, ¢ *1 désigne le produit amalgamé. Notons Mf;}
ce semi-groupe. Suivant la théorie du bordisme, nous ne considérons ici que
la somme connexe de deux variétés, choix justifié par la nature géométrique
du probléme. Définissons ensuite 1’application

(4.5) St MY — Z,

par la formule %,(M,¢) = Z2®2  mod 2.

Tm
THEOREME 4.1.  L’application X,, est un homomorphisme.

Démonstration. On obtient du corollaire B4 que X, =0 si m est pair.
Considérons deux paires (M;, ¢;), i = 1,2, la dimension m €tant impaire.
Soient ®;: M; — RP™ C RP™, i = 1,2 les applications correspondantes.
Remarquons que degd; est impair si M; est essentielle, et qu’il est pair
sinon. En appliquant la construction (4.3) ci-dessus a M;, avec X, = RP"
et § de (4.2) étant le (double) revétement canonique, NOUS pouvons SUpposer
que le degré de ®; est 1, ou bien 0, selon I’essentialité de M;.
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On considere la composition d’applications

46 MM, —" s My vM, 2V RpryRPT 2 RPT,

ol i contracte en un point la sphere de recollement, et ol p agit comme
I'identité sur chaque composante du bouquet. Il est évident que

(po (@ VD) oh), = dy ¢y et deg(po (@ VDy)oh) = deg®; + deg®, .

Si deg®; = deg®, = 1, on tire de la construction (4.3) I'existence d’une
autre application f: M# M, — RP™ telle que f. = ¢1x @2 et degf = 0. Si
deg®, + degd, < 2, on prend pour f D'application définie par (4.6). Dans
les deux cas, nous obtenons une application

fi M#tM, — RP"

mdwsant ’application ¢ x ¢, sur les groupes fondamentaux et qui vérifie la
congruence suivante :

degf = (deg @1 + deg ®,) mod 2.

Le théoreme est maintenant immédiat d’apres le corollaire B4. [

5. REMARQUES FINALES ET QUESTIONS OUVERTES

1. Pour chaque variété essentielle M de dimension m, o(M) > O et une
borne inférieure universelle a été trouvée par M. Gromov dans [18], chap. 0.
Il a établi I'inégalité suivante ne dépendant que de la dimension de la variété

essentielle M : q

D™ (m+ DHT

Actuellement, c¢’est la meilleure borne inférieure connue pour les constantes

WM 2 o

systoliques dans les dimensions m > 3. Néanmoins, elle parait loin d’étre
optimale. On sait ([18], chap.5) que pour toute surface M de groupe
fondamental infimi, (M) > %‘ De plus, la meilleure borne inférieure
dans le cas deux-dimensionnel est o(RP?) = % La constante systolique
pour 1’espace projectf m-dimensionnel o, = o(RP™) semble un bon
candidat pour étre la meilleure borne inférieure en dimension m. Cette
conjecture est completement ouverte pour m > 3, et on ne connait m le
comporiement asymptotique de a,,, ni d’estimée raisonnable de «,,. D’apres

le corollaire B4, la conjecture est vérifiée pour les variétés orientables possédant
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certaines propriétés topologiques: si M est orientable et admet un élément
a € H'(M,Z,), tel que o™ #£ 0 dans H™(M,Z,), alors

aM) > oy .

On sait actuellement tres peu de choses sur les constantes systoliques
fondamentales qui apparaissent naturellement (voir le théoréeme B et ses
corollaires). Par exemple, on ne sait mi comparer les constantes systoliques
o(I(q;p)) d’espaces lenticulaires différents, ni si la fonction o(L(q;p)) est
croissante en p. Une réponse affirmative a cette question semblerait tres
naturelle.

2. La comparaison des constantes systoliques pour les variéiés non-
orientables pose certaines difficultés topologiques. Pour deux variétés m-dimen-
sionnelles de méme groupe fondamental 7, les sous-groupes d’orientation
ne sont en général pas cohérents par un automorphisme du 7 (voir la
démonstration du théoréeme 3.8). T.a situation se complique encore si les
variétés considérées admettent des épimorphismes sur un groupe fixé 7.
Meéme si les variéiés représentent la méme classe d’homologie de w, les
sous-groupes d’orientation peuvent ne pas concorder avec les noyaux corre-
spondants. Ce phénomene est déja visible dans le cas 2-dimensionnel avec
m =Z,. Dans le cas m = Z,, nous ne pouvons énoncer que la version faible
du corollaire B4 (voir [1]):

Soient M une variété non-orientable de dimension m et ¢: mi(M) — Z,
un épimorphisme. Alors c4(M) vérifie 'inégalité suivante

oyp(M) < oy, .

Si m est impair et qu est orientable, alors o4(M) = 0.
Iei M » désigne le revétement double correspondant a ker ¢.

3. Pour démontrer des résultats sur 1’égalité de constantes sytoliques,
nous avons utilisé des CW-complexes spéciaux: les extensions. Ce sont des
complexes (orientables) ayant une unique cellule de dimension maximale .
Ceci nous rameéne au probléme de comparaison des constantes systoliques des
CW -complexes ayant une cellule de dimension maximale (comparer avec le
théoreme 3.8). Malheureusement, notre approche ne fournit pas de résultats,
méme pour le groupe le plus élémentaire 7 = Z,.
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Un exemple assez simple, et intéressant, est donné par le polyedre suivant

Xa = RP?| B,
36
ol b € m(RP?) est un générateur. On peut choisir une application 3 -monotone
f: RPP — Xg), induisant 'identité sur les groupes fondamentaux. Ceci
justifie 1'mégalité :
o(X@3) > 03
Pour démontrer 1'inégalité réciproque dans le cadre de notre approche, nous
avons besoin de construire une application 3 -monotone de X3, dans RP* : une
telle application n’existe pas. L.a question de savoir si cette derniere inégalité
est stricte demeure ouverte.
Cet exemple nous amene a poser la question suivante :

Soient X un polyedre fini orientable et ¢: m((X) — Zy un épimorphisme.
Quel est I'ensemble des valeurs possibles pour la constante systolique 04(X)
en fonction de X et de ¢ ?

’essentialit¢ de Gromov est un invariant algébrique. Cet invariant est
lié a Pessentialité géométrique. Soient X un polyedre fimi (orientable) de
dimension m, 7™ un groupe de présentation finie et ¢: m(X) — 7 un
épimorphisme. X est dit géométriquement ¢@-essentiel s’il n’existe aucune
application f: X — K, ou K est un polyedre, qui vérifie les conditions
suivantes :

1) dmX > dimK ; 2) mK)=m; 3) kerf, = ker¢ .

L’essentialité algébrique de Gromov implique évidemment I’essentialité
géométrique. Dans le cas des variétés orientables, ces deux notions d’essentialité
sont équivalentes [2]. I.’exemple suivant nous montre que, dans le cas général,
¢’est-a-dire pour un polyedre quelconque, les deux notions peuvent différer.
Posons

Xoy=RP*| B.
2b
On peut vorr facilement que X, est géométriquement essentiel. ID’autre part,
si h: Xy — RP™ est I'application canonique, alors ’application induite

h: H3(X(2);k) — Hg(RPOO,k)

est triviale quels que soient les coefficients k. Ceci nous conduit 4 poser la
question suivante :
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Est-ce qu’il existe des paires (X, ¢), on X est un polyedre (orientable)
géométriquement ¢-essentiel, telles que o4(X) =07
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