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CLASSES D’HOMOTOPIE DE CHAMPS DE VECTEURS
MORSE-SMALE SANS SINGULARITE SUR LES FIBRES DE SEIFERT

par Emmanuel DUFRAINE*)

RESUME. Nous considérons les applications d’une variété de dimension trois,
compacte, orientable et sans bord dans la sphere $?. Nous donnons un critére permettant
de décider si deux applications données sont homotopes, en fonction de I’ensemble
des points ou les applications sont égales et de celui ol elles sont opposées. Nous
étendons ces résultats aux champs de vecteurs non-singuliers et aux champs de plans
co-orientés sur les variétés de dimension trois. Finalement, nous appliquons ce critere
a I’étude des champs Morse-Smale non-singuliers sur les variétés de Seifert.
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I. INTRODUCTION

De nombreuses recherches actuelles portent sur 1’étude de champs de
2-plans ou de champs de vecteurs partout non nuls, targents a une variété de
dimension trois (structures de contact, feuilletacts, champs de Morse-Smale
non-singuliers ... voir en particulier [5, 7, 12, 14, 15]). La classification de
certaines structures particulicres (structures de contact tendues par exemple)
dans les différentes classes d’homotopie est un sujet tres actif actuellement.
Le fibré tangent d’une variété de dimension trois, compacte, orientable est
trivialisable; si la trivialisation est fixée, un champ de 2-plans co-orienté
ou un champ de vecteurs non-singulier est alors uniquement associé a une
application de M dans la sphere S2.

Nous donnons dans cette note un crittre géométrique pour décider si
deux applications de M dans S? sont homotopes ou non (proposition 1.5).
L’avantage de ce critere est qu’il se généralise aux champs de vecteurs non-
singuliers (ou champs de plans co-orientés) et qu’il ne dépend pas du choix
d’une trivialisation du fibré tangent de la variété.

Nous utilisons ce critere pour redémontrer de maniére élémentaire (sans
utiliser les décompositions en anses rondes d’Asimov et Morgan) le résultat
suivant, conséquence des travaux de Yano [25, 26] et de Wilson [24]:

THEOREME 1.1.  Pour chaque variété de Seifert M, il existe un nombre
n(M) tel que tout champ de vecteurs non-singulier sur M est homotope a
un champ de Morse-Smale non-singulier ayant au plus n(M) orbites pério-
diques.

Les champs de vecteurs Morse-Smale non-singuliers sur les variétés de
dimension trois admettent beaucoup de propriétés intéressantes, malgré leur
apparente simplicité. On pourra en particulier se reporter aux articles de Franks
et Wada [8, 23] concernant la topologie des orbites périodiques des champs
de la sphere S°. Les bifurcations des entrelacs d’orbites périodiques ont été
étudiées dans [3]. Enfin des liens étonnants ont été mis en évidence avec les
hamiltoniens intégrables dans [4].

Le théoreme 1.1 montre en particulier que 1’on peut toujours «simplifier »
par une homotopie n’importe quelle dynamique sur une variété de Seifert. On
voit aussi que le nombre d’orbites périodiques d’un champ de Morse-Smale
non-singulier, que I’on peut interpréter comme une mestre de complexité pour
ces champs, n’est pas relié a sa classe d’homotopie.



CLASSES D’HOMOTOPIE DE CHAMPS DE VECTEURS 5

Dans [15, §6], MacKay propose d’étudier I'influence de la géométrie de
la variét€¢ (au sens de Thurston) sur I’existence de dynamique compliquée,
a homotopie pres (il emploie le terme isoropy pour I’homotopie de champs
non-singuliers). En particulier, il rappelle que 1’on peut rendre périodique, par
une homotopie, le flot géodésique sur une surface. Le théoréme 1.1 entraine
I’existence d’une homotopie du flot géodésique vers un champ de Morse-Smale
non-singulier.

Le critere d’homotopie et le processus de construction de champs de
Morse-Smale présentés ici sont des généralisations de [6] ou nous menions
cette étude sur la sphere S*. Nous espérons que les techniques employées ici
pourront €tre utilisées dans d’autres situations.

1.1 CRITERE D’HOMOTOPIE POUR LES APPLICATIONS

Considérons une variété M de dimension trois, compacte, orientable, sans
bord. Nous nous intéressons aux applications lisses de M dans la sphere S2,
a homotopie pres.

Si la variété de départ est la sphere S* (ou une sphére d’homologie), Hopf
associe a une application f un nombre, H(f), en calculant I’enlacement entre
les images réciproques de deux valeurs régulieres de f. Ce nombre ne dépend
pas du choix des valeurs régulieres et est invariant a homotopie de f pres.
De plus, il classe ces applications a homotopie pres (cf. [16] par exemple).

Plus généralement, si f est une application de M dans S*>, I’image
réciproque d’une valeur régulicre y est une sous-variété orientée de codi-
mension 2 de M. Le choix d’une base du plan tangent 2 S au point y
permet de trivialiser le fibré normal de f~!(y), on dit que cette sous-variété
associée a f est encadrée (framed en anglais). Dans [21, 22] (voir aussi [16,
§7]), Pontryagin montre que la variété encadrée associée a f ne dépend pas,
a cobordisme encadré pres, du choix de la valeur régulicre ou du choix de la
base du plan tangent a2 S%. Sa classe de cobordisme encadré est indépendante
de f dans sa classe d’homotopie et les classes de cobordisme encadré des
entrelacs encadrés d’une variété de dimension trois sont en bijection, par cette
association, avec les classes d’homotopie des applications de M dans S%.

Iexistence d’une homologie entre deux entrelacs d’une variété de dimen-
sion trois étant équivalente a 1’existence d’un cobordisme entre ces entrelacs
(cf. remarque 2.3), on associe donc a une application f une classe carac-
téristique, ¢y, dans H{(M,Z) qui est la classe d’homologie de f~'(y) pour
une valeur réguliere y. Cette classe caractéristique ne dépend pas du choix
de y et est invariante si on change f par une homotopie. D’apres le résultat



6 E. DUFRAINE

de Pontryagin, il reste donc a comprendre la partie «encadrement» pour
caractériser la classe d’homotopie de f. Pour cela, nous rappelons qu’un
élément 7 de H{(M,Z) est de torsion s’il existe un entier k£ non nul tel
que kT = 0.

DEFINITION 1.2.  Le diviseur maximal (libre) d’une classe d’homologie ¢
de Hi(M,Z) est
e le plus grand entier non nul p vérifiant ¢ = pg pour g dans H,(M,Z)
si ¢ n’est pas de torsion,

e nul si ¢ est de torsion.

Un ¢élément dont le diviseur maximal est égal a 1 est appelé générateur ou
élément primitif.

Pontryagin montre dans [21, §4] la proposition suivante (voir aussi [2,
Theorem 6.2.7], [10, Proposition 4.1] et [13, Proposition 2.1] pour des preuves
plus modernes).

PROPOSITION 1.3. La classe d’homotopie d’une application f de M
dans S? est décrite par sa classe caractéristique ¢ dans H\(M,Z) et un
«degré de Hopf» d dans un espace affine Ly, , ou py est le diviseur maximal
de cy.

Nous expliquons plus précisément cette description a la section 2. Le
probleme de cette description est qu’il n’y a pas de maniere canonique
d’identifier I’espace affine Z,,, avec Z, (voir I’exemple au §3.3). On peut
montrer qu'une telle identification existe si ¢ est nulle ou de torsion; en
particulier, on retrouve I’invariant de Hopf dans Z si M = S (cf. [21]).

Dans [13], Kuperberg remarque apres la preuve de la proposition 2.2 que,
si ’on compare deux applications f et g ayant méme classe caractéristique c,
la différence des degrés de Hopf de f et g est un élément de Z,, de manicre
canonique.

Le premier objectif de cette note est de donner une preuve géométrique
de ce fait. Pour cela, nous considérons les ensembles

Ci(f,9={xeM, fx)=gx}
C_(f,9={xeM, fx)=—glx}.

et
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On montre que C; et C_ sont, quitte a perturber f et g, des entrelacs
orientés de M. Nous montrons alors:

LEMME 1.4. Pour deux applications f et g de M dans S*, on a

[C—(fs Pl = ¢r — ¢4 et [C+(f, Pl = ¢ + ¢4 .

D’apres le lemme précédent, si ¢f = ¢4, la classe d’homologie de C_(f, g)
est nulle; comme Cy et C_ sont disjoints, I’enlacement entre C; et C_ est
donc bien défini dans Z,, ou p est le diviseur maximal de c¢; = ¢, (voir la
section 2.1). On obtient alors le premier résultat de cette note:

PROPOSITION 1.5. Deux applications f et g de M dans S* sont homotopes
si et seulement si

e [C_(/,Dlaan=0
et, en notant p le diviseur maximal de c; et cg,

e Enl(Cy(f,9),C-(f,9) =0 modulo 2p.

REMARQUE 1.6. On peut définir une distance en classes d’homotopie entre
deux applications:
e la classe d’homologie de C_ donne la différence en classes d’homologie
entre les classes caractéristiques;
e si la distance entre les classes caractéristiques est nulle, I’enlacement
Enl(C4,C_) donne la distance, dans Z,,, en classes d’homotopie entre
les deux applications.

1.2 CRITERE D’HOMOTOPIE POUR LES CHAMPS DE VECTEURS

Si X et Y sont deux champs de vecteurs non-singuliers sur M, on pose

CiX,Y)={xeM, Xx) =), >0}
et

C_.X,Y)={xeM, Xx =), I<O0}.
Comme pour les applications, le théoreme de transversalité permet de supposer
(apres une éventuelle petite perturbation de X et Y) que C; et C_ sont des
entrelacs orientés plongés dans M.

On note £(X) € H{(M,Z) le dual de Poincaré de la classe d’Euler de X+

(le champ de plans X est I’orthogonal de X pour une métrique riemannienne
quelconque sur M). Pour les champs de vecteurs, la proposition 1.5 donne le
résultat:
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PROPOSITION 1.7. Deux champs de vecteurs non-singuliers X et Y sur
M sont homotopes si et seulement si

e [C_(X,V)]y,w =0, ce qui entraine E(X) = E(Y),
et en notant p le diviseur maximal de E(X) et E(Y),
e Enl(CL(X,Y),C_(X,Y)) =0 modulo p.

La proposition 1.7 est une généralisation de [19, Proposition 1.1] (voir
aussi [6, Lemma 23]) ol ce résultat est prouvé dans le cas de la sphere S°.

REMARQUE 1.8. Pour les champs de plans co-orientés (feuilletages,
structures de contact, feuilletacts, ...), il suffit de remplacer C; (resp. C_)
par I’ensemble des points ou les deux champs de plans ccincident avec la méme
orientation (resp. orientation opposée) pour que la proposition précédente soit
valide.

1.3 CHAMPS DE VECTEURS MORSE-SMALE NON-SINGULIERS

DEFINITION 1.9. Un champ de vecteurs X sur M est de type Morse-Smale
non-singulier si

e aucun point de M n’est fixé par le flot ¢ de X,

e ’ensemble non-errant de ¢ est réduit a un nombre fini d’orbites périodiques
hyperboliques, et

e les variétés stables et instables des orbites périodiques s’intersectent
transversalement.

Asimov montre dans [1] que sur toute variété de dimension supérieure ou
égale a 4 et de caractéristique d’Euler nulle, tout champ de vecteurs non-
singulier est homotope a un champ de Morse-Smale non-singulier. Morgan
montre ensuite [18] que ce résultat ne peut étre vrai en dimension trois puisque
beaucoup de variétés n’admettent aucun champ de Morse-Smale non-singulier.
En généralisant la notion de décomposition en anses rondes d’Asimov, il
montre en effet que les seules variétés de dimension trois orientables, a bord
torique et premieres pour la décomposition en somme connexe admettant des
champs Morse-Smale non-singuliers sont les variétés graphées (recollement
de variétés de Seifert le long de leurs bords).

Sur les variétés de dimension trois admettant des charnps Morse-Smale non-
singuliers, Yano donne dans [26] une caractérisation des classes d’homotopie
admettant des champs de Morse-Smale non-singuliers. En particulier, il montre
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que sur les variét€s de Seifert, toute classe d’homotopie de champs de vecteurs
admet un champ Morse-Smale non-singulier. Sur la sphere S*, il existe
un champ de vecteurs Morse-Smale non-singulier avec au plus 6 orbites
périodiques dans chaque classe d’homotopie (voir [24] et [6]). Yano en déduit
I’existence d’un nombre n(M) tel qu’il existe un champ de type Morse-Smale
avec au plus n(M) orbites périodiques dans chaque classe d’homotopie de
champs de vecteurs possible sur M.

L’idée de Yano est tout d’abord de montrer que s’il existe un champ
de Morse-Smale ayant une classe d’Euler donnée, alors toutes les classes
d’homotopie ayant cette classe d’Euler admettent un champ de Morse-Smale.
Puis il montre, sur les variétés de Seifert, que [’on peut construire un champ
de Morse-Smale ayant n’importe quelle classe d’Euler.

Nous utilisons la méme stratégie, mais quand Yano utilise la somme
connexe avec S° pour réaliser la premiere étape, nous utilisons le critére donné
a la proposition 1.7 pour construire les champs de vecteurs (proposition 5.9).
En outre, nous n’utilisons pas la décomposition en anses rondes de la variété,
élément essentiel de la preuve de Yano. Enfin, nous précisons les résultats
de [25], afin de prouver I’existence du nombre n(M).

L’avantage de notre approche est d’une part que nous construisons
explicitement des champs de vecteurs Morse-Smale dans chaque classe
d’homotopie; d’autre part, les orbites périodiques des champs de vecteurs que
nous construisons ne sont en général pas homologues a zéro. En particulier,
ces champs sont transverses a un feuilletage, grace a un résultat de Goodman
([11], voir aussi [27]). Cela nous amene a discuter d’une classification des
entrelacs essentiels (sans composante homologue a zéro) similaire a celle de
Wada [23] dans le cas de la sphere (section 5.5).

REMERCIEMENTS. Je tiens a remercier Pierre Derbez pour son aide
«homologique » et I’intérét qu’il a porté a ce travail. Je remercie aussi Max
Forester, Robert MacKay et Colin Rourke pour de nombreuses discussions
trés motivantes, ainsi que Daniel Lines pour son aide précieuse. Alexis
Marin m’a aidé a corriger certaines erreurs contenues dans cet article, je
I’en remercie vivement. Enfin je suis reconnaissant a Etienne Ghys pour ses
encouragements.
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2. ENTRELACS ENCADRES ET MODELES DE PONTRYAGIN

Nous considérons M une variété de dimension trois, compacte, connexe
et orientée.

DEFINITION 2.1. Un entrelacs L dans M est encadré s’il est orienté et s’il
existe une trivialisation v du fibré normal a L, compatible avec I’orientation
de M.

Deux entrelacs encadrés (L, v) et (Z, p) sont e-cobordants s’il existe une
surface §, plongée dans M x I, telle que S rencontrz le bord de M x [
transversalement, 8S = L x {0} U —L x {1} et s’il existe U une trivialisation
du fibré normal de S coincidant avec v et —b le long de L x {0} et de
—Lx {1}. Une classe pour cette relation d’équivalence est appelée une classe
de cobordisme encadré.

REMARQUE 2.2. Dans cette définition, la surface S est nécessairement
orientable.

La donnée d’une trivialisation du fibré normal a un entrelacs orienté L
dans M (resp. a une surface (orientable) § dans M x I) est équivalente a la
donnée d’un champ de vecteurs non-singulier (tangent a M (resp. M x I))
normal a L (resp. S).

Réciproquement, étant donnée une trivialisation v du fibré normal de L
dans M (resp. d’une surface S dans M x I), nous appellerons champ de
vecteurs constant dans v un champ de vecteurs au voisinage de L (resp. S)
dont la restriction a L (resp. §) est envoyée sur une constante par v.

REMARQUE 2.3. Deux entrelacs orientés L et L sont cobordants s’il
existe une surface § plongée dans M x I, telle que S rencontre le bord
de M x I transversalement, 8S = L x {0} U —L x {1}. Il est clair que
si L et L sont cobordants, ils sont homologues. La réciproque est vraie
aussi: si L et L sont homologues, il existe o une Z-chaine dans M x [
entre L et L. Il est facile de réaliser o comme une surface immergée
dans M x I, plongée partout sauf en un nombre fini d’auto-intersections. En
passant localement en coordonnées complexes et en raisonnant comme en
dimension réelle 1, ces auto-intersections s’éliminent facilement pour obtenir
un cobordisme S.
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2.1 ENLACEMENT AVEC UN ENTRELACS QUELCONQUE

On considere deux entrelacs disjoints K et L, orientés et homologues
a zéro dans M. Soit ogx une 2-chaine bordant K (la 2-chaine ok existe
car K est homologue a zéro), ox est orientée de sorte que 1| orientation
qu’elle induit sur son bord soit celle de K. On compte le nombre algébrique
de points d’intersection entre ogx et L (génériquement, ils s’intersectent
transversalement) et on pose Enl(K,L) = ok - L. Ce nombre d’enlacement
ne dépend pas du choix de ok car L est aussi homologue a zéro; on montre
aussi que Enl(K,L) = Enl(L, K).

Nous aurons besoin d’une définition d’enlacement plus générale. Soit K un
entrelacs orienté de M, d’homologie ¢ (on note p le diviseur maximal de c¢),
si L est un entrelacs orienté disjoint de K d’homologie nulle, il existe une
2-chaine orientée o; bordant L et intersectant K de maniere transverse. En
comptant le nombre algébrique d’intersections, on pose Enl, (K,L) = o -K.
Ce nombre dépend du choix de o7, mais sa réduction modulo p ne dépend
que de K et L. En effet, si o] est une autre 2-chaine orientée bordant L,
la réunion ¥ = o, U —o) représente un élément de H,(M). Ainsi la
différence Enl,, (K,L) — Enl,/(K,L) est naturellement dans Hy(M) = Z et
vaut [Kly, - [Z]n, -

e Si [K]y, est un élément de torsion, le produit [K]y, - [X]p, est un élément
de torsion de Z, il est donc nul et Enl,, (K, L) = Enl/(K,L).

e Si [K]y, n’est pas de torsion, son diviseur maximal p divise le produit
[Klg, - [Z]g, et Enl,, (K,L) — Enlai(K, L)y=0 mod p.

DEFINITION 2.4. L’enlacement de L avec K est défini par

Enl(K,L) =0, - K modulo p.

Soient K un nceud orienté de M> et T une paramétrisation de son voisinage
tubulaire (i.e. un difféomorphisme 7 : D*> x S' — M tel que T(D? x S') soit
un voisinage de K = 7({0} x §")). L’'image par 7 d’un cercle {x} x S! sera
appelée un 1-cable de K. Plus généralement, en remarquant que les disques
transverses a K sont naturellement orientés :

DEFINITION 2.5. Un n-cable L (pour n un entier non nul) de K est
un nceud orienté, dans un voisinage tubulaire de K, intersectant les disques
transverses a K de maniere positive en n points.
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Si K est homologue a zéro, on peut définir plus précisément, pour p et
g deux entiers premiers entre eux (p non nul):

DEFINITION 2.6. Un (p,q)-cAble L de K est un p-cible de L tel que
I’enlacement entre L et K soit égal a ¢.

L’'image d’un nceud (p',q) de OD? x S' par une paramétrisation du
voisinage tubulaire de K donne un (p/,q’ + k)-céble d= K. Comme K est
homologue a z€ro, il existe une paramétrisation du voisinage tubulaire de sorte
que k soit nul.

St v est un entrelacs dans M et que v est une trivialisation de son fibré
normal, on note vy I’entrelacs obtenu en poussant v le long d’un champ de
vecteurs constant dans v.

DEFINITION 2.7.  Pour 7 un nceud homologue a zéro dans M, on note tv,,
une trivialisation de son fibré normal telle que tv,7y soit un (1,n)-céble de ~.

2.2 CLASSIFICATION DES ENTRELACS ENCADRES

Soient (L,v) et (Z,ﬁ) deux entrelacs encadrés, tels que L et L sont
homologues; on note ¢ la classe d’homologie de L et de L et p son diviseur
maximal.

Soit § C M x I un cobordisme réalisant cette homologie, on suppose pour
I’instant que S est connexe. Soit D un disque de S, on peut trivialiser le fibré
normal de S\ D en étendant v et —0, on note Vg\p une telle trivialisation.
On considére un petit disque dans le complément de L UL dans M x {1},
on note v son bord.

Il existe un entier n tel que (L,v) et (Z [17,0]]ro,) sont e-cobordants,
le cobordisme étant obtenu en collant un cylindre a S le long de 9D et en
prolongeant g p a ce cylindre, voir la figure 1 (cette construction peut étre
trouvée aussi dans [9, §3.3.3]). Comme nous avons supposé S connexe, ce
nombre n est indépendant du choix de D dans S. De plus, on a le lemme
suivant.

LEMME 2.8. Le nombre n ne dépend pas du choix de S ou de PIR
modulo 2p.

Démonstration. Notons n(S,U) le nombre obtenu avec S et g\ p pour

D un disque de S. Considérons S’ un autre cobordisme entre L et L,

,pour D' un disque de § et U\ p une trivialisation du fibré normal
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FIGURE 1
La surface S privée de D, et son cylindre

de S\ D', nous notons n(S’,%’) le nombre obtenu. Notre objectif est de
prouver n(S,0) = n(S', V') mod 2p.

e Soit Yo un champ de vecteurs, tangent & M x I, défini sur S\ D,
constant dans ‘U. Le champ de vecteurs U, est partout normal a S\ D, on
le prolonge en un champ X, au voisinage de S\ D et on note Sy la surface
obtenue en poussant S\ D le long de X;; on note v, la composante de bord
de Sp correspondant a 9D. On remarque que les surfaces S\ D et S, ne
s’intersectent jamais.

LEMME 2.9. Il est possible de coller un disque a Sy, le long de ~,, pour
obtenir une surface Sy ayant un nombre d’intersection avec S égal a n(S,*0).

Démonstration. Pour cela, il suffit de remarquer que, par définition de
n(S,*Y), on peut coller un cylindre C a S\ D le long de D de sorte que
son autre bord ~ soit dans M x {1} le bord d’un disque F. Nous pouvons
étendre U, le long de ce cylindre et ainsi, en poussant ~ le long de Uy, on
obtient un nceud s’enlagant n(S,*Y) fois autour de ~.

La surface S est homotope a 'union S = (S\ D) UCUF, de méme, la
surface Sy est homotope a la surface S, obtenue en poussant (S\ D)UC le
long de Y. Les surfaces S et §) se coupent exactement en n(S,2) points,
tous dans F. Il est maintenant facile de coller un disque 2 Sy ne coupant
pas S ailleurs qu’en ces points. Nous obtenons ainsi la surface S;, en faisant
une homotopie dans ’autre sens pour que S; ne rencontre M x {0,1} qu’en
son bord, le nombre d’intersection étant préservé par homotopie, on obtient
le lemme. []
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« Nous recollons deux copies de M x I le long de leurs bords (en renversant
’orientation d’une des copies) afin d’obtenir la variété de dimension 4, sans
bord, M x S'. On recolle les surfaces S et —S' le long de Lx {0} et Lx {1}
pour obtenir une surface fermée X dans M X S!'. De méme, les surfaces
Sy et —S! construites comme ci-dessus se recollent le long des 1-cables de
Lx{0} et Lx {1} obtenus en poussant Lx {0} et Lx {1} par des champs de
vecteurs constants dans les trivialisations v et 0 respectivement. On obtient
ainsi une surface X;. En prenant garde aux orientations, on voit que X et X
s’intersectent en n(S, V) — n(S',Y’) points (au signe pres).

e Nous terminons la preuve comme [2, Theorem 6.2.7] ou [10, Proposi-
tion 4.1]. La classe d’homologie (dans Fh(M x S')) de T est la méme que
celle de X; et elle s’écrit, d’apreés la formule de Kiinneth:

[Z] = [a x S'T+[b x {w}]

avec a un l-cycle de M et b un 2-cycle de M. On voit facilement que
[a] = ¢ la classe d’homologie de L et de L. Ainsi,

[Z]-[Z1] =[a x 8T [ax ST +2[ax ST [bx {w}+[bx {w}]-[bx{w},

d’ou:
n(S, V) — n(S', V) = [Z] - [Z1] = 2¢ - [b]

avec le dernier produit dans H,(M).

On en déduit que si ¢ est de torsion, 2c-[b] est de torsion dans Hz(M) = Z,
ce qui entraine n(S,U) —n(S’,L’) = 0. Si ¢ n’est pas de torsion, p divise ¢
et n(S, V) —n(S",V)=0 mod2p. L[]

DEFINITION 2.10. La différence de degré de Hopf entre (L,v) et (L, D)
est ’élément de Z,, défini par n((L,v),(L,0)) = n(S,T) mod 2p pour § et
¥ comme ci-dessus.

Le théoreme de Hopf sur les applications de S* dans S? peut se généraliser
pour obtenir:

LEMME 2.11. Deux neeuds L et L homologues a zéro dans M, dont le
fibré normal est trivialisé par v, et w; respectivement. sont e-cobordants si
et seulement si n = n. De plus, on a la formule n((L, ro,l),(z, mﬁ)) =n-—,
au signe pres.
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On en déduit les deux résultats suivants. Le premier nous permet de déduire
que I’hypothése « S connexe », dans la définition 2.10 de la différence de degré
de Hopf, ne restreint pas la portée de cette définition.

LEMME 2.12.  Si deux entrelacs encadrés (L, v) et (Z, 0) sont e-cobordants,
on peut trivialiser le fibré normal de tout cobordisme S orientable pour obtenir
un cobordisme encadré des que S est connexe.

LEMME 2.13.  Deux entrelacs encadrés (L,v) et (Z, 0) sont e-cobordants
si et seulement si
e [LI=[L]
et, en notant p le diviseur maximal de [L] = [Z],
o n((L,v),(L,5))=0 mod 2p.

Pontryagin montre que les classes de cobordisme encadré d’entrelacs
encadrés de M sont en bijection avec les classes d’homotopie des applications
de M dans S2. En conséquence du lemme 2.13, nous obtenons (voir §3.3
pour un exemple):

THEOREME 2.14 ([21], §4). La classe d’homotopie de f: M — S est
caractérisée par :
e sa classe caractéristique cr = [f~'V)]m ), et

e un «degré de Hopf» appartenant a Z;y,, affine dans Z.

2.3 MODELES DE PONTRYAGIN

Soit ¢ un élément de H;(M) et v un nceud réalisant cette classe
d’homologie. Nous considérons 7(y) un voisinage tubulaire de +, identifié
avec S' x D? par un difféomorphisme 7 .

Nous paramétrons le cercle S' par w € [0,27], le disque D? avec les
coordonnées polaires usuelles (r,0) avec r € [0, 1] et § € R/27Z. On identifie
la sphere $? privée du pole Sud (noté S) avec le disque D?, en envoyant le
pole Nord sur O et les méridiens sur les rayons {(r,6), r € [0,1[}.

Pour n € Z, on définit I’application P.,: M — S? «rajoutant n twists a
droite aux 1-cables de ~ donnés par 7 » par

P.,=S sur M\ T()
Pc,n(T_l(w, r,0)) =T(w,r,nw+0) sur T(v).
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On vérifie facilement que P., est continue, les points de $2\ {S} sont des
valeurs régulieres et P_,(N) = 7.

THEOREME 2.15 (Construction de Pontryagin). Toute application f de M
dans S? telle que ¢; = ¢ est homotope aun P.,.

De plus, P., est homotope a P, si et seulement si n =n' mod 2p, ou
p est le diviseur maximal de c.

REMARQUE 2.16. Dans la construction précédente, I'utilisation des poles
Nord et Sud n’est pas essentielle, on peut construire un modele ayant les
mémes propriétés avec n’importe quelle paire de points distincts de $2.

3. COMPARAISON D’APPLICATIONS

On définit C.(f,g) (resp. C_(f,g)) comme I’ensemble des points de M
ol f =g (resp f = —g). Quitte & perturber légerement f et g (ce qui ne
change pas les applications 2 homotopie pres), le théoreme de transversalité
nous permet de supposer que Cy(f,g) et C_(f,g) sont des sous-vari¢tés
plongées dans M, de codimension 2.

En choisissant une orientation sur M et sur S, les entrelacs C(f,g) et
C_(f, g) héritent d’une orientation naturelle de la fagon suivante : on associe a
f un plongement F: M < M x > qui envoie le point x sur le couple (x,f(x)).
On note 7 la projection de M x S sur le premier facteur M. Génériquement,
les images F(M) et G(M) s’intersectent transversalement dans M x $?, le long
d’une sous-variété de dimension 1, naturellement orientée, qui est en bijection
via m avec C,(f,g). On peut tenir le méme raisonnement pour orienter

C_(f,q) avec l'intersection des images F(M) et —G(M) = (M, —g(M)).

REMARQUE 3.1. L orientation de I’intersection F(M)NG(M) est I’opposée
de I’orientation de G(M) N F(M). Ainsi les orientations de CL(f,g) et de
C_(f,g) dépendent de I’ordre des applications.

La classe d’homologie (dans H,(M,Z)) de C.(f,g) et de C_(f,g) est
invariante si on modifie f ou g par homotopie. D’autre part, C,(f,g) et
C_(f,g) ne s’intersectant jamais, on en déduit que la classe d’homologie de

C+(f7 g)e resp. C—(.f7 9)7 dans Hl (M\C—(f/ 9)7 Z)’ resp. Hl(M\C+(f7 g)a Z),
est aussi invariante par homotopie des applications f et g.
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3.1 PREMIERE OBSTRUCTION

Si f et g sont homotopes, il existe une application f, homotope a f, telle
que C_(f,9) ={@}; ainsi [C_(f, g)lm,a) =0 est une condition nécessaire
pour que f et g soient homotopes.

3.1.1 INTERPRETATION GEOMETRIQUE. L’interprétation de cette premiére
obstruction est donnée par le lemme 1.4 que nous rappelons ici.

LEMME 3.2. Pour f et g de M dans S*, on a

[C_(fs DIy = ¢ — ¢4 et [C+(fs Pl = ¢ + ¢4 -

Démonstration. On considere y € 5% une valeur réguliére commune a f,
g et —g. Comme y est valeur réguliere de g, —y est valeur réguliere de
—g. On note 7 =f7'(y), y—g = (—9) ') et B_g = (—g)~'(—y); ils sont
orientés comme images réciproques de y et —y par f et —g respectivement.
Remarquons que la classe d’homologie de v_, et de 3_, est I'opposée de c, :
['Yfg] = [5—9] —C_g = —Cq4.

On peut supposer, en faisant une homotopie sur f et g, que et G_g
sont disjoints et que f = —y sur le complément d’un voisinage tubulaire de -y
et —g =y sur le complément d’un voisinage tubulaire de (5_,. Ceci entraine

que C_(f,9) =y UB_4 et que
[C_(f, Pl = ¢r+c—g =¢f —cy.

Enfin, on remarque qu’en tenant compte de l’orientation, C,(f,g) =
C_(f,—g) et donc que Co(f,9)=c¢;—c_g=c¢r+cg. L]

3.2 SECONDE OBSTRUCTION

Si M est la sphére $°, la premiere obstruction est toujours nulle, on
montre facilement (en adaptant les résultats de [19, Proposition 1.1] ou [6,
Lemma 23]) que deux applications f et g sont homotopes si et seulement si
I’enlacement entre C.(f,g) et C_(f,g) est nul.

Supposons maintenant que la premiere obstruction a 1’existence d’une
homotopie entre f et g est nulle ([C_(f, ¢)lm,an = 0) et de plus, supposons
que I’on connaisse p, le diviseur maximal de ¢ = ¢4. En rappelant que dans
ce cas, [C+(f, Dluwy = 2¢; (lemme 3.2) et que I’enlacement Enl(Cy,C_)
est bien défini modulo 2p (§2.1), nous montrons alors:
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LEMME 3.3. Les applications [ et g comme ci-dessus sont homotopes si
et seulement si I’enlacement entre C(f,qg) et C_(f,q) est nul modulo 2p.

Démonstration. Considérons f et g telles que ¢f == ¢4 ; soient 71 et 7,
deux nceuds disjoints de M dont I’homologie est ¢ = ¢, et tels qu’il existe
un anncau A plongé dans M, tel que 0A = v, Uy, (sans tenir compte de
I’orientation). On considere U;, U, des voisinages tubulaires de v, et 7,
respectivement (U; et U, sont disjoints), paramétrés de sorte que la trace de A
dans U, (resp. U,) soit I'image de JxS' avec J un segment de D?. En notant
% un point de §?, distinct des deux pdles, la section précédente nous permet
de construire deux modeles de Pontryagin Py, et Py, tels que Pk_l'(N) =,
Py, | Ty = 5, Pk_zl(*) =7, Pl mz; = —* et Py, est homotope a f, Py,
est homotope 4 g. Nous remarquons que pour tout point y de $?, différent
de N et S, Pk_]](y) rencontre A en k; points. Et pour tout point y de S§?,
différent de * et —x, P,;'(y) rencontre A en k, points.

Comme U; et U, sont disjoints, on montre facilerrent que

C_(Py,Pr,) =P () UP'(N)
et
C(Pi, Pi) = P (=) UP.'(S).

De plus, comme ¢; = ¢4, le lemme 3.2 implique que [Cy] = 2¢; et
[C_] = 0. Dautre part, P;.'(x), P;,'(N), P;'(—*) et P_'(S), orientés
comme images réciproques de points de S, sont homologues (et connexes).
Ainsi, C_ est orienté de sorte qu’avec l’orientation induite, la composante
P,:ll(*) est homologue a I’opposé de la composante ij (N). Nous supposons
dorénavant que ’orientation induite par C_ sur P,:ll(*) et Pk_,l(*) coincide
avec l’orientation naturelle comme image réciproque de P, . D’autre part,
C, est orienté comme Pk_ll(—*) et P,;](S).

On utilise une modification de I’anneau A, orienté, comme homologie de
C_ a zéro pour calculer I’enlacement entre C,(Py,,Px,) et C_(Py,, Py,) pour
en déduire :

Enl(C4(Py,, Pr,), C_(Py,, Pr,)) = ki —ky mod 2p.

D’apres le théoréme de Pontryagin (théoréme 2.15), Py, et Py, sont homotopes
si et seulement si k; = k; mod 2p, donc f et g sont homotopes si et seulement
si Enl(C(Py,, Pr,), C— (P, Pi,)) = Enl(C(f, ), C—_(f,9)) =0 mod 2p. Ce
qui acheve la preuve du lemme. [

Les lemmes 3.2 et 3.3 permettent de prouver la proposition 1.5.
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3.3 EXEMPLE

Nous adaptons 1’exemple de Pontryagin [21, §4] pour montrer 1’utilitt de
notre critére. On considere les applications de S?>xS' dans S? ; le théoréme 2.15
assure 1’existence de deux applications distinctes a homotopie prés ayant le
générateur de H;(S?> x S') comme classe caractéristique.

Une de ces applications est donnée par 7: S? x S! — §? la projection sur
le premier facteur. Soient p et ¢ deux points diamétralement opposés de S,
sphere unité de R®, on note ¢, la rotation d’angle o et d’axe pq. Dans les
coordonnées polaires usuelles de I’espace (r,w) (r € [0,00[ et w € §?), on
définit la suite de difféomorphismes ¢,: R> = R? par ©,(r,w) = (7, dpr(w)).
On note encore ¢, la factorisation de ¢, comme difféomorphisme de S? x S!
(cf. figure 2) et on remarque que , est homotope a ¢, si et seulement si
n=m mod?2 (m(SO@3)) = Z, et ¢; décrit un générateur de ce groupe).
Ainsi, f, =T o@,: S2x S' — §2 est homotope & 7 si et seulement si n est
pair; 7 et _]71 sont donc les deux seules applications, a homotopie pres, ayant
le générateur de H;(M) comme classe caractéristique.

FIGURE 2

Action de ¢ sur §% x S!

Les applications fn et 7 sont égales le long de deux cercles correspondant
a I’axe de rotation et le long d’une sphere. Cette situation n’est pas générique,
une petite perturbation de f, en f, = ¢. of, permet d’éliminer cette sphere.
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Les applications f, et 7w sont opposées le long dz n cercles paralleles
dans le plan z = 0. Le calcul de I'orientation nous permet de conclure
que Enl(Cy(f,,7),C_(f,,7) = n mod 2. En appliquant le lemme 3.3, on
retrouve le résultat: f, est homotope a 7 si et seulement si n est pair.

4.  APPLICATION AUX CHAMPS DE VECTEURS NON-SINGULIERS

Si M est une variété de dimension trois compacte, sans bord et orientable,
son fibré tangent TM est trivialisable (voir [17, Problem 12.B] par exemple).
En choisissant une trivialisation 7: TM — M x R®, on identifie les classes
d’homotopie des champs de vecteurs non-singuliers sur // (homotopie a travers
les champs non-singuliers) avec les classes d’homotopie des applications de M
dans S?. Cette remarque pose deux problémes: a priori, I’identification dépend
de la trivialisation choisie; de plus, la construction explicite de trivialisations
du fibré tangent est en général un probleme difficile. Les résultats de la section
précédente vont nous permettre de contourner en partic ces deux problemes.

Soit X un champ de vecteurs non-singulier sur M et 7 une trivialisation
du fibré tangent; on note X,: M — S? I’application induite et cx_ la classe
d’homologie de 1’'image réciproque d’une valeur réguliére de X .

Rappelons que la classe d’Euler d’un champ de plans co-orienté sur une
variété de dimension trois est I’obstruction (dans H*(M,Z)) 4 compléter une
trivialisation de ce champ de plans du 1-squelette d’uae triangularisation de
la variété au 2-squelette. Nous appelons aussi classe d’Euler son dual de
Poincaré (dans H,(M,Z)) et nous définissons la classe d’Euler d’un champ de
vecteurs non-singulier, notée £(X), comme étant la classe d’Euler du champ de
plans orthogonal au champ de vecteurs, X, pour une métrique riemannienne
quelconque.

Un résultat classique de topologie algébrique nous permet de calculer la
classe d’Euler de la facon suivante : une section générique d’un champ de plans
va couper la section nulle le long d’un entrelacs orienté, la classe d’homologie
de cet entrelacs ne dépend pas du choix de la section générique, c’est la classe
d’Euler du champ de plans.

Le résultat suivant est connu; afin d’étre complet, nous incluons la preuve
de [2, Lemma 6.1.4].

LEMME 4.1.  Pour toute trivialisation T et tout champ de vecteurs X, on
a la formule
EX) = 2cx, .
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Démonstration. Construisons une section générique de X, pour cela on
choisit y sur S de sorte que y et —y soient des valeurs régulieres de X, . On
définit s: M — X+ par s(x) = 77'(x, X;(x) Ay) (A représente ici le produit
vectoriel usuel de R?). Cette section s’annule exactement quand X,(x) est
colinéaire 4 y, c’est-a-dire sur I’ensemble X~!(y)UX~!(—y). L’homologie de
I’intersection de cette section avec la section nulle est donc égale a 2cx_. L[]

REMARQUE 4.2. La classe d’Euler est invariante a homotopie pres et
indépendante du choix de la trivialisation du fibré tangent; ce n’est donc pas
le cas de cx, , qui peut dépendre du choix de la trivialisation si H{(M,Z)
contient des €éléments d’ordre 2.

Le diviseur maximal de cx_. ne dépend pas du choix de la trivialisation
car c’est la moitié du diviseur maximal de E£(X).

DEFINITION 4.3. Un champ de vecteurs X est complétable si £(X) =0.

Pour tout champ de vecteurs complétable, il existe une trivialisation 7y
telle que X, soit une application constante.
On retrouve facilement un joli résultat de Gompf [10, Corollary 4.10].

LEMME 4.4. Un champ de vecteurs X est complétable si et seulement si
X est homotope a —X.

Démonstration. La premiere implication est évidente. Si X est homotope
a —X, pour n’importe quelle trivialisation 7, cx, = —c_x, = c_x, . Ainsi
2c_x. =0 et 2cx, =0; donc £EX)=0. [J

Soient X et Y deux champs de vecteurs non-singuliers sur M, on
définit C,(X,Y) = {x € M, X(x) = AY(x) avec A >0} et C_(X,Y) =
{x € M, X(x) = A\Y(x) avec A <0}. Comme conséquence des résultats de
la section précédente, on obtient la proposition suivante qui donne un critere
indépendant du choix de la trivialisation:

PROPOSITION 4.5. Deux champs de vecteurs non-singuliers X et Y sur
M sont homotopes si et seulement si
o [C_(X,V)]u,mn =0, ce qui entraine ’égalité des diviseurs maximaux des
classes d’Euler de X et Y (on note p cet entier), et

e Enl(C.(X,Y),C_(X,Y)) =0 modulo p.
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5. CHAMPS DE MORSE-SMALE SUR LES VARIETES DE SEIFERT

5.1 CONSTRUCTION INITIALE

On considere une variété de Seifert M> de base une surface compacte S et
de projection p: M — S, on note x; pour i allant de 1 a n les points de S ou
se projettent les fibres exceptionnelles de p. Si ¥y est un champ de vecteurs
Morse-Smale sans orbite périodique sur S, tel que tout x; soit une singularité
de Yy (de type puits ou source), on choisit une métrique riemannienne sur
M et on releve Y, en un unique champ de vecteurs lisse, Xj, orthogonal aux
fibres de p. Le champ X, est nul le long de toutes les fibres se projetant
sur des zéros de Y. On note X; le champ de vecteurs unitaire, tangent aux
fibres et on pose X = Xy + X;. Le champ de vecteurs X est un champ de
Morse-Smale non-singulier lisse sur M, dont la dynamique se projette via p
sur celle de Y.

REMARQUE 5.1. Quitte a rajouter des extrema locaux (en particulier aux
points x;), une petite perturbation du champ de gradient d’une fonction de
Morse sur S permet de construire un champ ¥, comme ci-dessus (sans orbite
périodique).

5.2 OPERATION DE WADA

Un entrelacs dans M est indexé si on attribue a chaque composante un
indice, 0, 1 ou 2. L’entrelacs des orbites périodiques d’un champ de Morse-
Smale est naturellement indexé par la dimension de la variété instable du point
fixe de I’application de premier retour sur un disque transverse.

Dans [23], Wada donne une caractérisation des entrelacs indexés réalisables
comme entrelacs d’orbites périodiques de champs de Morse-Smale sans
singularité sur la sphere S°. Il définit 6 opérations sur les entrelacs indexés
de la sphere et un générateur: 1’entrelacs de Hopf indexé par O et 2.

Nous nous intéressons plus particulierement ici a la cinqui¢me opération de
Wada qui consiste a remplacer un voisinage tubulaire d’une orbite périodique
K, d’indice 0 ou 2, par un tore solide contenant trois orbites périodiques
Ky, K> et K3. L’ame du tore est I'une de ces orbites périodiques, K;, son
plongement dans M a donc le méme type de nceud que K. Les orbites K, et
K3 sont des n-cébles paralleles de K. L’orbite K, est une selle et les indices
de K| et K3 sont O ou 2 mais au moins 1’un des deux doit avoir I’indice de K.
La suspension du difféomorphisme du disque décrit sur la figure 3 permet
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d’obtenir une selle et un attracteur cablant I’attracteur de départ (centre du
disque).

FIGURE 3
Une selle et deux attracteurs

Si le champ initial est de type Morse-Smale, il en est de méme du champ
obtenu en appliquant la cinquiéme opération de Wada (la transversalité des
variétés stables et instables des selles étant facile a obtenir). De plus, le champ
obtenu apres cette opération est homotope au champ initial.

REMARQUE 5.2. Le fibré normal de ’orbite K n’est pas nécessairement
trivialisable de maniére canonique (contrairement au cas de la sphére $°), on
ne peut donc pas parler de (p,q)-cables autour de K, mais seulement de
n-cables a priori (cf. §2.1).

5.3 ORBITES PERIODIQUES SUR LA SURFACE DE BASE

Si dans la construction initiale (§5.1), le champ de Morse-Smale Y, admet
des orbites périodiques sur S, le relevé X n’est pas nécessairement Morse-
Smale. Au-dessus de chaque orbite périodique, il laisse invariant un tore
(ou une bouteille de Klein) attractif ou répulsif suivant la nature de I’orbite
périodique de Y. On modifie alors la dynamique sur ce tore (resp. cette
bouteille de Klein) de la facon suivante. On ajoute 2 orbites périodiques,
de pente (1,0) si la fibre de Seifert représente (0,1) sur le tore. Pour la
dynamique sur le tore, une de ces orbites est attractive, 1’autre est répulsive
(figure 4). On peut plonger ce tore dans le tore épaissi, voisinage du tore
invariant de départ de sorte que 1’orbite répulsive du tore devienne une selle
pour X.
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La construction sur les bouteilles de Klein (cas ou la surface de base n’est
pas orientable) est similaire, on identifie les cotés verticaux de la figure 4 par
un homéomorphisme renversant 1’orientation verticale.

FIGURE 4

Dynamique sur les tores invariants

L’un des points essentiels de la preuve du théoréme 1.1 est la construction
de champs de vecteurs Y sur la surface de base ayant des orbites périodiques
dont la classe d’homologie est prescrite. Si la surface de base est orientable,
nous faisons les choix suivants.

LEMME 5.3. e Tout élément primitif de H(T?,Z) peut étre représenté
par une courbe fermée simple, plongée dans T?.

e Si S = #leTz, pour tout élément ¢ de H|(S,7Z), il existe )\; pour i
allant de 1 a g tels que ¢ = le Ailvil, ou les |~;] sont des éléments
primitifs de H\(T?,Z) et les ; sont deux & deux disjoints.

o Soit M une variété de Seifert au-dessus de S = #J_T*. Pour tout ¢ de
H\(M,Z), il existe \; pour i allant de 1 a g, X\ et o; pour j allant de 1 a
n tels que

g n
c =Y Ayl + AIFI+ Y oyl Fjl,
i=1 j=1
ou F est une fibre générique, les F; sont les fibres singuliéres et les projections

des v; sur S sont comme dans le point précédent.

Démonstration. Les nceuds toriques (p,q) avec p et g premiers entre
eux représentent, par une courbe fermée simple, les éléments primitifs de
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H,(T?,Z). Le second point consiste simplement 2 effectuer la somme connexe
des tores en dehors des ;.

Pour montrer le dernier point, nous remarquons que si I’on note M la
variété obtenue en enlevant un voisinage tubulaire de chaque fibre singuliére
et d’une fibre réguliére I’inclusion de M dans M induit un homomorphisme
surjectif de H;(M) dans H;(M). La fibration de M est triviale, par un abus
de notation, on pose 7; le relevé dans M de ;i C F (ob F est la surface F
privée de n+ 1 points).  []

Nous laissons au lecteur le soin d’adapter ce lemme au cas ou la surface
de base est non-orientable.

REMARQUE 5.4. Le nombre de termes dans I’expression de ¢ au dernier
point du lemme 5.3 ne dépend que de la variété de Seifert, il est inférieur ou
égala g+n—+1.

Etant donné un entrelacs sur la surface S, il est facile de construire un
champ de Morse-Smale Y, sur § ayant cet entrelacs inclus dans 1’ensemble
de ses orbites périodiques attractives. En conséquence, on montre (en laissant
encore au lecteur le soin de traiter le cas des surfaces non-orientables):

LEMME 5.5. Pour M une variété de Seifert, tout élément de H|(M,Z)
est réalisable par la classe d’homologie d’un entrelacs d’orbites périodiques
attractives d’un champ de Morse-Smale non-singulier sur M.

Démonstration. Ecrivons ¢ € Hi(M,Z) comme la somme

g n
c =Y Nl +AFI+ > olF]:
i=1 j=1
on construit un champ de vecteurs Y, sur la surface de base S ayant les
projections des ~; (dans S\ {x;}) comme orbites périodiques, n+1 singularités
de type puits aux points x; et x € S\ {x;} U~;.

On reléve Y, en un champ de Morse-Smale non-singulier X comme
précédemment. On applique la cinquieme opération de Wada aux orbites
attractives qui correspondent aux ~; avec le coefficient \; (i.e. on obtient
des A;-cibles de ;), aux orbites qui correspondent aux x; avec le coefficient
«; et a Porbite se projetant sur x, avec le coefficient A. On obtient ainsi
un champ non-singulier X qui est Morse-Smale et qui admet un entrelacs
d’orbites périodiques attractives dont I’homologie est ¢. [
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REMARQUE 5.6. D’apres la remarque 5.4 et la preuve précédente, on déduit
qu’il existe un nombre n(M) tel que tout élément de H;(M,Z) est réalisable
par la classe d’homologie d’un entrelacs d’orbites périodiques attractives d’un
champ de Morse-Smale non-singulier sur M ayant au plus n(M) orbites
périodiques.

REMARQUE 5.7. En utilisant le résultat de Morgan [18], on retrouve
un résultat de Yano [25] affirmant que tout élément de H;(M,Z), pour M
une variété de Seifert, est représenté par un entrelacs graphé (i.e. dont le
complément est une variété graphée).

5.4 PREUVE DU THEOREME 1.1

La preuve est divisée en deux étapes: dans un premier temps, on considere
M une variété de dimension trois; nous ne supposons pas que M soit une
variété de Seifert.

Nous définissons 1’opération permettant de modifier la classe d’Euler d’un
champ de Morse-Smale (voir [1]).

LEMME 5.8. Si X est un champ Morse-Smale non-singulier sur M et
v est une orbite périodique attractive de X, il existe un champ Morse-Smale
non-singulier Y coincidant avec X sur le complément d’un voisinage tubulaire
de vy et ayant —vy comme orbite périodique attractive.

FIGURE 5

Changement de I’orientation d’une orbite attractive

Le lemme 3.2 nous permet de montrer que, pour 7 une trivialisation du
fibré tangent de M, les champs X et Y ci-dessus vérifient:

C_X, )=~ et ainsi cx, =cy, +[v].



CLASSES D’HOMOTOPIE DE CHAMPS DE VECTEURS 27

PROPOSITION 5.9. Si Xy est Morse-Smale, tout champ de vecteurs X tel
que [C_(Xop,X)] =0 est homotope a un champ de vecteurs Morse-Smale.

Démonstration. La preuve consiste a construire un champ Morse-Smale
dans chaque classe d’homotopie de champs X telle que [C_(Xp,X)] = 0.

e Soit 7 une orbite périodique attractive de Xy, on note ¢ = [7o].
On applique la cinquieme opération de Wada a o pour obtenir X; ayant
une orbite périodique attractive 7y et une orbite selle de plus que X, qui sont
des 1-cables de 7. Les orbites vy et v, sont donc homotopes, on note .4
I’anneau (que ’on choisit plongé dans M) bordant ~y U ;.

e On considere maintenant le champ Morse-Smale Y;, ayant les mémes
orbites que X; avec l'orientation de ~; renversée. On a les relations:
C_(X, YD) =m et [C_(Xi, )] =c.

e Nous utilisons la cinquieme opération de Wada sur les champs X; et
Y, sur les orbites =+, pour obtenir deux champs de vecteurs possédant
chacun une nouvelle orbite attractive +-], céble de *+7v, et une selle s;.
Cette fois, 1’existence de ’anneau A nous permet de définir les invariants
(p1,q1) de l'opération de cablage. Nous choisissons ces invariants comme

) ) ~\
suit: (p; = 1, g1 = A) pour A un entier non nul et on note Xg\ et Y, les
champs obtenus.

~A
e Enfin, on modifie Y, pour obtenir Y3 en changeant I’orientation de —+; .
A
Ainsi, C_(Y,,Y3) = —~|, on en déduit [C_(Y1,Y5)] = —c (cf. figure 6).

!
+ 7 + 73
° e _
| Y1 @ 51 Y1 e @ Sq \
*Y0 ) ( * 0

FIGURE 6
Les champs Xg‘ et YZ)‘

(Légende: + selle, e puits, O orientation changée)
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Nous venons de construire deux champs de vecteurs X, et Y3 qui satisfont
[C_(X2, Y] = ¢ —c = 0, avec X5 homotope a Xo. Or C_(X3,Y3) est
porté par s; et 7, ’homologie a zéro de cet entrelacs peut étre donnée
par un anneau plongé dans un petit voisinage tubulaire de ~,, de sorte que
C(X5,Y;) soit réduit a ] dans ce voisinage. On en déduit que I’enlacement
Enl(C4 (X}, Y2),C_(X},Y})) est égal 2 A.

La proposition 1.7 permet de conclure que 1’on a effectivement construit au
moins un champ Morse-Smale dans chaque classe d’homotopie ayant méme
«demi-classe d’Euler» que X,. [

Pour la seconde étape de la preuve, nous considérons M une variété de
Seifert et nous construisons un champ de vecteurs Morse-Smale non-singulier
ayant une «demi-classe d’Euler» donnée.

Etant donnée 7 une trivialisation du fibré tangent de M, on a:

LEMME 5.10. Pour chaque ¢ dans H{(M,Z), il existe un champ de
Morse-Smale X, avec moins de n(M) orbites périodiques, tel que cx_ = c.

Démonstration. Soit Yy un champ de Morse-Smale sur la surface S, sans
orbite périodique et singulier aux points ol les fibres singulieres se projettent.
On note Xy le champ de vecteurs sur M associé a Y, par la construction
initiale. Le champ X, est homotope au champ de vecteurs tangent aux fibres
de M, on note e sa classe caractéristique pour la trivialisation 7.

Soit ¢ un élément de H{(M,Z), on note ¢/ = e — ¢ et on considére
X’ un champ de vecteurs Morse-Smale possédant un entrelacs I d’orbites
périodiques attractives dont 1’homologie est ¢’. Un tel champ. avec moins de
n(M) orbites périodiques, existe par le lemme 5.5 et la remarque 5.6.

On applique alors le lemme 5.8 a ' pour obtenir un champ de vecteurs
X tel que C_(X,X') =T. Le lemme 3.2 permet d’obtenir ¢y, = ¢ — [[] =
e—c =c. [

Le théoréme 1.1 est une conséquence du lemme 5.10 et de la proposition 5.9.

5.5 DISCUSSION

On peut diviser les champs Morse-Smale non-singuliers d’une variété de
dimension 3 en trois catégories:

1. les champs dont aucune orbite périodique n’est homologue a zéro;
2. les champs ayant des orbites périodiques homologues a zéro mais vérifiant
la propriété d’enlacement de Goodman ([11], voir aussi [27]): des qu'une



CLASSES D’HOMOTOPIE DE CHAMPS DE VECTEURS 29

orbite périodique borde un disque, celui-ci rencontre une autre orbite
périodique;

3. les champs ne vérifiant pas la propriété d’enlacement.

Dans chaque classe d’homotopie de champs de vecteurs sur une variété de
Seifert dont I’homologie n’est pas nulle, nous avons construit un champ de
Morse-Smale appartenant a la premiere catégorie. En particulier, d’apres [11,

27], ces champs de vecteurs sont transverses a un feuilletage.

QUESTION. Peut-on classifier a la Wada les entrelacs indexés, sans
composante homologue a zéro, d’une variété de Seifert réalisables comme
entrelacs d’orbites périodiques d’un Morse-Smale ?

QUESTION. Les autres entrelacs réalisables sont-ils obtenus par somme
connexe avec un entrelacs de Wada de S° ?

(1]
[2]
[31]

[4]

(51

[6]
[71
[8]
(9]
[10]

[11]
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