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CLASSES D'HOMOTOPIE DE CHAMPS DE VECTEURS

MORSE-SMALE SANS SINGULARITÉ SUR LES FIBRÉS DE SEIFERT

par Emmanuel Dufraine *

RÉSUMÉ. Nous considérons les applications d'une variété de dimension trois,
compacte, orientable et sans bord dans la sphère S2. Nous donnons un critère permettant
de décider si deux applications données sont homotopes, en fonction de l'ensemble
des points où les applications sont égales et de celui où elles sont opposées. Nous
étendons ces résultats aux champs de vecteurs non-singuliers et aux champs de plans
co-orientés sur les variétés de dimension trois. Finalement, nous appliquons ce critère
à l'étude des champs Morse-Smale non-singuliers sur les variétés de Seifert.
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1. Introduction

De nombreuses recherches actuelles portent sur l'étude de champs de

2-plans ou de champs de vecteurs partout non nuls, tangents à une variété de

dimension trois (structures de contact, feuilletacts, champs de Morse-Smale

non-singuliers voir en particulier [5, 7, 12, 14, 15 |). La classification de

certaines structures particulières (structures de contact tendues par exemple)
dans les différentes classes d'homotopie est un sujet très actif actuellement.
Le fibré tangent d'une variété de dimension trois, compacte, orientable est

trivialisable ; si la trivialisation est fixée, un champ de 2-plans co-orienté

ou un champ de vecteurs non-singulier est alors uniquement associé à une

application de M dans la sphère S2.

Nous donnons dans cette note un critère géométrique pour décider si

deux applications de M dans S2 sont homotopes ou non (proposition 1.5).

L'avantage de ce critère est qu'il se généralise aux champs de vecteurs non-
singuliers (ou champs de plans co-orientés) et qu'il ne dépend pas du choix
d'une trivialisation du fibré tangent de la variété.

Nous utilisons ce critère pour redémontrer de manière élémentaire (sans
utiliser les décompositions en anses rondes d'Asimov et Morgan) le résultat
suivant, conséquence des travaux de Yano [25, 26] et de Wilson [24] :

THÉORÈME 1.1. Pour chaque variété de Seifert M3, il existe un nombre

n(M) tel que tout champ de vecteurs non-singulier sur M est homotope à

un champ de Morse-Smale non-singulier ayant au plus n(M) orbites
périodiques.

Les champs de vecteurs Morse-Smale non-singuliers sur les variétés de
dimension trois admettent beaucoup de propriétés intéressantes, malgré leur
apparente simplicité. On pourra en particulier se reporter aux articles de Franks
et Wada [8, 23] concernant la topologie des orbites périodiques des champs
de la sphère S3. Les bifurcations des entrelacs d'orbites périodiques ont été
étudiées dans [3]. Enfin des liens étonnants ont été mis en évidence avec les
hamiltoniens intégrables dans [4].

Le théorème 1.1 montre en particulier que l'on peut toujours «simplifier»
par une homotopie n'importe quelle dynamique sur une variété de Seifert. On
voit aussi que le nombre d'orbites périodiques d'un champ de Morse-Smale
non-singulier, que l'on peut interpréter comme une mesure de complexité pour
ces champs, n'est pas relié à sa classe d'homotopie.
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Dans [15, §6], MacKay propose d'étudier l'influence de la géométrie de

la variété (au sens de Thurston) sur l'existence de dynamique compliquée,
à homotopie près (il emploie le terme isotopy pour l'homotopie de champs
non-singuliers). En particulier, il rappelle que l'on peut rendre périodique, par
une homotopie, le flot géodésique sur une surface. Le théorème 1.1 entraîne
l'existence d'une homotopie du flot géodésique vers un champ de Morse-Smale

non-singulier.
Le critère d'homotopie et le processus de construction de champs de

Morse-Smale présentés ici sont des généralisations de [6] où nous menions
cette étude sur la sphère S3. Nous espérons que les techniques employées ici
pourront être utilisées dans d'autres situations.

1.1 Critère d'homotopie pour les applications

Considérons une variété M de dimension trois, compacte, orientable, sans

bord. Nous nous intéressons aux applications lisses de M dans la sphère S2,

à homotopie près.

Si la variété de départ est la sphère S3 (ou une sphère d'homologie), Hopf
associe à une application / un nombre, //(/), en calculant l'enlacement entre
les images réciproques de deux valeurs régulières de /. Ce nombre ne dépend

pas du choix des valeurs régulières et est invariant à homotopie de / près.

De plus, il classe ces applications à homotopie près (cf. [16] par exemple).

Plus généralement, si / est une application de M dans S2, l'image
réciproque d'une valeur régulière y est une sous-variété orientée de codi-
mension 2 de M. Le choix d'une base du plan tangent à S2 au point y
permet de trivialiser le fibré normal de /-1(y), on dit que cette sous-variété

associée à / est encadrée {framed en anglais). Dans [21, 22] (voir aussi [16,

§7]), Pontryagin montre que la variété encadrée associée à / ne dépend pas,
à cobordisme encadré près, du choix de la valeur régulière ou du choix de la
base du plan tangent à S2. Sa classe de cobordisme encadré est indépendante
de / dans sa classe d'homotopie et les classes de cobordisme encadré des

entrelacs encadrés d'une variété de dimension trois sont en bijection, par cette

association, avec les classes d'homotopie des applications de M dans S2.

L'existence d'une homologie entre deux entrelacs d'une variété de dimension

trois étant équivalente à l'existence d'un cobordisme entre ces entrelacs

(cf. remarque 2.3), on associe donc à une application / une classe

caractéristique, c/, dans //j(M, Z) qui est la classe d'homologie de /-1(y) pour
une valeur régulière y. Cette classe caractéristique ne dépend pas du choix
de y et est invariante si on change / par une homotopie. D'après le résultat
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de Pontryagin, il reste donc à comprendre la partie «encadrement» pour
caractériser la classe d'homotopie de /. Pour cela, nous rappelons qu'un
élément r de Z) est de torsion s'il existe un entier k non nul tel

que kr — 0.

Définition 1.2. Le diviseur maximal (libre) d'une classe d'homologie c

de H\ (M, Z) est

• le plus grand entier non nul p vérifiant c pg pour g dans Z)
si c n'est pas de torsion,

• nul si c est de torsion.

Un élément dont le diviseur maximal est égal à 1 est appelé générateur ou
élément primitif.

Pontryagin montre dans [21, §4] la proposition suivante (voir aussi [2,
Theorem 6.2.7], [10, Proposition 4.1] et [13, Proposition 2.1] pour des preuves
plus modernes).

Proposition 1.3. La classe d'homotopie d'une application f de M
dans S2 est décrite par sa classe caractéristique Cf dans H\ (M, Z) et un

« degré de Hopf » d dans un espace affine Z2pf, où pf est le diviseur maximal
de Cf.

Nous expliquons plus précisément cette description à la section 2. Le

problème de cette description est qu'il n'y a pas de manière canonique
d'identifier l'espace affine Z2/7/ avec Z2Pf (voir l'exemple au §3.3). On peut
montrer qu'une telle identification existe si Cf est nulle ou de torsion; en

particulier, on retrouve l'invariant de Hopf dans Z si M — S3 (cf. [21]).

Dans [13], Kuperberg remarque après la preuve de la proposition 2.2 que,
si l'on compare deux applications f et g ayant même classe caractéristique c,
la différence des degrés de Hopf de / et g est un élément de Z2pf de manière

canonique.

Le premier objectif de cette note est de donner une preuve géométrique
de ce fait. Pour cela, nous considérons les ensembles

et
C+(/, 9) {x M, fix)

C-(f. g) {xe M, fix) -



CLASSES D'HOMOTOPIE DE CHAMPS DE VECTEURS 7

On montre que C+ et C_ sont, quitte à perturber / et g, des entrelacs
orientés de M. Nous montrons alors:

LEMME 1.4. Pour deux applications f et g de M dans S2, on a

[C^(J,g)]Hlrn — cf ~ cg et [C+(/> #)]//i(M) Cf + cg

D'après le lemme précédent, si Cf — cg, la classe d'homologie de C_(/, g)
est nulle; comme C+ et C_ sont disjoints, l'enlacement entre C+ et C_ est

donc bien défini dans Z2P où p est le diviseur maximal de cy cg (voir la
section 2.1). On obtient alors le premier résultat de cette note:

PROPOSITION 1.5. Deux applications f et g de M dans S2 sont homotopes
si et seulement si

• [C-(f,g)]Hlm 0

et, en notant p le diviseur maximal de cy et cg,

• Enl(C+(/, g), C_(/, g)) 0 modulo 2p.

Remarque 1.6. On peut définir une distance en classes d'homotopie entre

deux applications :

• la classe d'homologie de C_ donne la différence en classes d'homologie
entre les classes caractéristiques;

• si la distance entre les classes caractéristiques est nulle, l'enlacement

Enl(C+,C_) donne la distance, dans Z2P, en classes d'homotopie entre

les deux applications.

1.2 Critère d'homotopie pour les champs de vecteurs

Si X et Y sont deux champs de vecteurs non-singuliers sur M, on pose

C+(X, Y) {xe M, X(x) XY(x), A > 0}
et

C_(X, F) {iGM, X(x) XY(x), A < 0}

Comme pour les applications, le théorème de transversalité permet de supposer
(après une éventuelle petite perturbation de X et Y) que C+ et C_ sont des

entrelacs orientés plongés dans M.
On note £(X) G //i(M, Z) le dual de Poincaré de la classe d'Euler de X1-

(le champ de plans X1 est l'orthogonal de X pour une métrique riemannienne

quelconque sur M). Pour les champs de vecteurs, la proposition 1.5 donne le

résultat :
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Proposition 1.7. Deux champs de vecteurs non-singuliers X et Y sur

M sont homotopes si et seulement si

• [C_(Y, Y)\h\{M) — 0, ce qui entraîne £(X) £(F),
et en notant p le diviseur maximal de 6{X) et £{Y),

• Enl(C+(X, F), C_(X, F)) 0 raodw/o p.

La proposition 1.7 est une généralisation de [19, Proposition 1.1] (voir
aussi [6, Lemma 23]) où ce résultat est prouvé dans le cas de la sphère S3.

Remarque 1.8. Pour les champs de plans co-orientés (feuilletages,
structures de contact, feuilletacts, il suffit de remplacer C+ (resp. C_

par l'ensemble des points où les deux champs de plans coïncident avec la même

orientation (resp. orientation opposée) pour que la proposition précédente soit

valide.

1.3 Champs de vecteurs Morse-Smale non-singuliers

Définition 1.9. Un champ de vecteurs X sur M est de type Morse-Smale

non-singulier si

• aucun point de M n'est fixé par le flot de X,
• l'ensemble non-errant de 0 est réduit à un nombre fini d'orbites périodiques

hyperboliques, et

• les variétés stables et instables des orbites périodiques s'intersectent
transversalement.

Asimov montre dans [1] que sur toute variété de dimension supérieure ou

égale à 4 et de caractéristique d'Euler nulle, tout champ de vecteurs non-
singulier est homotope à un champ de Morse-Smale non-singulier. Morgan
montre ensuite [18] que ce résultat ne peut être vrai en dimension trois puisque
beaucoup de variétés n'admettent aucun champ de Morse-Smale non-singulier.
En généralisant la notion de décomposition en anses rondes d'Asimov, il
montre en effet que les seules variétés de dimension trois orientables, à bord

torique et premières pour la décomposition en somme connexe admettant des

champs Morse-Smale non-singuliers sont les variétés graphées (recollement
de variétés de Seifert le long de leurs bords).

Sur les variétés de dimension trois admettant des champs Morse-Smale non-
singuliers, Yano donne dans [26] une caractérisation des classes d'homotopie
admettant des champs de Morse-Smale non-singuliers. En particulier, il montre
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que sur les variétés de Seifert, toute classe d'homotopie de champs de vecteurs
admet un champ Morse-Smale non-singulier. Sur la sphère S3, il existe

un champ de vecteurs Morse-Smale non-singulier avec au plus 6 orbites

périodiques dans chaque classe d'homotopie (voir [24] et [6]). Yano en déduit
l'existence d'un nombre n(M) tel qu'il existe un champ de type Morse-Smale

avec au plus n(M) orbites périodiques dans chaque classe d'homotopie de

champs de vecteurs possible sur M.
L'idée de Yano est tout d'abord de montrer que s'il existe un champ

de Morse-Smale ayant une classe d'Euler donnée, alors toutes les classes

d'homotopie ayant cette classe d'Euler admettent un champ de Morse-Smale.
Puis il montre, sur les variétés de Seifert, que l'on peut construire un champ
de Morse-Smale ayant n'importe quelle classe d'Euler.

Nous utilisons la même stratégie, mais quand Yano utilise la somme

connexe avec S3 pour réaliser la première étape, nous utilisons le critère donné

à la proposition 1.7 pour construire les champs de vecteurs (proposition 5.9).
En outre, nous n'utilisons pas la décomposition en anses rondes de la variété,
élément essentiel de la preuve de Yano. Enfin, nous précisons les résultats

de [25], afin de prouver l'existence du nombre n(M).
L'avantage de notre approche est d'une part que nous construisons

explicitement des champs de vecteurs Morse-Smale dans chaque classe

d'homotopie; d'autre part, les orbites périodiques des champs de vecteurs que

nous construisons ne sont en général pas homologues à zéro. En particulier,
ces champs sont transverses à un feuilletage, grâce à un résultat de Goodman

([11], voir aussi [27]). Cela nous amène à discuter d'une classification des

entrelacs essentiels (sans composante homologue à zéro) similaire à celle de

Wada [23] dans le cas de la sphère (section 5.5).

Remerciements. Je tiens à remercier Pierre Derbez pour son aide

« homologique » et l'intérêt qu'il a porté à ce travail. Je remercie aussi Max
Forester, Robert MacKay et Colin Rourke pour de nombreuses discussions

très motivantes, ainsi que Daniel Lines pour son aide précieuse. Alexis
Marin m'a aidé à corriger certaines erreurs contenues dans cet article, je
l'en remercie vivement. Enfin je suis reconnaissant à Etienne Ghys pour ses

encouragements.
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2. Entrelacs encadrés et modèles de Pontryagin

Nous considérons M une variété de dimension trois, compacte, connexe

et orientée.

Définition 2.1. Un entrelacs L dans M est encadré s'il est orienté et s'il
existe une trivialisation to du fibré normal à L, compatible avec l'orientation
de M.

Deux entrelacs encadrés (L, ü) et (L, ö) sont e-cobordants s'il existe une
surface S, plongée dans M x /, telle que S rencontre le bord de M x I
transversalement, dS L x {0} U —L x {1} et s'il existe 53 une trivialisation
du fibré normal de S coïncidant avec t) et —ö le long de L x {0} et de

—L x {1}. Une classe pour cette relation d'équivalence est appelée une classe

de cobordisme encadré.

Remarque 2.2. Dans cette définition, la surface S est nécessairement

orientable.

La donnée d'une trivialisation du fibré normal à un entrelacs orienté L
dans M (resp. à une surface (orientable) S dans M x I) est équivalente à la
donnée d'un champ de vecteurs non-singulier (tangent à M (resp. M x /))
normal à L (resp. S).

Réciproquement, étant donnée une trivialisation t) du fibré normal de L
dans M (resp. d'une surface S dans M x /), nous appellerons champ de

vecteurs constant dans t) un champ de vecteurs au voisinage de L (resp. S)
dont la restriction à L (resp. S) est envoyée sur une constante par t).

Remarque 2.3. Deux entrelacs orientés L et L sont cobordants s'il
existe une surface S plongée dans M x /, telle que S rencontre le bord
de M x / transversalement, dS L x {0} U -L x {1}. Il est clair que
si L et L sont cobordants, ils sont homologues. La réciproque est vraie
aussi : si L et L sont homologues, il existe a une 2-chaîne dans M x I
entre L et L. Il est facile de réaliser a comme une surface immergée
dans M x /, plongée partout sauf en un nombre fini d'auto-intersections. En

passant localement en coordonnées complexes et en raisonnant comme en
dimension réelle 1, ces auto-intersections s'éliminent facilement pour obtenir
un cobordisme S.
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2.1 Enlacement avec un entrelacs quelconque

On considère deux entrelacs disjoints K et L, orientés et homologues
à zéro dans M. Soit cfk une 2-chaîne bordant K (la 2-chaîne cfk existe

car K est homologue à zéro), <jk est orientée de sorte que l'orientation
qu'elle induit sur son bord soit celle de K. On compte le nombre algébrique
de points d'intersection entre cfk et L (génériquement, ils s'intersectent

transversalement) et on pose Eni(K,L) crK - L. Ce nombre d'enlacement

ne dépend pas du choix de cfk car L est aussi homologue à zéro; on montre
aussi que En\(K, L) Enl(L, K).

Nous aurons besoin d'une définition d'enlacement plus générale. Soit K un
entrelacs orienté de M, d'homologie c (on note p le diviseur maximal de c),
si L est un entrelacs orienté disjoint de K d'homologie nulle, il existe une

2-chaîne orientée crL bordant L et intersectant K de manière transverse. En

comptant le nombre algébrique d'intersections, on pose Eniai(K,L) <jl-K.
Ce nombre dépend du choix de eu, mais sa réduction modulo p ne dépend

que de K et L. En effet, si a'L est une autre 2-chaîne orientée bordant L,
la réunion X U -a[ représente un élément de HiiM). Ainsi la

différence Enl^^L) — Enia>{K,L) est naturellement dans Hq(M) Z et

vaut [K]Hl • [Z]tf2.

• Si [K]Hl est un élément de torsion, le produit [K]Hl • [X]//2 est un élément

de torsion de Z, il est donc nul et Eniai(K,L) Enia'L(K,L).
• Si |K]hx n'est pas de torsion, son diviseur maximal p divise le produit

\K\Hl • [Zk2 et Enl^L) - Enl^L) 0 mod p.

Définition 2.4. L'enlacement de L avec K est défini par

Enl(^, L) crL • K modulo p

Soient K un nœud orienté de M3 et T une paramétrisation de son voisinage
tubulaire (i.e. un difféomorphisme T: D2 x S1 -A M tel que T(D2 x S1) soit

un voisinage de K T({0} x S1)). L'image par T d'un cercle {x} x S1 sera

appelée un 1 -câble de K. Plus généralement, en remarquant que les disques

transverses à K sont naturellement orientés :

Définition 2.5. Un n -câble L (pour n un entier non nul) de K est

un nœud orienté, dans un voisinage tubulaire de K, intersectant les disques

transverses à K de manière positive en n points.
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Si K est homologue à zéro, on peut définir plus précisément, pour p et

q deux entiers premiers entre eux (p non nul) :

Définition 2.6. Un (p,q)~câble L de K est un p -câble de L tel que
l'enlacement entre L et K soit égal à q.

L'image d'un nœud (pf,qf) de dD2 x S1 par une paramétrisation du

voisinage tubulaire de K donne un (p', q' + k) -câble de K. Comme K est

homologue à zéro, il existe une paramétrisation du voisinage tubulaire de sorte

que k soit nul.
Si 7 est un entrelacs dans M et que ü est une trivialisation de son fibié

normal, on note 07 l'entrelacs obtenu en poussant 7 le long d'un champ de

vecteurs constant dans t).

Définition 2.7. Pour 7 un nœud homologue à zéro dans M, on note tu„
une trivialisation de son fibré normal telle que row7 soit un (1,«)-câble de 7.

2.2 Cfassification des entreeacs encadrés

Soient (L, t>) et (L, ö) deux entrelacs encadrés, tels que L et L sont

homologues ; on note c la classe d'homologie de L et de L et p son diviseur
maximal.

Soit S C M x I un cobordisme réalisant cette homologie, on suppose pour
l'instant que S est connexe. Soit D un disque de S, on peut trivialiser le fibié
normal de S\D en étendant ü et —5, on note %3s\d une telle trivialisation.
On considère un petit disque dans le complément de LU L dans M x {1},
on note 7 son bord.

Il existe un entier n tel que (L, t)) et (L]J 7, ö [j tx>„) sont e-cobordants,
le cobordisme étant obtenu en collant un cylindre à S le long de dD et en

prolongeant %3s\d à ce cylindre, voir la figure 1 (cette construction peut être

trouvée aussi dans [9, §3.3.3]). Comme nous avons supposé S connexe, ce
nombre n est indépendant du choix de D dans S. De plus, on a le lemme
suivant.

LEMME 2.8. Le nombre n ne dépend pas du choix de S ou de %3s\d

modulo 2p.

Démonstration. Notons n(S, 93) le nombre obtenu avec S et 9JS\D pour
D un disque de S. Considérons S' un autre cobordisme entre L et L,

3 pour D' un disque de S' et %ïfs,\D, une trivialisation du fibré normal
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Figure 1

La surface S privée de D, et son cylindre

de Sf \Df, nous notons le nombre obtenu. Notre objectif est de

prouver w(S, 53) w(S', 53') mod 2p.

• Soit 53o tin champ de vecteurs, tangent à M x /, défini sur S \ D,
constant dans 53. Le champ de vecteurs 53o est partout normal à S \D, on
le prolonge en un champ X0 au voisinage de S\D et on note So la surface
obtenue en poussant S \ D le long de Xq ; on note 70 la composante de bord
de So correspondant à dD. On remarque que les surfaces S \ D et So ne
s'intersectent jamais.

Lemme 2.9. Il est possible de coller un disque à So, le long de 70, pour
obtenir une surface Si ayant un nombre d'intersection avec S égal à w(S, 53).

Démonstration. Pour cela, il suffit de remarquer que, par définition de

n(S, 53), on peut coller un cylindre C à S \ D le long de dD de sorte que
son autre bord 7 soit dans M x {1} le bord d'un disque F. Nous pouvons
étendre 53o le long de ce cylindre et ainsi, en poussant 7 le long de 53o, on
obtient un nœud s'enlaçant n(S, 53) fois autour de 7.

La surface S est homotope à l'union S (S \ D) U C U F, de même, la
surface S0 est homotope à la surface SÖ obtenue en poussant (S \ D) U C le

long de 53o. Les surfaces S et So se coupent exactement en n(S, 53) points,
tous dans F. Il est maintenant facile de coller un disque à So ne coupant
pas S ailleurs qu'en ces points. Nous obtenons ainsi la surface Si, en faisant
une homotopie dans l'autre sens pour que Si ne rencontre M x {0,1} qu'en
son bord, le nombre d'intersection étant préservé par homotopie, on obtient
le lemme.
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• Nous recollons deux copies de M x I le long de leurs bords (en renversant

l'orientation d'une des copies) afin d'obtenir la variété de dimension 4, sans

bord, Mx S]. On recolle les surfaces S et —Sf le long de L x {0} et L x {1}
pour obtenir une surface fermée £ dans M x S1. De même, les surfaces

S\ et — S[ construites comme ci-dessus se recollent le long des 1-câbles de

L x {0} et L x {1} obtenus en poussant L x {0} et L x {1} par des champs de

vecteurs constants dans les trivialisations t) et t> respectivement. On obtient

ainsi une surface £i. En prenant garde aux orientations, on voit que S et Si

s'intersectent en n(S,%J) — n(S' ,2ß') points (au signe près).

• Nous terminons la preuve comme [2, Theorem 6.2.7] ou [10, Proposition

4.1]. La classe d'homologie (dans H2(M x S1)) de S est la même que
celle de Si et elle s'écrit, d'après la formule de Künneth:

[S] [a x S1] + [b x {w}]

avec a un 1-cycle de M et b un 2-cycle de M. On voit facilement que

[a] — c la classe d'homologie de L et de L. Ainsi,

[E] • [E!] [axS1] • [axS1] + 2 [axS1] • x {w}] + x {w}] • {w}],

d'où :

n(S, 9J) - n(S', 9J;) [S] • [Sj] 2c • [b]

avec le dernier produit dans

On en déduit que si c est de torsion, 2c-[b] est de torsion dans H^{M) Z,
ce qui entraîne n(S, 9J) — n{S', QJ7) 0. Si c n'est pas de torsion, p divise c

et n(S, 9J) - n(S',%3') 0 mod 2p.

Définition 2.10. La différence de degré de Hopf entre (L, ü) et (L, ö)

est l'élément de 7j2P défini par n((L, t)), (L, 6)) n(S, 3j) mod 2/7 pour S et
QJ comme ci-dessus.

Le théorème de Hopf sur les applications de S3 dans S2 peut se généraliser

pour obtenir:

Lemme 2.11. Deux nœuds L et L homologues à zéro dans M, dont le

fibré normal est trivialisé par tvn et ttrespectivement sont e-cobordants si

et seulement si n h. De plus, on a la formule /i((L, ton), (L, ro,~?)) n — h,

au signe près.
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On en déduit les deux résultats suivants. Le premier nous permet de déduire
que l'hypothèse « S connexe», dans la définition 2.10 de la différence de degré
de Hopf, ne restreint pas la portée de cette définition.

LEMME 2.12. Si deux entrelacs encadrés (L, t)) et (L, 6) sont e-cobordants,
on peut trivialiser le fibré normal de tout cobordisme S orientable pour obtenir
un cobordisme encadré dès que S est connexe.

LEMME 2.13. Deux entrelacs encadrés (L, t)) et (L, ö) sont e-cobordants
si et seulement si

• IL) [L]

et, en notant p le diviseur maximal de [L] [L],
• n((L, t)), (L, 5)) 0 mod 2p.

Pontryagin montre que les classes de cobordisme encadré d'entrelacs
encadrés de M sont en bijection avec les classes d'homotopie des applications
de M dans S2. En conséquence du lemme 2.13, nous obtenons (voir §3.3
pour un exemple) :

THÉORÈME 2.14 ([21], §4). La classe d'homotopie de /: M —$ S2 est
caractérisée par :

• sa classe caractéristique Cf [f~x(y))H{(M), et

• un « degré de Hopf» appartenant à 7u2Pf, affine dans Z.

2.3 Modèles de Pontryagin

Soit c un élément de HfM) et 7 un nœud réalisant cette classe

d'homologie. Nous considérons T(7) un voisinage tubulaire de 7, identifié
avec S1 x D2 par un difféomorphisme T.

Nous paramétrons le cercle S1 par lü g [0, 2tt] le disque D2 avec les
coordonnées polaires usuelles (r, 6) avec r G [0,1] et 0 G R/27tZ. On identifie
la sphère S2 privée du pôle Sud (noté S) avec le disque D2, en envoyant le
pôle Nord sur 0 et les méridiens sur les rayons {(r, 0O), r G [0,1 [}.

Pour ne Z, on définit l'application Pcn: M -> S2 «rajoutant n twists à

droite aux 1 -câbles de 7 donnés par T » par

Pc,n =S sur M \ 7X7)

Pc,n(T~l(w, r,0)) T(w, r, nuo + 9) sur T(7).
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On vérifie facilement que PCjW est continue, les points de S2 \ {S} sont des

valeurs régulières et P~\ (N) 7.

Théorème 2.15 (Construction de Pontryagin). Toute application f de M
dans S2 telle que Cf — c est homotope à un Pc^n.

De plus, Pc,n est homotope à Pcy si et seulement si n ri mod 2p, où

p est le diviseur maximal de c.

Remarque 2.16. Dans la construction précédente, l'utilisation des pôles

Nord et Sud n'est pas essentielle, on peut construire un modèle ayant les

mêmes propriétés avec n'importe quelle paire de points distincts de S2.

3. Comparaison d'applications

On définit C+(/,g) (resp. C_ (/,#)) comme l'ensemble des points de M
où / g (resp f — -g). Quitte à perturber légèrement / et g (ce qui ne

change pas les applications à homotopie près), le théorème de transversalité

nous permet de supposer que C+(/, g) et C_(/, g) sont des sous-variétés

plongées dans M, de codimension 2.

En choisissant une orientation sur M et sur S2, les entrelacs C+(/, g) et

C_ (/,<?) héritent d'une orientation naturelle de la façon suivante: on associe à

/ un plongement F: M <-A MxS2 qui envoie le point x sur le couple (xj(x)).
On note 7r la projection de MxS2 sur le premier facteur M. Génériquement,

les images F{M) et G(M) s'intersectent transversalement dans MxS2, le long
d'une sous-variété de dimension 1, naturellement orientée, qui est en bijection
via 7r avec C+(/,g). On peut tenir le même raisonnement pour orienter

C-(f,g) avec l'intersection des images F{M) et —G(J4) (M,—g(M)).

Remarque 3.1. L'orientation de l'intersection F(M)C\G(M) est l'opposée

de l'orientation de G(M) n F(M). Ainsi les orientations de C+(/,g) et de

C-(f,g) dépendent de l'ordre des applications.

La classe d'homologie (dans /fi(M, Z)) de C+(/u?) et de C-(f,g) est

invariante si on modifie f ou g par homotopie. D'autre part, C+(/, g) et

C-(f,g) ne s'intersectant jamais, on en déduit que la classe d'homologie de

C+(/,0), resp. C-(f,g), dans Zfi (M\C_(/, g),Z), resp. Hx(M\C+(J,g), Z),
est aussi invariante par homotopie des applications / et g.
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3.1 Première obstruction

Si / et g sont homotopes, il existe une application/, homotope à /, telle

que C_(/, g) {0} ; ainsi [C_(/, g)]//j(M) 0 est une condition nécessaire

pour que / et g soient homotopes.

3.1.1 Interprétation géométrique. L'interprétation de cette première
obstruction est donnée par le lemme 1.4 que nous rappelons ici.

Lemme 3.2. Pour f et g de M dans S2, on a

g)]H](M) — Cf — cg et [C_|_(/, g)]H{(M) Cf + cg

Démonstration. On considère y £ S2 une valeur régulière commune à /,
g et —g. Comme _y est valeur régulière de g, —y est valeur régulière de

-g. On note 7/ =f~l(y), -y_g (~g)~\y) et /3_g (-g)~l(-y)\ ils sont

orientés comme images réciproques de y et —y par f et —g respectivement.

Remarquons que la classe d'homologie de y_g et de ß_g est l'opposée de cg :

[7-gl [ß-g] — c-g ~ ~cg •

On peut supposer, en faisant une homotopie sur f et g, que yy et ß-g
sont disjoints et que f —y sur le complément d'un voisinage tubulaire de 7/
et —g y sur le complément d'un voisinage tubulaire de ß_g. Ceci entraîne

que C_(/, g)7/' U il et que

[C-(/)5)]//i(M) cf+ c-g

Enfin, on remarque qu'en tenant compte de l'orientation, C+(/, g)

C_(/, -g) et donc que C+(/, g) cf - c_g cf + cg.

3.2 Seconde obstruction

Si M est la sphère S3, la première obstruction est toujours nulle, on

montre facilement (en adaptant les résultats de [19, Proposition 1.1] ou [6,

Lemma 23]) que deux applications f et g sont homotopes si et seulement si

l'enlacement entre C+(/, g) et C-(f,g) est nul.

Supposons maintenant que la première obstruction à l'existence d'une

homotopie entre f et g est nulle g)\Hl(M) 0) et de plus, supposons

que l'on connaisse p, le diviseur maximal de Cf cg. En rappelant que dans

ce cas, \C, gy\nx{M) — 2Cf (lemme 3.2) et que l'enlacement Enl(C+,C_)
est bien défini modulo 2p (§2.1), nous montrons alors:
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Lemme 3.3. Les applications f et g comme ci-dessus sont homotopes si

et seulement si l'enlacement entre C+(/, g) et C_(/, g) est nul modulo 2p.

Démonstration. Considérons f et g telles que Cf -- cg ; soient 71 et 72

deux nœuds disjoints de M dont l'homologie est c/ cg et tels qu'il existe

un anneau A plongé dans M, tel que dA 71 U 72 sans tenir compte de

l'orientation). On considère U\, U2 des voisinages tubulaires de 71 et 72

respectivement (U\ et U2 sont disjoints), paramétrés de sorte que la trace de A
dans U\ (resp. U2) soit l'image de JxS1 avec J un segment de D2. En notant

un point de S2, distinct des deux pôles, la section précédente nous permet
de construire deux modèles de Pontryagin Pkl et Pkl tels que P^1 (TV) 71,

ph\ M\1ÂS> Jfe'W 72' pki\m\TT2et ph est homotope à Pk,

est homotope à g. Nous remarquons que pour tout point y de S2, différent
de TV et S, P^1 (y) rencontre A en k\ points. Et pour tout point y de S2,

différent de * et —(y) rencontre A en &2 points.
Comme U\ et U2 sont disjoints, on montre facilement que

C-(Pk,, Pk2) (*) u P,2l(AO
et

C+(Pkl,Pk2) p-k;'(-*) u P^(S).

De plus, comme cj — ctJ, le lemme 3.2 implique que [C+] — 2cf et

[C_l 0. D'autre part, P^l(*), P^1 (N), P^(—*) et P^S), orientés

comme images réciproques de points de S2, sont homologues (et connexes).

Ainsi, C_ est orienté de sorte qu'avec l'orientation induite, la composante
Pkl\*) est homologue à l'opposé de la composante K' (N). Nous supposons
dorénavant que l'orientation induite par C_ sur Pkll(*) et Pkl1 (*) coïncide

avec l'orientation naturelle comme image réciproque de Pk]. D'autre part,
C+ est orienté comme Pkl(—*) et P^2l(S).

On utilise une modification de l'anneau A, orienté, comme homologie de

C_ à zéro pour calculer l'enlacement entre C+(Pkl,Pk2) et C-(Pkl,Pk2) pour
en déduire:

Enl(C+(P^, Pfe), C-(Pkl, Pk2)) ki - k2 mod 2p.

D'après le théorème de Pontryagin (théorème 2.15), Pkx et Pkl sont homotopes
si et seulement si k\ k2 mod 2p, donc / et g sont homotopes si et seulement
si Enl(C+(Pjfe1, P*2), C-(Ph » pk2)) Eni(C+(/, g), C_(/, g)) 0 mod 2p. Ce

qui achève la preuve du lemme.

Les lemmes 3.2 et 3.3 permettent de prouver la proposition 1.5.
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3.3 Exemple

Nous adaptons l'exemple de Pontryagin [21, §4] pour montrer l'utilité de

notre critère. On considère les applications de S2xSl dans S2 ; le théorème 2.15

assure l'existence de deux applications distinctes à homotopie près ayant le

générateur de H\(S2 x S1) comme classe caractéristique.
Une de ces applications est donnée par tt : S2 x S1 —» S2 la projection sur

le premier facteur. Soient p et q deux points diamétralement opposés de S2,

sphère unité de R3, on note <j)a la rotation d'angle a et d'axe pq. Dans les

coordonnées polaires usuelles de l'espace (r.u) (r G [0,oo[ et u? E S2), on
définit la suite de difféomorphismes cpn: R3 -A R3 par pn(r,uj) (r, <j)nr(uj)).

On note encore pn la factorisation de pn comme difféomorphisme de S2 x S1

(cf. figure 2) et on remarque que (pn est homotope à pm si et seulement si

n m mod 2 (tti (SO(3)) Z2 et ip\ décrit un générateur de ce groupe).

Ainsi, fn 7T o cpn : S2 x S1 -E S2 est homotope à 7r si et seulement si n est

pair; 7r et ^ sont donc les deux seules applications, à homotopie près, ayant
le générateur de H\{M) comme classe caractéristique.

Les applications fn et tt sont égales le long de deux cercles correspondant
à l'axe de rotation et le long d'une sphère. Cette situation n'est pas générique,

une petite perturbation de fn en fn <f>£ ofn permet d'éliminer cette sphère.

X <pi

¥>i

Figure 2

Action de ip\ sur S2 x S]
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Les applications fn et ir sont opposées le long de n cercles parallèles
dans le plan z 0. Le calcul de l'orientation nous permet de conclure

que Enl(C+(/„,7r), C_(/„,7r)) n mod 2. En appliquant le lemme 3.3, on

retrouve le résultat: fn est homotope à n si et seulement si n est pair.

4. Application aux champs de vecteurs non-singuliers

Si M est une variété de dimension trois compacte, sans bord et orientable,

son fibré tangent TM est trivialisable (voir [17, Problem 12.B] par exemple).
En choisissant une trivialisation r : TM -A M x R3, on identifie les classes

d'homotopie des champs de vecteurs non-singuliers sur M (homotopie à travers
les champs non-singuliers) avec les classes d'homotopie des applications de M
dans S2. Cette remarque pose deux problèmes : a priori, l'identification dépend
de la trivialisation choisie; de plus, la construction explicite de trivialisations
du fibré tangent est en général un problème difficile. Les résultats de la section

précédente vont nous permettre de contourner en partie ces deux problèmes.
Soit X un champ de vecteurs non-singulier sur M et r une trivialisation

du fibré tangent; on note XT : M -A S1 l'application induite et cXt la classe

d'homologie de l'image réciproque d'une valeur régulière de XT.
Rappelons que la classe d'Euler d'un champ de plans co-orienté sur une

variété de dimension trois est l'obstruction (dans //2(M,Z)) à compléter une
trivialisation de ce champ de plans du 1-squelette d'une triangularisation de

la variété au 2-squelette. Nous appelons aussi classe d'Euler son dual de

Poincaré (dans H\(M,Z)) et nous définissons la classe d'Euler d'un champ de

vecteurs non-singulier, notée £(X), comme étant la classe d'Euler du champ de

plans orthogonal au champ de vecteurs, X1-, pour une métrique riemannienne

quelconque.
Un résultat classique de topologie algébrique nous permet de calculer la

classe d'Euler de la façon suivante : une section générique d'un champ de plans
va couper la section nulle le long d'un entrelacs orienté, la classe d'homologie
de cet entrelacs ne dépend pas du choix de la section générique, c'est la classe

d'Euler du champ de plans.
Le résultat suivant est connu; afin d'être complet, nous incluons la preuve

de [2, Lemma 6.1.4].

Lemme 4.1.

a la formule
Pour toute trivialisation r et tout champ de vecteurs X, on

£(X)2cXt



CLASSES D'HOMOTOPIE DE CHAMPS DE VECTEURS 21

Démonstration. Construisons une section générique de X1-, pour cela on
choisit y sur S2 de sorte que y et —y soient des valeurs régulières de XT. On

définit s: M X1- par s(x) r~l(x,XT(x) A y) (A représente ici le produit
vectoriel usuel de R3). Cette section s'annule exactement quand XT(x) est

colinéaire à y, c'est-à-dire sur l'ensemble X~l(y)UX~l(—y). L'homologie de

l'intersection de cette section avec la section nulle est donc égale à 2cXr O

Remarque 4.2. La classe d'Euler est invariante à homotopie près et

indépendante du choix de la trivialisation du fibré tangent; ce n'est donc pas
le cas de cxT, qui peut dépendre du choix de la trivialisation si H\ (M, Z)
contient des éléments d'ordre 2.

Le diviseur maximal de cxT ne dépend pas du choix de la trivialisation

car c'est la moitié du diviseur maximal de £(X).

Définition 4.3. Un champ de vecteurs X est complétable si £(X) 0.

Pour tout champ de vecteurs complétable, il existe une trivialisation tx
telle que XTx soit une application constante.

On retrouve facilement un joli résultat de Gompf [10, Corollary 4.10].

Lemme 4.4. Un champ de vecteurs X est complétable si et seulement si

X est homotope à —X.

Démonstration. La première implication est évidente. Si X est homotope
à —X, pour n'importe quelle trivialisation r, cxT ~C-xT — c-xT • Ainsi

2c-xT — 0 et 2cXt 0 ; donc £(X) 0.

Soient X et Y deux champs de vecteurs non-singuliers sur M, on

définit C+(X,F) {x G M, X(x) \Y(x) avec A > 0} et C_(X, Y)

{v G M, X(x) ÀF(jc) avec À < 0}. Comme conséquence des résultats de

la section précédente, on obtient la proposition suivante qui donne un critère

indépendant du choix de la trivialisation :

Proposition 4.5. Deux champs de vecteurs non-singuliers X et Y sur

M sont homotopes si et seulement si

• [C_(X, F)]#j(m) 0, ce qui entraîne Végalité des diviseurs maximaux des

classes d'Euler de X et Y (on note p cet entier), et

• Enl(C+(X, F), C_(X, F)) 0 modulo p.
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5. Champs de Morse-Smale sur les variétés de Seifert

5.1 Construction initiale
On considère une variété de Seifert M3 de base une surface compacte S et

de projection p : M -A S, on note xt pour i allant de 1 à « les points de S où

se projettent les fibres exceptionnelles de p. Si Yo est un champ de vecteurs
Morse-Smale sans orbite périodique sur S, tel que tout xt soit une singularité
de Y0 (de type puits ou source), on choisit une métrique riemannienne sur

M et on relève Yo en un unique champ de vecteurs lisse, Xo, orthogonal aux
fibres de p. Le champ Xq est nul le long de toutes les fibres se projetant
sur des zéros de Yo. On note X\ le champ de vecteurs unitaire, tangent aux
fibres et on pose X — Xq + X\. Le champ de vecteurs X est un champ de

Morse-Smale non-singulier lisse sur M, dont la dynamique se projette via p
sur celle de Yo.

Remarque 5.1. Quitte à rajouter des extrema locaux (en particulier aux
points Xi), une petite perturbation du champ de gradient d'une fonction de

Morse sur S permet de construire un champ Yo comme ci-dessus (sans orbite
périodique).

5.2 Opération de Wada

Un entrelacs dans M est indexé si on attribue à chaque composante un
indice, 0, 1 ou 2. L'entrelacs des orbites périodiques d'un champ de Morse-
Smale est naturellement indexé par la dimension de la variété instable du point
fixe de l'application de premier retour sur un disque transverse.

Dans [23], Wada donne une caractérisation des entrelacs indexés réalisables

comme entrelacs d'orbites périodiques de champs de Morse-Smale sans

singularité sur la sphère S3. Il définit 6 opérations sur les entrelacs indexés
de la sphère et un générateur: l'entrelacs de Hopf indexé par 0 et 2.

Nous nous intéressons plus particulièrement ici à la cinquième opération de

Wada qui consiste à remplacer un voisinage tubulaire d'une orbite périodique
K, d'indice 0 ou 2, par un tore solide contenant trois orbites périodiques
K\, K2 et K$ L'âme du tore est l'une de ces orbites périodiques, K\, son

plongement dans M a donc le même type de nœud que K. Les orbites K2 et
K2 sont des «-câbles parallèles de K\. L'orbite K2 est une selle et les indices
de K\ et K3 sont 0 ou 2 mais au moins l'un des deux doit avoir l'indice de K.
La suspension du difféomorphisme du disque décrit sur la figure 3 permet
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d'obtenir une selle et un attraeteur câblant l'attracteur de départ (centre du

disque).

Figure 3

Une selle et deux attracteurs

Si le champ initial est de type Morse-Smale, il en est de même du champ

obtenu en appliquant la cinquième opération de Wada (la transversalité des

variétés stables et instables des selles étant facile à obtenir). De plus, le champ

obtenu après cette opération est homotope au champ initial.

Remarque 5.2. Le fibré normal de l'orbite K n'est pas nécessairement

trivialisable de manière canonique (contrairement au cas de la sphère S3), on

ne peut donc pas parler de (p,q) -câbles autour de K\, mais seulement de

n -câbles a priori (cf. §2.1).

5.3 Orbites périodiques sur la surface de base

Si dans la construction initiale (§5.1), le champ de Morse-Smale îq admet

des orbites périodiques sur S, le relevé X n'est pas nécessairement Morse-

Smale. Au-dessus de chaque orbite périodique, il laisse invariant un tore

(ou une bouteille de Klein) attractif ou répulsif suivant la nature de l'orbite
périodique de Y0. On modifie alors la dynamique sur ce tore (resp. cette

bouteille de Klein) de la façon suivante. On ajoute 2 orbites périodiques,
de pente (1,0) si la fibre de Seifert représente (0,1) sur le tore. Pour la

dynamique sur le tore, une de ces orbites est attractive, l'autre est répulsive

(figure 4). On peut plonger ce tore dans le tore épaissi, voisinage du tore

invariant de départ de sorte que l'orbite répulsive du tore devienne une selle

pour X.
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La construction sur les bouteilles de Klein (cas où la surface de base n'est

pas orientable) est similaire, on identifie les côtés verticaux de la figure 4 par
un homéomorphisme renversant l'orientation verticale.

Figure 4

Dynamique sur les tores invariants

L'un des points essentiels de la preuve du théorème l.l est la construction
de champs de vecteurs Yq sur la surface de base ayant des orbites périodiques
dont la classe d'homologie est prescrite. Si la surface cle base est orientable,
nous faisons les choix suivants.

Lemme 5.3. • Tout élément primitif de //i(T2,Z) peut être représenté

par une courbe fermée simple, plongée dans T2.

• Si S k #fz=1T2, pour tout élément c de H\(S,Z), il existe À/ pour i
allant de 1 à g tels que c °ù les [7,] sont des éléments

primitifs de //i(T2,Z) et les 7i sont deux à deux disjoints.

• Soit M une variété de Seifert au-dessus de S — #^=1T2. Pour tout c de

H\(M, Z), il existe \t pour i allant de 1 à g, À et olj pour j allant de 1 à
n tels que

g n

<' X>E1 +AIG + yd^l'
/=1 j= 1

où F est une fibre générique, les F) sont les fibres singulières et les projections
des 7/ sur S sont comme dans le point précédent.

Démonstration. Les nœuds toriques (/?, q) avec p et q premiers entre
eux représentent, par une courbe fermée simple, les (déments primitifs de
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//i(T2,Z). Le second point consiste simplement à effectuer la somme connexe
des tores en dehors des 7.

Pour montrer le dernier point, nous remarquons que si l'on note M la
variété obtenue en enlevant un voisinage tubulaire de chaque fibre singulière
et d'une fibre régulière, l'inclusion de M dans M induit un homomorphisme
surjectif de H\(M) dans HfM). La fibration de M est triviale, par un abus

de notation, on pose 7; le relevé dans M de l'iCF (où F est la surface F
privée de n -f 1 points).

Nous laissons au lecteur le soin d'adapter ce lemme au cas où la surface

de base est non-orientable.

Remarque 5.4. Le nombre de termes dans l'expression de c au dernier

point du lemme 5.3 ne dépend que de la variété de Seifert, il est inférieur ou

égal à g -f n + 1.

Etant donné un entrelacs sur la surface S, il est facile de construire un

champ de Morse-Smale Yq sur S ayant cet entrelacs inclus dans l'ensemble
de ses orbites périodiques attractives. En conséquence, on montre (en laissant

encore au lecteur le soin de traiter le cas des surfaces non-orientables) :

Lemme 5.5. Pour M une variété de Seifert, tout élément de //i(M, Z)
est réalisable par la classe d'Homologie d'un entrelacs d'orbites périodiques
attractives d'un champ de Morse-Smale non-singulier sur M.

Démonstration. Ecrivons c G //i(M, Z) comme la somme

9 n

C YVU + A [+ Y ;

1=1 ]= 1

on construit un champ de vecteurs Yq sur la surface de base S ayant les

projections des 7/ (dans 5'\{x;}) comme orbites périodiques, n-f 1 singularités
de type puits aux points 7 et x E S\ {^} U 7/.

On relève Yo en un champ de Morse-Smale non-singulier X comme
précédemment. On applique la cinquième opération de Wada aux orbites
attractives qui correspondent aux 7 avec le coefficient À/ (i.e. on obtient
des Xi -câbles de 7/), aux orbites qui correspondent aux xj avec le coefficient

aj et à l'orbite se projetant sur x, avec le coefficient À. On obtient ainsi

un champ non-singulier X qui est Morse-Smale et qui admet un entrelacs

d'orbites périodiques attractives dont l'homologie est c.
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Remarque 5.6. D'après la remarque 5.4 et la preuve précédente, on déduit

qu'il existe un nombre n(M) tel que tout élément de H\(M,Z) est réalisable

par la classe d'homologie d'un entrelacs d'orbites périodiques attractives d'un
champ de Morse-Smale non-singulier sur M ayant au plus n(M) orbites

périodiques.

Remarque 5.7. En utilisant le résultat de Morgan [18], on retrouve

un résultat de Yano [25] affirmant que tout élément de Z), pour M
une variété de Seifert, est représenté par un entrelacs graphé (i.e. dont le

complément est une variété graphée).

5.4 Preuve du théorème 1.1

La preuve est divisée en deux étapes : dans un premier temps, on considère

M une variété de dimension trois; nous ne supposons pas que M soit une
variété de Seifert.

Nous définissons l'opération permettant de modifier la classe d'Euler d'un
champ de Morse-Smale (voir [1]).

Lemme 5.8. Si X est un champ Morse-Smale non-singulier sur M et

7 est une orbite périodique attractive de X, il existe un champ Morse-Smale

non-singulier Y coïncidant avec X sur le complément d'un voisinage tubulaire
de 7 et ayant —7 comme orbite périodique attractive.

Figure 5

Changement de l'orientation d'une orbite attractive

Le lemme 3.2 nous permet de montrer que, pour r une trivialisation du
fibré tangent de M, les champs Y et E ci-dessus vérifient:

C-(X, Y) 7 et ainsi cXt cYt + [7] •
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Proposition 5.9. Si Xo est Morse-Smale, tout champ de vecteurs X tel

que [C- (Xo, X)] — 0 est homotope à un champ de vecteurs Morse-Smale.

Démonstration. La preuve consiste à construire un champ Morse-Smale
dans chaque classe d'homotopie de champs X telle que [C_(Xo,X)] 0.

• Soit 7o une orbite périodique attractive de Xo, on note c — [70].
On applique la cinquième opération de Wada à 70 pour obtenir X\ ayant
une orbite périodique attractive 71 et une orbite selle de plus que X0 qui sont

des 1-câbles de 70. Les orbites 70 et 71 sont donc homotopes, on note A
l'anneau (que l'on choisit plongé dans M) bordant 70 U 71.

• On considère maintenant le champ Morse-Smale Y\, ayant les mêmes

orbites que X\ avec l'orientation de 71 renversée. On a les relations :

C_(X1,F1)^7i et [C-(XuYi)] c.

• Nous utilisons la cinquième opération de Wada sur les champs X\ et

Y\ sur les orbites ±71, pour obtenir deux champs de vecteurs possédant
chacun une nouvelle orbite attractive ±7}, câble de ±71 et une selle s\.
Cette fois, l'existence de l'anneau A nous permet de définir les invariants

(p\,q\) de l'opération de câblage. Nous choisissons ces invariants comme

suit: (p\ \. q\ — À) pour À un entier non nul et on note X2 et Y2 les

champs obtenus.

• Enfin, on modifie y\ pour obtenir Y2 en changeant l'orientation de —7J.

Ainsi, C_(?2, 7) ~i\'on en déduit K"-< >'1 • 7)] -c (cf- figure 6)-

Figure 6

Les champs et

(Légende: + selle, • puits, o orientation changée)
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Nous venons de construire deux champs de vecteurs X} et YA qui satisfont :

[C_(XA, YA)] c-c 0, avec XA homotope à X0. Or C_(X2\ YA) est

porté par s\ et 71, l'homologie à zéro de cet entrelacs peut être donnée

par un anneau plongé dans un petit voisinage tubulaire de 71, de sorte que
C+(X2 YA) soit réduit à 7} dans ce voisinage. On en déduit que l'enlacement

Enl(C+(X2\ YA),C_(XA, YA)) est égal à A.

La proposition 1.7 permet de conclure que l'on a effectivement construit au

moins un champ Morse-Smale dans chaque classe d'homotopie ayant même

«demi-classe d'Euler» que Xq.

Pour la seconde étape de la preuve, nous considérons M une variété de

Seifert et nous construisons un champ de vecteurs Morse-Smale non-singulier
ayant une «demi-classe d'Euler» donnée.

Étant donnée r une trivialisation du fibré tangent de M, on a:

Lemme 5.10. Pour chaque c dans 77) (M, Z), il existe un champ de

Morse-Smale X, avec moins de n{M) orbites périodiques, tel que cxT c.

Démonstration. Soit Y0 un champ de Morse-Smale sur la surface 5, sans

orbite périodique et singulier aux points où les fibres singulières se projettent.
On note Xq le champ de vecteurs sur M associé à Y() par la construction
initiale. Le champ Xq est homotope au champ de vecteurs tangent aux fibres
de M, on note e sa classe caractéristique pour la trivialisation r.

Soit c un élément de Z), on note c' — e — c et on considère
X' un champ de vecteurs Morse-Smale possédant un entrelacs F d'orbites
périodiques attractives dont l'homologie est d. Un tel champ, avec moins de

n(M) orbites périodiques, existe par le lemme 5.5 et la remarque 5.6.

On applique alors le lemme 5.8 à F pour obtenir un champ de vecteurs
X tel que C-(X,Xf) T. Le lemme 3.2 permet d'obtenir cXr — e — [r]
e — c' — c.

Le théorème 1.1 est une conséquence du lemme 5.10 et de la proposition 5.9.

5.5 Discussion

On peut diviser les champs Morse-Smale non-singuliers d'une variété de

dimension 3 en trois catégories :

1. les champs dont aucune orbite périodique n'est homologue à zéro;
2. les champs ayant des orbites périodiques homologues à zéro mais vérifiant

la propriété d'enlacement de Goodman ([11], voir aussi [27]): dès qu'une
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orbite périodique borde un disque, celui-ci rencontre une autre orbite

périodique ;

3. les champs ne vérifiant pas la propriété d'enlacement.

Dans chaque classe d'homotopie de champs de vecteurs sur une variété de

Seifert dont l'homologie n'est pas nulle, nous avons construit un champ de

Morse-Smale appartenant à la première catégorie. En particulier, d'après [11,
27], ces champs de vecteurs sont transverses à un feuilletage.

Question. Peut-on classifier à la Wada les entrelacs indexés, sans

composante homologue à zéro, d'une variété de Seifert réalisables comme
entrelacs d'orbites périodiques d'un Morse-Smale?

Question. Les autres entrelacs réalisables sont-ils obtenus par somme

connexe avec un entrelacs de Wada de S3
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