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ON SUCCESSIVE MINIMA OF INDEFINITE QUADRATIC FORMS

by J. BOCHNAK and W. KUCHARZ *)

1. INTRODUCTION

The classical theorem of Minkowski on successive minima of definite
quadratic forms (cf. [6] or [3], p. 205) can be stated as follows:

THEOREM 1.1 (Minkowski). Let g be a non-singular positive definite
quadratic form in n variables with real coefficients. Then there are n linearly
independent points ay,...,a, in Z" such that

g(ay) - - - gla,) < v,D(g),

where vy, is the Hermite constant.

In the statement above, D(g) is the determinant of g, that is, D(g) =
det(g;;), where g = ) g;xix; with g;; = g;. Recall that the Hermite constant ~,
is defined as follows. Let &, be the set of all non-singular positive definite
quadratic forms in n variables with real coefficients. For any g in &, put

_ g(x) "
1) = inf{ o= | xe 2", g >0}

gﬁ

Then, by definition,
Tn = Sllp{’}/(g) | g€ gn} .
Only the first 8 values of v, (and ~,4 = 4) are known explicitly. Clearly,

since y(g)" < ~,, the constant 4/ in the Minkowski theorem is optimal; it
cannot be replaced by a smaller one.

*) Both authors acknowledge with gratitude the support of the Research in Pairs program at
the Mathematisches Forschungsinstitut Oberwolfach.
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The goal of this paper is to prove an analogous theorem for indefinite
quadratic forms.
First, given integers n and s with n > 1, define the Watson number w,
by setting
Wy = €207

where {n} =n for n even, {n} =n—1 for n odd, and

1 O or £1 (mod 8)

1/2 +3 (mod 8)
Cps = for =

1/3 +2 (mod 8)

1/4 4 (mod 8).

One has v, = w,, if n <8 (this result is classical, due to Gauss for n < 3,
Korkine and Zolotareff for n = 4,5, and Blichfeldt fcr n = 6,7, 8 ; for the
references see [3], p. 332).

Let &, be the set of all non-singular real quadratic forms in n variables
with signature s (in particular &, = &, ,). Again, we can define the “Hermite
constant” «, of &, imitating the definition of ~,. For any f in &, let

| f(x)]
\D(f)

1
n

a(f) = inf{

xeZ", |fx)| > 0}

and let
Qp s = sup{a(f) l f € gn,s} .
Contrary to the case of positive definite forms, the numbers «, , with |s| < n
are known explicitly. By a theorem of Watson (cf. [8], [9]), for n > 2 and
|s| < n, one has
n

Qp g = Wy -

The inequality « ; > w, is proved in [9] by explicitly exhibiting a form
fus In &, 5, with coefficients in Z, satisfying

Ol(fn,s)n = Wp,s -
We shall only need the existence of such a form f, .. Our main result can

be regarded as a theorem on successive minima for indefinite quadratic forms.

THEOREM 1.2. For any indefinite quadratic form [ in &, there are n
linearly independent points a,...,a, in Z" such that

0< |f(al) o f(an)l < wn,s|D(f)| -

Moreover, the constant w, is optimal.



ON SUCCESSIVE MINIMA OF INDEFINITE QUADRATIC FORMS 321

Clearly, the inequality oy ; > w, s, mentioned above implies the optimality
of the constant w,,; in Theorem 1.2. Observe that our theorem implies
Qp g = Wy,s-

To the best of our knowledge no results similar to Theorem 1.2 are known,
except the contributions of Barnes ([1], [2]), in which he considers an analogous
problem for forms in 2 and 3 variables not representing 0 over Z. We wish to
thank Professor A. Schinzel who informed us about Barnes’ papers. The proof
of Theorem 1.2 depends on a relatively recent result of Margulis [5] about
the density of values of irrational indefinite quadratic forms at integral points
(cf. Section 2). It seems probable that any attempt at proving Theorem 1.2
prior to Margulis’ result would be either unsuccessful or would require very
long and complicated computation.

Theorems 1.1 and 1.2 can be placed in a larger context of classical inves-
tigations in the geometry of numbers, concerning the problem of successive
minima of "distance functions" (cf. [3], Chap. 8 for more information). Recall
that a distance function 1 : R” — R is simply a non-negative continuous
function satisfying n(tx) = |#|n(x) for all ¢ in R and x in R". For any
positive real number A, put

Sy={xeR"|0 < nx) < A}

(in the literature the inequality 0 < n(x) is often omitted, which does not affect
the problem under consideration if 771(0) = {0}). Given a lattice A C R”
of rank n, one defines the kth successive minimum A, = A\¢(n,A) of the
distance function n with respect to A to be the infimum of the positive real
numbers A such that the set S contains k linearly independent lattice points.
Clearly

A< <A
and
A =inf{nx)|x € A, 0 <nx)}.
Let v \ \
A7) = sup ——, A(n) = sup —22
=Py LERRPTIN
where d(A) is the determinant of A. If A(n) > 0, the quotient
()
= 22 5
T T

is called the anomaly of 1. Numerous works of Rogers, Chabauty, Mahler,
Rankin and others show that A, is quite often strictly greater than 1 (cf. [3],
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Chap. 8 for references). The situation where A, equals 1 seems to be counter-
intuitive.

Statements about different quadratic forms in &, at integral points are
equivalent to statements about the single form

n—+s
x%+...+x12]_x127+1_..._x%7 p= 2

and different lattices (cf.[3], pp.20-23). It follows that Theorem 1.1 (resp.

Theorem 1.2) implies that for 7 = |x3+---+x2|7 (reso. 7= | X3+ -+ x7 —

X2 —--—x2|2, where [ = " and |s| < n), the anomaly A, is equal to 1.

2. STRATEGY FOR THE PROOF OF THEOREM 1.2

The strategy for the proof of Theorem 1.2 is inspired by Watson’s papers [8]
and [9], dealing with the problem of finding absolute positive normalized
minima of forms in &, ;.

Let T(n,s) be the statement of Theorem 1.2 for the pair of integers (n,s)
(necessarily satisfying n > 2, |s| < n, n = s(mod 2)). In the subsequent
sections we shall prove the following three assertions :

(A) T(n,n —2) holds for 2 < n <6 (cf. Corollary 3.3).
B) For n > 2, T(n,s) = T(n+ 2,s) (cf. Corollary 4.2).
(C) If s = s'(mod 8), then T(n,s’) = T(n,s) (cf. Corcllary 5.2).

Assuming these assertions we now prove Theorem 1.2.

Proof of Theorem 1.2. Making use of (A) and (B), it follows by induction
that T(n,s) holds for all » > 2 and s satisfying 0 < s < 4 (s subject to
the usual restrictions |s| < n, n = s(mod 2)). Since T(n,s) trivially implies
T(n,—s), we conclude that T(n,s) holds for |s| < 4. The following table, in
which T'(n,s) is abbreviated to (n,s), helps to understand the situation:

2 (2,0)

3 G- | G

4 4,-2) 4,00 | (4,2

5 (5,-3) G- 4 6D 1 653

6 (6, —4) (6,-2) 6,00 | 6,2) | (6,4

7 1(7,-5) (7,-3) a-n 4 an | 73 1 @95
n/s| -5 -4 -3 -2 -1 ©0 1 2 3 4 5
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In order to prove T'(n,s) in the remaining cases, that is for |s| > 4, we choose
s’ with |s'| <4 and s = s/(mod 8). Since we have already demonstrated that
T(n,s") holds, so does T(n,s) in view of (C). The proof of Theorem 1.2 is
complete. [

The next proposition reduces the proof of assertions (A), (B) and (C)
to the case of forms with coefficients in Z, at least when n > 3. Recall
that a form in &, is said to be irrational if it is not a multiple of a form
with coefficients in Z. By the celebrated result of Margulis [5], for every
non-singular indefinite irrational form f in n > 3 variables the set f(Z") is
dense in R.

PROPOSITION 2.1. Let f be a non-singular indefinite irrational form in
n > 3 variables. Then for every € > 0 there are linearly independent points
ai,...,a, in " such that

0<|fla)---flan)| < €.

Proof. Let by,...,b, be linearly independent points in Z" such that
f(b)) #0 for all i. Let

p=max{|f(b)| | 1 <i<n}.
By Margulis’ theorem there exists an integral point x such that
0<|fx)|<e/u".

Write x = X\;b;, where ); is in R for all i, and choose k with A\, # 0. Set
a; = b; for i # k and a; = x. Then the integral points ay,...,a, are linearly
independent, and 0 < |f(a1)...f(ay)| < €, as required.  []

For any f in &, set

[f@ay) - - -flay)|
|D()|

ai,...,a, € Z" are linearly

B(f) = min{
independent, and f(a;) # 0 for 1 <i < n}

Let &, (Z) denote the subset of &£, consisting of all forms with coefficients
in Z and let

ﬁn,s = Sup{ﬁ(f) |f € 8n,s(Z)} .
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Clearly, a(f)" < B(f) for all f in &,((Z), anc hence the equality
o fn,s)" = Wy, preceding the statement of Theorem 1.2, implies

(22) Whp,s < ﬂn,s .

The following corollary is an immediate consequence of Proposition 2.1.

COROLLARY 2.3. Let n>3 and |s| < n. Then T(n,s) holds if and only

if Wy,s — ﬂn,s-

3. PROOF OF T(n,n—2) FOR 2<n<6

LEMMA 3.1. T(2,0) holds true.

Proof. Let f be in &. If f(y) =0 for some y € Z*\ {0}, then f is
equivalent over Z to ax;x; + bx3 for some real numbers a and b satisfying
0 < b < a. In particular, |D(f)| = a®/4. Let ¢, and ¢, be linearly independent
points in Z? with 0 < |f(¢;)| < a for i =1,2. Then

0 < |f(c)f(cr)] < a® = 4|D(f)] = wao|D(S)

which proves 7'(2,0) for f as above.

Suppose f(x) # 0 for all x in Z?\ {0}. Then f = &7 — &3, where & and
&, are linear forms. The quadratic form A = £ +£3 is in &, D(h) = |D(f)|,
and 0 < |f(x)| < h(x) for all x in Z*>\ {0}. By Theorem 1.1, there exist
linearly independent points a; and a, in Z? such that

h(aph(az) < ;D).
Since 75 = wap < wap, wWe get
0 < |flanf(az)| < h(aDh(ay) < wr oD(h) = wy0|D(f)| ,
which completes the proof. [

Henceforth it is sufficient for our purposes to consider quadratic forms with
coefficients in Z. However, forms with other coefficients will also appear in
some proofs.

LEMMA 3.2. Let f be in &,,_2(Z), where n > 3.
1) If f(x) =0 for some x in 2"\ {0}, then B(f) < 47,'1’:22.
@) If f(x) #0 for all x in Z" \ {0}, then B(f) < ..



ON SUCCESSIVE MINIMA OF INDEFINITE QUADRATIC FORMS 325

Proof. (i) The quadratic form f is equivalent over Z to
xp(axy + axxy + -+ + anXn) + g(x3, .., Xn)

where 0 < a, <a and g is in &, ,—2(Z) (g is thus positive definite). Let
ci=(-1,1,0,...,0) € Z" and

0,1,0,...,0)€ 2" ifar#0
CHr =
7 10,1,0,...,00€Z" ifa,=0.

Then c¢; and ¢, are linearly independent and
0<|fle)|<a for i=1,2.

By Theorem 1.1, there are linearly independent points ¢3,...,c, in Z'2
such that

0 < g(@3) - g@) < va_3D(g).
Let ¢; = (0,0,¢)) € Z" for i = 3,...,n. Clearly, f(c;) = g(c;) for i =3,...,n.
Since |D(f)| = %D(g), it follows that for the linearly independent points
C1,C2,...,Cp In Z" one has

0 < |fler) - flew)| < a*g(e3) -+ g(@) < a®Y'~3D(g) = 47" ~5|D(f)|,

which implies the required inequality [(f) < 47,’11:% :

(ii) The quadratic form f can be written as f = £ +---+&2_ | —£2, where
the &; are linear forms in n variables with real coefficients. The quadratic
form h = & + - - + &2 satisfies D(h) = |D(f)| and 0 < |f(x)| < h(x) for
all x in Z"\ {0}. Since h is non-singular and positive definite, Theorem 1.1
implies, B(h) <+, and hence B(f) < B(h) <~F. [

As already mentioned in Section 1, v, = w,, for n < 8. However, only
the values of ~, for n < 4 are needed in this paper. In particular, one has
the following table (where 1) = 1 by definition):

n| 2 3] 4 |5]6
wl4/3]2] 4

4viy | 4 [4]16/3|8] 16

Wan—o | 4 | 4]16/3 8] 16

COROLLARY 3.3. T(n,n —2) holds for 2 <n <6.

Proof. T(2,0) is proved in Lemma 3.1. Hence by (2.2) and Corollary
2.3, it suffices to show 3,, > < w,,—» for 3 <n < 6. To this end let f be
in Sn,n—Z(Z)-
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If n=3 or n=4, then Lemma 3.2 and the table above imply
BN < max{4y) 73, W} =492 = wana.

If n=15 or n =6, then by Meyer’s theorem (cf. [7], p. 43), f(x) = 0 for
some x in Z"\ {0}. Hence in view of Lemma 3.2 (i) and the table,

/B(f) o 4'7:,1:5 = Wp,p-2 -

Thus the required inequality is proved for 3 <n <6. [l

4. PROOF OF THE IMPLICATION T(n,s) = T(n+ 2,s)

PROPOSITION 4.1. Let n and s be integers satisfying n > 2,
n = s(mod 2). Then

s| <n, and

ﬁn+2,s S 4/8n,s .

Proof. 'We have to show that

B(f) < 4B
for all f in &,45 (Z).

First consider the case (n,s) = (2,0) with f in & o(Z) satisfying f(x) # 0
for all x in Z*\ {0}. Such an f can be written as f = £ +&; — £2 — €2, where
the & are linear forms in 4 variables with real coefficients. The quadratic
form h = & + €2 + £ + €2 is non-singular and positive definite, and hence
Theorem 1.1 implies

Blh) <5 = 4.
Since D(h) = |D(f)|, 0 < |f(x)| < h(x) for all x in Z*\ {0}, one has

B(f) < Bh) <4 < 4B,

the last inequality being a consequence of an obvious one, 3,0 > 1.
Assume now that f is in &,42(Z), n > 2, and f(x) = O for some x

in Z"*2\ {0} (if n > 3, the last condition is automatically satisfied due to

Meyer’s theorem). It follows that f is equivalent over Z to the quadratic form

x(axy + axxs 4 - + Qpy2Xng2) + 9(x3, ..., Xng2),
where the a; are integers, 0 < a; < ay, and g is in &,(Z). Clearly,

4D(f)| = aj|D(g)| -
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Let by,...,b, be linearly independent points in Z" such that
0 < |g1) - g(bn)| < BnsID(g)|
Setting b; = (0,0,b;) € Z"2, one has
fb) =gb) for 1<i<n.
For ¢; =(—1,1,0,...,0) € Z"*? and
o {(0,1,0,...,0) €Z? ifay#0
T (,1,0,...,00 € 22 ifay =0,
the following inequalities are satisfied:
0<|f(c)| <a; for j=1,2.
Hence for the linearly independent points cy,cs,by,...,b, in Z"*2, one has

0 < |flen)f(c)fbr) -+ -f(by)| < ad|g(br) - - - g(Bn)|
< aiBus|D(9)| < 4B, |D(f)],

which implies 3(f) <48,,. [

COROLLARY 4.2. For each n > 2, T(n,s) implies T(n+ 2,s).

Proof. According to (2.2) and Lemma 3.1, 7(2,0) is equivalent to the
equality (3,0 = wyo. Hence, by Corollary 2.3, it suffices to show that if
Bps = Wnys, then By405 = Wpyzs. This can be done as follows. Since
Wpy2,s = 4wy s, Proposition 4.1 implies

/8n+2,s < 4ﬁn,s = 4wn,s = Wn42,s -

Thus B,y25 < Waq2,s, which combined with (2.2) gives B,425 = Wptas. [

5. PROOF OF THE IMPLICATION T(n,s’) = T(n,s)

PROPOSITION 5.1.  Let f be in &, (Z) and let s' be an integer satisfying
|s'| < n and s = s'(mod 8). Then there is a form [ in &, (Z) such that for
every prime number p, the forms f and f' are equivalent over the ring Z,
of p-adic integers. In particular, D(f) = D(f").
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Proof. First we shall construct a quadratic form ¢ in &, ¢, with coefficients
in Q, which is equivalent to f over the field Q, of p-adic numbers, for
each prime p. The notation of Serre’s book ([7], Chap. IV, §§2,3) will
be used without further explanation. One has d..(f) = (—1)¢ = (—1)‘1/
and eoo(f) = (—1)9@D/2 = (—1)9@-D/2 where ¢ = (n — s5)/2 and
g =(n—s")/2. Let d = D(f) and let ¢, = €,(f) be the Hasse-Minkowski
invariant for v a prime number or v = oo. It follows from ([7], p. 44,
Proposition 7) that there exists a form g in &,y , with coefficients in Q,
satisfying D(g) = d and €,(g) = €, = &,(f) for ell v. By ([7], p. 39,
Theorem 7), for every prime number p, the forms f and g are equivalent
over Q,.

Having g as above, ([4], p. 141, statement 6,) implies the existence
of a form f' in &,y (Z) which is equivalent to f over Z, for all prime
numbers p. [

To prove the next corollary we need the powerful Siegel-Watson theorem
(cf. [4], p. 131, Theorem 1.5): Let f be a non-singular indefinite integral
quadratic form in n > 4 variables and let » # 0 be an integer. Suppose
that b is represented by f over all Z,. Then b is represented by f over Z.
Further, let P be a finite set of primes and for p € P let a, € Z; be any
representation of b by f. Then there is a representation a € Z" of b by f
such that a is arbitrarily p-adically close to a, for every p € P.

COROLLARY 5.2. Let n,s and s’ be integers satisfying |s| < n,
n = s(mod 2), and s = s'(mod 8). Then

£ o= /8 .
5n,s n,s

In particular, T(n,s") is equivalent to T(n,s).

s’ < m,

Proof. Let f be in &,,(Z). By Proposition 5.1, there is a form f’
in &, ¢(Z) which is equivalent to f over Z, for every prime p. The Siegel-
Watson theorem implies that f and f’ represent the same non-zero integers
over Z. Moreover, if representations of n integers by,...,b, by f are given
by n linearly independent points in Z", then some representation of the same
integers by f’ can be also given by linearly independent points in Z". Indeed,
let f(a;) = b;, where a; € Z"" for 1 <i<n. Fix a prime p. Let f =f 0 ¢

for some isomorphism ¢ over Z, and let aP = oa). If ay,...,a, are
linearly independent in Z", then a(lp), e ,an(p) are linearly independent in Z7.

In particular,
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a?
det : #£0.
e
By the Siegel-Watson theorem, one can choose daf,...,d, in Z" such that

f'(@)=1>b; for 1 <i<n and a; is p-adically arbitrarily close to a” . Then

/

iy
det : #0,
ap,
and hence aj,...,a, are linearly independent in Z".

We can now complete the proof. Since D(f) = D(f"), the fact established
above implies 3(f) < B(f"). Thus B, < Buy, the form f in &, (Z) being
arbitrary. Consequently one gets

ot 7
6n,s /Bn,s

by interchanging s and s’.
Finally observe that for s and s under consideration,

Wp,s = Whp,s' -

By Corollary 2.3, the last two equalities imply the equivalence of T'(n,s)
and T(n,s’) for n > 3. If n = 2, then s = s’ = 0, and there is nothing
to prove. [
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