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ON THE GEOMETRY OF HOLONOMY SYSTEMS

by Carlos OLMOS *)

ABSTRACT. We give a geometric proof of the theorem of Simons on holonomy
systems, which implies the Berger holonomy theorem. The proof is based on
submanifold geometry and, in particular, on normal holonomy. This is part of a
project of geometrization of representation theory. We also give some applications of
Simons’ result to submanifold geometry.

1. INTRODUCTION

The holonomy group @, associated to a connected Riemannian manifold M
at a given point p, is a Lie group of orthogonal transformations of the
tangent space T,M. It is obtained by parallel transport of tangent vectors
along arbitrary loops based at p. The holonomy groups at different points
of a connected manifold M are isomorphic. In fact, parallel transport along
any curve joining p and g conjugates the respective holonomy groups. The
holonomy group measures the deviation of the space from being globally
flat, in which case ® is trivial. The connected component of the identity
of @ is called the restricted holonomy group. It coincides with the holonomy
group of the universal cover of M. The holonomy group of a small connected
open neighbourhood U of p € M is called the local holonomy group at p.
Namely, if V C U is an open neighbourhood of p then the holonomy groups
of U and V coincide. Holonomy groups play a central role in Riemannian
geometry. The reducibility of the ®-action on the tangent space 7,M implies,
via the decomposition theorem of de Rham, the local product decomposition
of M. In fact, a ®-irreducible subspace V of T,M gives rise to a parallel
distribution on M. The Riemannian manifold M is called irreducible if the
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336 C. OLMOS

restricted holonomy group acts irreducibly (a general reference for holonomy
can be found in chapter 9 of [Bes] or in [Sa], [J]).

A well known theorem of Ambrose and Singer relates the Lie algebra G
of ® with the curvature tensor R. Namely, G coincides with the linear span
of the set {7.(Rx,v):q€ M, X,;, Y, € T,M} where c is an arbitrary curve
from ¢ to p and 7 denotes the parallel transport.

The following result is a consequence of Berger’s classification [Be] of
the possible holonomy groups of non-locally symmetric spaces.

BERGER HOLONOMY THEOREM. If the holonomy group of an irreducible
Riemannian manifold M at p is not transitive on the sphere of the tangent
space T,M, then M is locally symmetric.

Apart from the basic facts of the theory, this is the most important and
beautiful general result in Riemannian geometry. By ‘general’ we mean that
there are no further assumptions on the space such as curvature assumptions,
compactness, etc.

The existence of parallel tensors or, more generally, parallel geometric
structures on M is equivalent to the existence of algebraic tensors or structures
on the tangent space T,M, which are invariant under thz holonomy group ®.
For locally symmetric spaces this question of existence is well understood. In
this case the holonomy coincides with the isotropy. So, this question is reduced,
by means of Berger’s theorem, to the study of invariant algebraic structures
under transitive groups, i.e. orthogonal Lie groups which are transitive on the
sphere. Not all transitive groups arise as Riemannian holonomy. Transitive
holonomies are listed below ([Sa, chap. 10] and [J]):

e SO(n), associated to generic n-dimensional manifolds.

e U(n), associated to generic Kdhler manifolds of real dimension 2n.

e Sp(n).Sp(1), quaternionic-Kihler manifolds, dim = 4n. All are Einstein.

e Spin(9), always symmetric, the Cayley plane or its dual, dim = 16
([A], [BGD).

e SU(n), Calabi-Yau manifolds, dim = 2n. Kdihler and Ricci-flat.

e Sp(n), hyper-Kdhler manifolds, dim = 4n. Kdhler cand Ricci-flat.

e G,, the so-called G,-manifolds, dim = 7. Ricci-flat.

e Spin(7), the so-called Spin(7)-manifolds, dim = 8. Ricci-flat.

For the first four types of transitive groups listed above, there are symmetric
spaces, which must be of rank one, which have them as holonomy groups.
These are the non-exceptional holonomies.
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Other important and non-trivial applications of the Berger holonomy
theorem are the rank rigidity results. The rank of a Riemannian manifold
is the maximal k such that every geodesic is contained in a k-flat, i.e. a
k-dimensional totally geodesic and flat submanifold. In this direction one has
Ballmann’s proof of his celebrated result (independently proved by Burns and
Spatzier [BS]): a complete irreducible Riemannian manifold of non-positive
sectional curvature, finite volume, and rank at least two must be locally
symmetric. The dual to this result, by Molina and the author [MO], also
makes use of Berger’s theorem. In this case flats are assumed to be compact
and there is no assumption on the sectional curvatures. The conclusion is the
same : local symmetry.

To obtain the list of possible non-transitive holonomies, Berger exploited the
fact that the curvature tensor at a point takes values in the holonomy algebra.
The proof is long and he also used the fact that the covariant derivative of the
curvature tensor takes values in the holonomy algebra. Some years later, James
Simons [Si] gave a classification-free proof of the Berger holonomy theorem.
He defined the concept of holonomy system. This is a triple [V, R, G], where
V is a Euclidean vector space, G is a compact connected subgroup of the
linear isometries of V, and R is an algebraic curvature tensor which takes
values in the Lie algebra G of G (i.e. R,, € G for all u,v € V). Such a
triple is called:

e irreducible if G acts irreducibly on V;
e rtransitive if G acts transitively on the unit sphere of V;
o symmetric if g(R) =R for all g € G, where g(R)y» = 9 'Ryugv -

SIMONS’” HOLONOMY THEOREM [Si]. An irreducible Riemannian holonomy
system which is not transitive must be symmetric.

The above result implies Berger’s holonomy theorem, as shown by Simons
(see Section 3).

Except from the first general part, the proof given by Simons is algebraic
and involved. He makes use of case by case arguments combined with double
inductions. It is difficult to go through all the details of the proof. The
author [O3] recently succeeded in giving a geometric proof of Berger’s
theorem. This proof completely avoids the use of holonomy systems. It makes
use of submanifold geometry and gives a link between Riemannian holonomy
groups and normal holonomy groups (i.e. holonomy groups of the normal
connection of submanifolds).
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The aim of this article is to give a conceptual proof of the Simons
holonomy theorem, based on the submanifold geometry of orbits. In particular
this gives an alternative proof of the Berger holonomy theorem, shorter than
that given in [O3]. It should be remarked that the methods in this article,
though motivated by [O3], are not an immediate consequence of those in
this reference and depend also on other observations. This article illustrates
the importance of geometric tools (such as normal holonomy groups) for
obtaining algebraic results concerning orthogonal groups. This is part of a
project of geometrization of representation theory (results in this direction are,
for instance, those cited as 68, 69, 81, 91, 175, 176 in [BCO]). We believe
that Simons’ holonomy theorem is a beautiful and strong algebraic result,
which could have, in Simons’ words, many other interesting applications. We
give such an application to submanifold geometry in Section 4.

2. PRELIMINARIES AND BASIC FACTS

The general reference for this section is [BCO] (see also the survey
article [CDOJ]).

Let V be a Euclidean vector space. A tensor K: V X V — s0(V) is
called an algebraic curvature tensor if it satisfies the algebraic identities of a
Riemannian curvature tensor at a point. Namely,

(@) (Rywz,w) = —(Ryuz,w);
(b) <Ru,vza w> = ~'<Ru,vwaz> 5
(©) (Ruwz,w) = (Rowit,v);
(d) Ruvz+ Ry u+ R, ,v=0 (first Bianchi identity).
It is well known that (c) is a consequence of the other three identities.
Let M" be a submanifold of a space of constant curvature Q"% and let

vM = {(TPM)l : p € M} denote the normal space of M. Let V1 be the
normal connection in v(M) and let

Ri&=VyVyl—VyVié— Vi &

[u,v]

be the normal curvature tensor. Let A denote the shape operator of M. Then
one has the following well known Ricci identity :

<R1—41:v§777> = ([A¢,Aplu,v) .

Since the above expression is skew-symmetric both in tangent and normal
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directions, one has that the normal curvature tensor at p induces the linear map
5L 2 2
R, : A°(T,M) — A (v,M).

~1 ~1
Namely, (R, (uAv),EAn) = (R;-,€,m). Let now (R, )': A*(,M) — A (T,M)
be the transpose homomorphism and let

~1 o~

R, =R, o(R,): A*(,M) = N>v,M).
: ~l : . ~1 . .

The image of R, coincides with the image of R, . This tensor induces

the so-called adapted normal curvature tensor RY: (WM)> — vM, given by

el
<R%L,n“’ Py = (R (£An),uA). From the Ricci identity one has:

<Rénﬂa¢> = ([A¢,An], [Ay, Ay]) = —trace([Ag, Apl.[A,, Ay]) -

This formula implies that R~ is an algebraic curvature tensor of the normal
space, which takes values in the normal holonomy algebra (see Chapter IV
of [BCO]). Moreover, the scalar curvature of R+ is non-zero, unless R+ = 0.
By taking the average of R’ over the restricted normal holonomy group and
applying Cartan’s construction of symmetric spaces (see Section 3) one gets
that the restricted holonomy group of the normal connection, in the orthogonal
complement of its fixed point set, acts as an s-representation, i.e. the isotropy
representation of a semisimple symmetric space [O1].

NORMAL HOLONOMY THEOREM. Let M be a submanifold of a space of
constant curvature and let p € M. Then the restricted normal holonomy group
of M at p acts, in the orthogonal complement of its fixed point set, as an
- representation.

The following result is well known (for a proof see [BCO. p.192]):

LEMMA 2.1. If the subgroup H of SO(m) acts on R™ as an
s-representation then N,(H) = H, where N,(H) denotes the identity
component of the normalizer of H in SO(m).

Let us recall that a submanifold of Euclidean space is called full if it is
not contained in any proper affine subspace. A submanifold of the sphere is
said to be full if it is full when regarded as a Euclidean submanifold.
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The next proposition is not easy to obtain. It follows from Proposition 4.7
of [O2] or Theorem 1.1 in [DO]. It is a crucial fact for proving the rank
rigidity theorem for homogeneous Euclidean submanifolds : An irreducible full
homogeneous submanifold of Euclidean space of rank at least 2, which is not a
curve, is an orbit of an s-representation (see Theorem A in [O2], Theorem 1.2
in [DO] and Chapter VI of [BCO]). The rank of a Euclidean submanifold is
the maximal number of linearly independent, locally dzfined, parallel normal
fields. Observe that the rank of a submanifold which is contained in a sphere
is at least 1, since the position vector is a parallel normal field. Moreover,
a homogeneous Euclidean submanifold with rank at least 1 must always be
contained in a sphere (see Corollary 6.1.8 in [BCO]).

PROPOSITION 2.2. Let M = G.v be a full homogeneous submanifold
of R™, where G is a connected Lie subgroup of SC(m). Assume that the
submanifold M has no one-dimensional extrinsic faciors. Then any locally
defined parallel normal field of M is G-invariant.

For the proof of Simons’ theorem we will need to make some observations.
Let G be a Lie subgroup of the isometries of a Eucl. dean vector space V,
with Lie algebra G. For X € G, let X be the Euclidean Killing field defined

by g — %IO Exp(tX).q = X.q. If W is an affine subspace of V then the

orthogonal projection into W of the restriction X lw is a Killing field of W.
Such a Killing field of W will simply be called the projection into W of the
Killing field X.

LEMMA 2.3 ([OS], Lemma 3.1). Let v € V and let X € G. Then the
projection of the Killing field X, induced by X, into the affine normal space
v+ v, (G . v) belongs to the Lie algebra of the normalizer, in the orthogonal
group of the normal space, of the normal holonomy group ®* of G.v at v.

Proof. Let 7/ be the V- -parallel transport in G.v along the curve
Exp(¢X).v. Then

( * ) (TzJ_)_l o EXP(IX)*M, (G.v)

must lie in the connected component of the normalizer of &L, for all t € R,
since any extrinsic isometry of G.v must map normal holonomy groups into
normal holonomy groups. Therefore, differentiating at z -= 0 in (), one obtains
that X := dD,—l Exp(£X)|u, (G.») lies in the Lie algebra of the normalizer of oL,
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But X.w = (X.w)*, where ( )1 denotes the projection into v,(G .v). This
implies the lemma. []

If G acts irreducibly on V then any orbit G.v, v # 0, must be a full
and irreducible submanifold of V. Moreover, the dimension of any orbit G.v
is at least 2, unless dim(V) = 2. In fact, if dim(G.v) = 1, then any X
in the isotropy algebra of G at v must be zero, since it induces a trivial
isometry on the curve G.v which spans the ambient space. So, dim(G) = 1
and therefore dim(V) = 2, since G acts irreducibly. The following result is
implicit in [OS].

PROPOSITION 2.4. Let G be Lie subgroup of linear isometries of V. Let
0#v eV and let X € G. Assume furthermore that G acts irreducibly
on V. Then the projection of the Killing field X = q — X .q into the affine
normal space v+ v,(G .v) belongs to the Lie algebra of the normal holonomy
group ®+ of G.v at v.

Proof. If dim(V) = 2, the proof is trivial, since non-trivial orbits are
extrinsic circles. So, let us assume that dim(V) is at least 3. Then, as
previously observed, dim(G.v) > 2 and G.v is a full and irreducible
Euclidean submanifold. Therefore we can apply Proposition 2.2 to conclude
that any parallel normal field to G.v must be G-invariant. Let us decompose
the normal space v,(G.v) = vy P Vol, where vy is the fixed set of the
restricted normal holonomy group ®; of G.v at v. Let X € G and let X be
the projection of X into the normal space v,(G.v). Then X is trivial when
restricted to 1. In fact, if € € vy, Exp(rX).& = E(Exp(tX).v), where £ is
the extension of & to a parallel normal field. Differentiating the last equality

at t = 0 one obtains that X .£ must be tangent to G.v. So, X.£ = 0.
1

*x 9

By the normal holonomy theorem, the group ®,, which has the same
Lie algebra as @1, acts on vg- as an s-representation. The fact that X does
belong to the holonomy algebra now follows directly from Lemma 2.3 and

Lemma 2.1. L]

Let G be a Lie subgroup of the orthogonal group SO(n) and let v € R”
be such that the orbit G.v is of maximal dimension (this is always true
for v in an open and dense subset of R"). It is standard and well known
that the connected component (G,)y of the isotropy subgroup of G at v acts
trivially on the normal space v,(G.v). So any £ € v,(G.v) defines, locally,
a G-invariant normal vector field £ with £(v) = €.
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We need the following result (see Lemma 2.2 and Remark 2.1 of [O3]).

LEMMA 2.5 ([O3]). Let G be a Lie group of linear isometries of R"
which is not transitive on the sphere and let v € R" be such that the orbit
G .v is of maximal dimension. Then there exists & € v,.(G .v), not a multiple
of v, such that the family of normal spaces vy(G.~(t)) spans R", where
v() =v+tE, t € R (in fact, such a £ is generic). Moreover, v belongs to
any element of this family of normal spaces.

Proof. Choose & € v,(G.v) which is not a multiple of the position
vector v. We may assume that det(A¢) # O (i.e. that all eigenvalues of A,
are different from 0). In fact, if det(A¢) = 0, we can add to ¢ a small
multiple of the position vector v, since its shape operator is A, = —Id. Let
v(t) =v+t& and let V be the orthogonal complement of the linear span of
the family v, (G.v(?)), t € R. We want to show that V = {0}.

By construction, V is contained in all tangent spaces T, (G .~(?)). Let X
belong to the Lie algebra G of G and such that X.v ¢ V. Let us denote by
Je(7) the restriction to y of the Euclidean Killing field X.If w:= Jé(O), then
Je(t) = X .v+tw. Since Je(¢) is tangent to the orbit G.(f), we obtain that
w L vy (G . (1), for t # 0. But, for small ¢, G.~(¢) bas maximal dimension
and so, the normal spaces to the associated orbits converge to v,(G.v). Then
w 1s also perpendicular to v,(G.v). Hence w € V. Since, as it is standard
to check, J¢(0) = Vi o€ —As(X.v) and X.v is arbitrary in V, we conclude
that

Vvé=0, AgV)CV.

So, if W=V+-NT,(G.v), we also have that A¢(W) Z W. Let now Y € G
be such that Y.v € W. Then the Jacobi field J¢(r) along ~(r), induced
by Y, has initial conditions Y .v, Vi € —Ag(Y.v) both of which lie in V*.
So, Je(t) L V. Let now Xj,...,X; € G be such that X;.v,...,X;.v is an
orthonormal basis which diagonalizes the restriction to V of A¢. Then their
associated Jacobi fields along ~ are Jé'(t) = (1 —tA\)X;.v, where \; # 0
is the eigenvalue of A; associated to X;.v (i =1,...,k). Let now Z € §
be arbitrary and write Z = X + Y, where X is a linear combination of
Xi,...,X; and Y.v € W. From this we obtain that the Jacobi field, induced
by Z along ~, at t = 1/)\; is perpendicular to X;.v. Since Z is arbitrary
we have that X;.v € v (G .y /A:)) which is a contradiction, unless
v={0}. O
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3. IRREDUCIBLE HOLONOMY SYSTEMS

The following result relates holonomy systems to normal holonomy
of orbits.

PROPOSITION 3.1. Let [V,R,G] be a holonomy system. Then

(1) The normal space v,(G.v) is left invariant by R for all v € V, i.e.
Ry, (G.v),00 GV (G . V) C (G . ).

(ii) The restriction R” of R to v,(G.v) is left invariant by the normal
holonomy group ®% of G.v at v, i.e. g(R®) =R" for all g € DL,

Proof. Let w,z €V, £ € 1,(G.v). Since Ry, € G, 0= (R, ;v,§) =
(Ryew,z). Hence R, ¢ = 0. Let now 7 also be in v,(G.v). Then, by the
Bianchi identity, R¢,v = Ry, + R¢,n = 0. Thus, R, belongs to the
isotropy subalgebra G,. But, G,.v,(G.v) C v,(G.v). This proves part (i).
(Observe that R must also leave invariant any normal space v,(G.v), since
G.v=G.z)

Let c(t) be a piece-wise smooth curve in G.v with ¢(0) = v and let 7",L
denote the V- -parallel transport along clog-Let & e vy (G.v) (i=1,...,4).
First observe that R being constant, the Euclidean derivative VER = 0. Hence,

if &(1) = 7,4(&),

d

0= G Ren &b 0,E40) - <R%€1 0,60

B <R€1(t),%§}(z)g3(t)’ &) — (Rey .60 %é(t), (1)

&), &)

- <Rél(t),€2(t)£~3(t), %54(1» )

But d% E,-(t) belongs to the tangent space T, (G.v) (i = 1,...,4). Then,
using part (i), one obtains that

%<R51(t)£z(t)€3(’)a &) =0,

which implies part (ii) (this is in fact a special case of Lemma 1 of [E]). [

The proof of the following lemma is straightforward.
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LEMMA 3.2. Let [V,R,G] be a holonomy system, X € G, and let W
be a linear subspace of V which is left invariant by both R and X .R (the
restrictions to W are denoted by R and X .R, respectively). Let X be the
projection to W, of the restriction to W, of the Killing field of V induced
by X. Then X.R=X.R

Proof of Simons’ theorem. Let v be such that G.v has maximal
dimension. Let () = v + t& be given by Lemma 2.5. Let, for X € G, X !
be the projection of X to the normal space V(G .y(t)). By Proposition 3.1,
this family of normal spaces must be invariant under R. Denote by R " the
restriction of R to v, (G . (). Observe that [V, X .R, G] is also a holonomy
system and hence we can define X.R', to be the restriction of X.R to
vyo(G . ¥(2)). By Proposition 2.4 and Proposition 3.1 (ii) one has:

X" R =o0.

Hence, by Lemma 3.2, one has that X.R = 0. Then, by Lemma 2.5,
one has, in particular, that the Jacobi operator JX := (X .R). yv is the null
endomorphism of V. Since vectors, whose G-orbits has maximal dimension,
are dense we conclude that all Jacobi operators JX are null. Hence X.R has
zero sectional curvatures. Therefore X.R = 0. Since X € G is arbitrary we
conclude that [V, RG] is symmetric.  []

In order to prove the Berger holonomy theorem we give a variation of
Simons’ arguments. We first observe that any irreducible symmetric holo-
nomy system [V,R,K], R # 0, determines an irreducible simply connected
symmetric space with curvature ﬁR. In fact,

G=toDp

is an irreducible orthogonal involutive Lie algebra, where ¢ is the Lie algebra
of K, p =V and the bracket is given by:

a) [X,Y]=X.Y-Y.X, if X, Yet;

b) [X,v]l=—-[v,X]=X.v, if XEt, veEp;

¢) [v,wl =Ry, if v,wep.
This irreducible orthogonal involutive Lie algebra determines a symmetric
space with isotropy K and curvature tensor %R. This is known as Cartan’s

construction of a symmetric space. Observe that the scalar curvature of an
irreducible symmetric space is different from zero.
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LEMMA 3.3. Let [V,R,G] and [V,R',G] be two irreducible symmetric
holonomy systems, where R # 0. Then R' is a scalar multiple of R.

Proof. We may assume that R’ # 0. We have, by applying Cartan’s
construction, that R and R’ have both non-zero scalar curvature (since
irreducible symmetric spaces have this property). So, there is a real number u
such that R = R — uR’ has zero scalar curvature. The holonomy system
[V,R,G] is also irreducible and symmetric. Thus R = 0. L]

LEMMA 3.4. Let R be an algebraic curvature tensor on V and let \ be

a linear function on V. Assume that the tensor A ® R satisfies the second
Bianchi identity, i.e., N2Q)R,,+Aw)R, +MNVv)R,, = 0. Then A =0 or R =0.

Proof. Assume that X # 0 Let h € V be such that (h, -) = A. Let
W be the orthogonal complement of the linear span of 4. One has that
Ry =0 for all v,w € W (just by applying the second Bianchi identity to
AMMR,.,). Let e; = mh and complete it to an orthonormal basis ey, ..., e,

of V. Let R}, := (R, e e). Observe that R}, =0 if i,j # 1. The same
equality is also true if k,I# 1, since R! k= R,{’“. Then the only interesting
coefficients to compute are R}, = Rj;;, j,k # 1. Therefore one has, for

all i,j,k,l=1,...,n, that Ri;, = R}, . But this implies, as is well known,

ik,j*
that R! jx = 0. In fact, interchanging the indices /i and j and then k and i,
one obtains that R}, = —R/, .. Iterating this procedure three times one gets
that R}, , = —R};,, for all i,j,k,l=1,...,n, which implies that R = 0. []

Proof of the Berger holonomy theorem. If the holonomy group @ does
not act transitively on the tangent space 7,M then, by Simons’ holonomy
theorem, [T,M,R,®*], is an irreducible symmetric holonomy system, where
R is the curvature tensor at p and ®*is the connected component of @.
Observe that the fact that M is locally irreducible says by definition that ®*
acts irreducibly. Assume that R, # 0. Let VzR be the covariant derivative
of R at p. The irreducible holonomy system [7,M,VzR,®*] is also non-
transitive and hence symmetric, for any Z € T,M. Then, by Lemma 3.3,
VzR = AZ)R, for some linear function A. Since VR satisfies the second
Bianchi identity one has, by Lemma 3.4, that VR = 0. The same is true
for any other point ¢ € M where the curvature tensor is not zero, and at
accumulation points of such points. But at those points of M where R is
locally zero the covariant derivative of the curvature tensor also vanishes. So,
M is locally symmetric. [
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4. APPLICATIONS TO SUBMANIFOLD GEC'METRY

Let M" be a full submanifold of R*t* ie. M is not contained in a proper
affine subspace of the ambient space. The first normal space uI}(M) of M at p
is the linear span of {a(X,Y):X,Y € T,M} C v,(M), where « is the second
fundamental form. Equivalently, one has that Vll (M) = {¢ € v,(M) : Ac = 0}+.
Assume that the bundle v!(M) is parallel with respect to the normal connection
and that M is a full submanifold. Then the first normal bundle coincides with
the normal bundle. In fact, by the Ricci identity, (v'(M))* is a parallel and flat
subbundle of v(M). It 0 # £ is a parallel normal field with initial condition
in (' (M))L, then £: M — R"* must be constant, and so M would lie in
the hyperplane p + (£(p))*.

The subspace T,M @ u[} (M) is the so-called second osculating space of M
at p. So, the condition V;i (M) = v,(M) means that the second osculating space
coincides with the ambient space. This condition, which is in particular satisfied
by tight or taut submanifolds, due to Kuiper [K] (see Theorem 2.5 in [GT]),
gives a strong restriction on the codimension. In fact, £ < %n(n+ 1), since the
map £ — Ag, from the normal space at p into the symmetric endomorphisms,
is one to one. In the particular case that M = K.v is a homogeneous
submanifold one has that n + &k < m + %m(m + 1), where m = dim(K).
Representations such that the first normal space coincides with the normal
space for any orbit, were studied in [CT, GT].

Normal holonomy has revealed to be an important tool for Euclidean
submanifold geometry [BCO], with applications to Riemannian geometry
(see [O3]). The following result is an application of Simons’ holonomy theorem
to normal holonomy. The local normal holonomy group is defined in a similar
way to the local riemannian holonomy group.

THEOREM 4.1. Let M" be a full submanifold either of Euclidean space or
of the sphere, such that the local holonomy group at p acts without non-zero
fixed points, i.e. there are no locally defined non-trivial parallel normal fields
around p. Assume, further, that no factor of the local normal holonomy is
transitive on the sphere. Then there are points in M, arbitrarily close to p,
where the first normal space coincides with the normal space. In particular,
codim(M) < %n(n +1).

Proof. If M is a submanifold of the sphere we regard M as a Euclidean
submanifold. We may assume that M is so small that the local normal
holonomy group coincides with the normal holonomy group at p. Let us



ON THE GEOMETRY OF HOLONOMY SYSTEMS 347

decompose orthogonally the normal bundle as vM = vy @ v P - --Dv, into the
parallel subbundles associated to the irreducible factors of the normal holonomy
group (v is trivial if M is Euclidean, and 1y is the one-dimensional normal
subbundle generated by the position vector if M is contained in the sphere).
The adapted normal curvature tensor R%Lm leaves this decomposition invariant,
for any normal fields &, 7. Moreover, Rt = ROGR'@---®R", where R' is
the restriction of R to v; and RY = 0. Observe that R’ # 0, for each i # 0
(otherwise, v; would be flat). It is standard to show that there is a point g € M,
arbitrarily close to p, such that Ri(g) # 0, for all i =1,...,r. One has that
[(Vl)q,Ri(q),CI)i] is an irreducible non-transitive holonomy system, where ®@;
is the restriction to (v;), of the normal holonomy group at g (for each i # 0).
So, by Simons’ Holonomy Theorem, this holonomy system must be symmetric.
In particular, R'(q) is the curvature tensor of an irreducible symmetric space.
Then it is non-degenerate (i.e., if for some § € (v;),, R (@), = 0 for all
n € (v1)y, then & = 0). Then the degeneracy of R+ is vy. If £ € v,M is
perpendicular to the first normal space at ¢, then the shape operator A is
zero. Then & lies in the degeneracy of R+ (see section 2). Then £ € (10)g -
So, £ = 0 if M is not contained in a sphere. If M is contained in a sphere then
A¢ is a non-trivial multiple of the identity, unless £ = 0, since vy is generated
by the position vector. So in this case also, A¢ = 0 implies £ = 0. Ul

COROLLARY 4.2. Let M", n > 2, be a homogeneous irreducible full
submanifold of Euclidean space such that the normal holonomy group, in
each irreducible factor, acts non-transitively on the sphere. Then the first
normal space of M coincides with the normal space.

Proof. If rank(M) = O then we are done by the above theorem. If
rank(M) = 1, then M is contained in a sphere (see Corollary 6.1.8 of [BCO]),
and the normal holonomy group of M, regarded as a submanifold of the sphere,
has no fixed set. So, by the above theorem we are also done. If rank(M) > 2
then by the rank rigidity theorem for submanifolds M coincides with an orbit
of an s-representation. It is well known, in this case, that the first normal
space of M coincides with the normal space. [

The above corollary could be useful to give some insight on the conjecture
posed in [O2], which is a generalization of the rank rigidity theorem for
homogeneous submanifolds : an irreducible and full homogeneous submanifold
of the sphere, different from a curve, such that the normal holonomy group
is not transitive must be an orbit of an s-representation.
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This conjecture, which is true if dim(M) = 2 (see [BCO, p.198]), is
actually equivalent to the following two conjectures taken together. It is not
true for non-homogeneous submanifolds since the normal holonomy is invariant
under conformal diffeomorphisms of the ambient space.

(a) Let M be a homogeneous irreducible and full submanifold of the sphere,
different from a curve, which is not an orbit of an s-representation. Then
the normal holonomy group acts irreducibly.

(b) Let M be a homogeneous and full submanifold of the sphere such that
the normal holonomy acts irreducibly and is non-‘ransitive. Then M is
an orbit of an s-representation.

Corollary 4.2 might be useful in the proof of part (b).
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