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pour tout € > O (par la majoration classique 7(n) < n®: voir [50, p.83,

?
Corollaire 11]). Comme (22) suggere que G(n) > n, on déduit donc de (22)
et (23) que

~1
ZA(k)A(n—k)wQH( (p_1)2>- izn,

p>3 pln
p=3
qui est I’'une des variantes de I’estimation prédite par Hardy et Littlewood [28].
De tels arguments s’appliquent probablement a la conjecture de Schinzel
énoncée au paragraphe 13.1. Enfin, rappelons que le théoreme le plus proche de
la conjecture de Goldbach est celui de Chen [9] : « Tout entier pair suffisamment
grand est la somme d’un nombre premier et d’un entier produit d’au plus
deux nombres premiers. »

REMERCIEMENTS. Ils vont a K. Conrad pour ses commentaires pertinents
qui nous ont permis d’améliorer une version préliminaire de ce texte.
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Certaines des références anciennes peuvent étre difficiles a trouver. Des versions
scannées des articles [25, 36, 47, 49] sont accessibles sur certaines bibliotheques
numériques recensées sur http://www.library.cornell.edu/math/digitalization.php. De
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plus, la base de données Jahrbuch iiber die Fortschritte der Mathematik donne
un lien direct vers la version scannée de nombreux articles datés d’avant 1942:
http://www.emis.de/MATH/JFM/.
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