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L’Enseignement Mathématique, t. 51 (2005), p. 265-318

LE A-CALCUL DE GOLOMB
ET LA CONJECTURE DE BATEMAN-HORN

par Marc HINDRY et Tanguy RIVOAL

«Les mathématiciens ont tdché jusqu’ici en vain a découvrir un ordre
quelconque dans la progression des nombres premiers, et on a lieu de croire,
que c’est un mystere auquel Iesprit humain ne saurait jamais pénétrer. Pour
s’en convaincre, on n’a qu’a jeter les yeux sur les tables des nombres
premiers, que quelques personnes se sont donné la peine de continuer au-
dela de cent-mille : et on s’apercevra d’abord qu’il n’y régne aucun ordre
ni regle. » (L. Euler [20])

1. INTRODUCTION

La répartition des nombres premiers et plus précisément la répartition de
nombres premiers d’une forme déterminée est un sujet ancien et central en
théorie des nombres. Un des premiers résultats obtenu par la voie de ’analyse
complexe est le théoréme de la progression arithmétique de Dirichlet [19] dont
une version affinée due a de la Vallée-Poussin [52] s’énonce comme suit.

THEOREME 1 (Dirichlet, de la Vallée-Poussin). Soient des entiers a,b > 1
tels que (a,b)=1. On a
() =#{n< n+b est jer} 2 a
Tax+-p(X) = <x:a est premier} ~ — - ———
wr P p@) " log(x)
ou p(a) = {1 <n<a:(a,n = 1} =a p|a(1_ll;) est la fonction indicatrice
d’Euler.
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Le fait que m.xip(x) tende vers linfini est di a Dirichlet [19] et le
théoreme des nombres premiers (cas a = 1) a été prouvé simultanément et
indépendamment par Hadamard [25]. Une variante du théoreme indique que
#{ p premier < x : p = an+b, n € N} a le méme comportement asymptotique
que x/(p(a)logx)).

Ce résultat posséde de nombreuses applications. Par exemple, bien avant
que Dirichlet ne démontre son théoréme, Legendre avait indiqué comment
en déduire la loi de réciprocité quadratique, finalement démontrée incondi-
tionnellement par Gauss. L’existence méme d’un nombre premier du type
an+ b (pour tous a, b premiers entre eux) est également un point clef de la
preuve du théoreme de Hasse-Minkowski: « Une quadrique possede un point
rationnel sur un corps de nombres K si et seulement si elle posseéde un point
rationnel sur tous les complétés K, , lorsque v décrit les places de K.»
On dit qu’une famille de variétés algébriques vérifie le principe de Hasse si
chacun de ses membres posséde un point rationnel sur un corps de nombres
K si et seulement s’il posséde un point rationnel sur tous les complétés K, ;
il existe de nombreux contre-exemples au principe de Hasse, par exemple les
courbes ou surfaces lisses cubiques.

Schinzel [44] a proposé une conjecture qualitative trés générale concernant
les valeurs premiéres simultanément prises par une famille finic des polynomes
de Z[X]. Cette conjecture permettrait notamment de faire de grands progres sur
les conditions de validité du principe de Hasse (voir par exemple [12, 13]). La
conjecture de Schinzel a ensuite été précisée de fagon quantitative par Bateman
et Horn dans [3] & ’aide d’un raisonnement heuristique: et leur estimation est
trés bien confirmée numériquement. En dehors du cas d’un seul polynéme de
degré 1 (Théoréme 1 ci-dessus), la conjecture de Schinzel semble totalement
hors de portée a I’heure actuelle : pour situer son niveau de difficulté, indiquons
que sa démonstration aurait comme corollaires 1’infinité des nombres premiers
jumeaux et celle des nombres premiers de la forme n? +1.

Golomb [24] a développé une approche tres intéressante et apparemment
peu connue de la conjecture des nombres premiers jumeaux, basée sur le
comportement au voisinage de z =1 de la série entiere

> A@n—1DAQn + )z,

n=1

oll A désigne la fonction de von Mangolt, familiere en théorie analytique des
nombres. Une seule étape analytique (I’interversion d’une limite et d’une série)
empéche Golomb de parvenir a son but. Néanmoins, er: admettant cette étape,
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il esquisse comment obtenir I’estimation asymptotique, lorsque x — +o00,

) X
log(x)’

1
#11 <n <x:netn-+ 2 sont premiers} ~ 2 (1— )
{ J 1,11 (-1

conjecture bien connue et obtenue habituellement de facon heuristique (voir les
références données au paragraphe 3). Dans [14], Conrad a adapté la méthode
de Golomb, que pour des raisons évidentes nous appellerons A -calcul, au cas
de la conjecture de Bateman-Horn. Pour cela, il n’a pas utilisé une série entiere
comme ci-dessus mais une série de Dirichlet, ce qui est la démarche classique
en théorie analytique des nombres: par exemple dans le cas des nombres
premiers jumeausx, il étudie le comportement de Y-, A2n— HAQn+1)/n*
au voisinage de la droite Re(s) = 1.

L’analyse de Conrad est assez délicate et nous nous proposons ici de la
reprendre dans le cadre des séries entieres, qui nous semble un peu plus simple
et plus frappant. Nous justifions autant que possible les diverses étapes du
A-calcul, ce qui nous aménera a démontrer divers résultats, que nous espérons
nouveaux pour certains, concernant les identités entre fonctions arithmétiques,
la théorie algébrique des nombres et les fonctions zéta de Dedekind, la théorie
analytique des nombres, les théorémes taubériens, etc. Finalement, modulo une
seule étape analytique non justifiée, on retrouvera exactement le comportement
prédit par la conjecture de Bateman-Horn. 1l est intéressant de noter que, bien
que I"approche de Conrad par série de Dirichlet présente des similitudes avec
celle que nous développons ici, il n’est pas du tout clair que les étapes non
Justifiées dans chaque cas soient logiquement équivalentes.

Nous agrémentons €galement I’article de discussions historiques. Il nous
semble en effet intéressant de mettre en évidence la puissance heuristique du
A—calcul, en particulier face aux heuristisques de nature probabiliste (dont on
montrera qu’elles ont méme pu suggérer des conjectures fausses) ou face a
celles de nature analytique issues de la méthode du cercle de Hardy-Littlewood-
Ramanujan (en général techniquement compliquées).

Le plan est le suivant. Au paragraphe 2, nous énongons les conjectures de
Schinzel et Bateman-Horn. Au paragraphe 3, nous reproduisons I’heuristique
proposée dans [3] et la comparons a d’autres produites au fil du temps. Au
paragraphe 4, nous réduisons la conjecture a un cas plus simple, qui nous
permet de développer le A-calcul au paragraphe 5. A cet endroit, sont indiqués
tous les paragraphes concernant les justifications nécessaires a la (presque)
bonne marche de la méthode de Golomb: certains des résultats démontrés
recoupent des travaux de Baier [1], Conrad [14] et Kurokawa [34, 353].
Cette démarche peut étre complétement justifiée dans le cas du théoreme des
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nombres premiers (Wiener) ou, plus généralement, dans le cas du théoreme
de de la Vallée-Poussin — ceci est exposé au paragraphe 12. Enfin, au
paragraphe 13, nous concluons I’article en décrivant certaines heuristiques
malheureuses produites au sujet de la conjecture de Coldbach: bien que la
méthode de Golomb ne s’applique pas aussi élégamment a ce cas, nous
montrons comment 1’adapter et retrouvons une conjecture classique de Hardy
et Littlewood [28].

2. LES CONJECTURES DE SCHINZEL ET DE BATEMAN-HORN

Considérons k polyndmes fi, fo,...,fx de Z[X], de degrés respectifs
hi, hy, ..., h. Notons h:h1+h2+—{—hk,f:f]fsz,]_c:(f],,ﬁ()
et K; le corps de nombres Q[X] /(f(X)). Dans toute la suite, la notation a | b
signifie que a divise b et p désigne invariablement un nombre premier > 2,
ce qui vaut lorsqu’un produit infini porte sur p sans autre indication. On
s’intéresse au comportement asymptotique de

wj:(x) = #{1 <n<x:fi(n), /H(n),..., fi(n) sont simultanément premiers} ,

ce qui conduit 2 chercher des conditions a priori nécessaires pour que 7z(x)
ne soit pas bornée:

(i) Les polyndmes f; doivent tous étre irréductibles sur Q: si I'un ne Iest
pas, il ne peut pas prendre une valeur premicre en n des que n est assez
grand. On suppose aussi qu’il n’existe pas deux entiers distincts i,j tels
que fi = xf;.

(ii) Pour tout premier p, il existe un entier n tel que p ne divise pas f(n).

(iii) En changeant au besoin un ou plusieurs f; en —f; et par une translation de
la variable commune aux f;, on peut supposer que pour tout entier n > 1,
les entiers fi(n), f(n),..., fi(n) sont tous > 1: la valeur de ms(x) n’est
changée que d’une fonction bornée de x. Ces conditions sont commodes
mais pas nécessaires').

On qualifiera de convenable toute famille vérifiant ces conditions. La
deuxiéme étant moins évidente, nous allons la motiver davantage. Supposons,
au contraire, qu’il existe un premier p divisant f(n) pour tout entier n > 1.
Alors, pour tout (éventuel) entier n > 1 tel que tous les fi(n) sont premiers,

1) La mise en ceuvre de la méthode de Golomb nécessite de sz placer sous (iii) ainsi que
de faire une autre hypothése, a priori assez restrictive (voir paragraphe 4); on montrera au
Théoreme 3 que 1’on ne perd en fait rien en généralité.
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au moins un des fi(n) vaut p, ce qui implique immédiatement qu’il y a au
plus A entiers n tels que les fi(n) soient tous premiers simultanément. Pour tout
entier d > 1 et tout g € Z[X], posons Ny(d) = #{1 <n<d:gn)=0 [d]}.
On peut alors remplacer la condition (ii) par la suivante:

(ii bis) Pour tout nombre premier p, on a Nr(p) <p.

En effet, supposons qu’il existe un p tel que Ny(p) = p. Cela signifie
alors que pour tout entier n dans I’'une des classes de congruences m + Np
(pourun m =0,...,p—1), p divise f(n) puisque f(n) = f(m) = 0 [p]. Donc
pour tout entier n > 1, p divise f(n). Et réciproquement. On remarque que
Nr (p) < min(h, p) et qu’il suffit donc de faire un nombre fini de calculs pour
les premiers p < h pour vérifier la condition (ii bis).

Schinzel [44, p.188] a conjecturé que, réciproquement, si une famille de
polynémes est convenable, alors ces polyndmes prennent une infinité de fois
des valeurs premieres simultanément.

CONJECTURE 1 (Schinzel). Soit S une famille convenable. Alors 71‘]_0()6)
tend vers l'infini avec x.

Dans le cas d’un seul polynéme, cette conjecture est due a4 Bounia-
kowsky [6, 37]; dans le cas de plusieurs polynémes linéaires, elle est due a
Dickson [18]. Si I’on remplace ’anneau Z par un anneau de polynémes sur
un corps fini, alors la conjecture «trivialement» analogue 2 celle de Bounia-
kowsky est fausse : voir [15], ainsi que [16] pour une correction (conjecturale).
Dans [3], Bateman et Horn ont proposé une heuristique précisant de facon
quantitative la conjecture de Schinzel; pour la formuler, on a besoin du produit

C(f) = 1;[((1 _ 1)*"(1 _ N_f@)> 7

p P

dont Bateman et Horn justifient la convergence, ce que nous ferons également
au sous-paragraphe 7.3. Il en découle en particulier que C( J) est non-nul si
N¢(p) < p pour tout p.

CONJECTURE 2 (Bateman-Horn). Soit S une famille convenable. Lorsque
X — +00, on a

C(f) e
hihy -l logh(x)

7Tj_f(x) ~

On notera BH( ) la conjecture de Bateman-Horn pour la famille /-
Lorsque k£ = 1 et en notant a le coefficient dominant de fi =f, BH( 5
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implique que

C(f) x/h
o< x:p <09 ~ O s

La conjecture de Bateman-Horn contient la conjecture des nombres
premiers jumeaux, via la famille?) de polynémes f = (X,X + 2). Plus
généralement, on peut s’intéresser aux couples de nombres premiers (p,q)
tels que ¢ = p + 2k, pour un entier k > 1 fixé, qui sont régis par
BH(X,X + 2k). On a NX(X+2k)(p) =1sip | 2k et NX(X+2k)(p) = 2 sinon.
Apres simplification de la constante C(X(X + 2k)), on obtient une conjecture
de Hardy et Littlewood [28] (obtenue par une heuristique analytique issue de
la méthode du cercle), qui précise celle de de Polignac [41]: «Tout nombre
pair peut s’écrire d’une infinité de fagons différentes comme la différence de
deux nombres premiers.»

CONJECTURE 3 (Hardy-Littlewood). Soit un entier k > 1 fixé. Lorsque
x — +00,

#{1 <n<x:netn+2k premiers}

p—1 X
~ 2 . . .
H( (p— 1)2> p—2 log(x)

plk
p>3

Hardy et Littlewood [28] ont aussi prédit le comportement attendu des
nombres premiers de la forme n 41, probleme considéré par Landau dans
une conférence 4 Cambridge. On retrouve cette prédiction en calculant la
constante prévue par BH(X? + 1). Comme —1 est résidu, resp. non résidu,
quadratique modulo p = 1 [4], resp. p = 3 [4] (voir [29, Theorem 82,
p.69]), on a Nx2,1(p) =2 si p =1 [4] et Nx2p4(p) = 0 si p=3I[4].
Comme Ny:,1(2) = 1, aprés simplification de C(X? +1), on obtient donc la
formulation suivante.

CONJECTURE 4 (Hardy-Littlewood). Lorsque x — +00,

_ 1 (—1)(P—D/2 X

< < . 2 ~ — — . .

#Hl<n<x:n"+1 premier } 5 H (1 - 020
p23

2) On utilise le choix cla551que AX) =X et H(X) =X +2 2 la place de fi(X) = X+1
et -(X) = X + 3, qui satisfont 2 la condition que les polynémes prennent des valeurs > | aux
entiers positifs: en dehors du A-contexte, on néglige cette subtilité.
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Hormis I’évidence numérique et le Théoréme 1, on peut mentionner le
résultat suivant prouvé dans [4] en utilisant le « Grand Crible ». On en donnera
la preuve au paragraphe 11.

THEOREME 2 (Bateman-Stemmler). On a la majoration

(0 < k12X C(f) xlog* )1 + o(1)) .

Ainsi, on dispose d’une majoration qui, a la constante ;- - - i k! 2K pres,
est équivalente a celle conjecturée. Bateman et Horn proposent également une
extension de leur conjecture au cas plus général des polyndmes qui envoient
Z dans Z. En suivant la présentation de Conrad [14], il suffit, au moins
conjecturalement, de remplacer dans la formule définissant C(f) les termes
Ni(p)/p par 0;(p) = mesure{x € Z, : f(x) = 0 [p]}. Nous p;éférons nous
limiter au cas des polynémes a coefficients entiers par soucis de clarté (voir
néanmoins la remarque a la fin du paragraphe 4).

3. L’HEURISTIQUE DE BATEMAN ET HORN

Nous reproduisons ici les raisons qui ont amené Bateman et Horn 2 formuler
leur conjecture. En vertu du théoréme des nombres premiers, la chance qu’un
entier m > 2 soit premier est environ 1/log(m). Comme log(fi(n)) vaut
environ A;log(n), la chance que fi(n), 2(n),..., fi(n) soient simultanément
premiers est environ

1 1
Mhy -y logh(n)

(D)

Cette estimation est imprécise puisqu’elle suppose que les entiers fi(n),
J(n), ..., fi(n) sont «indépendants », ce qui n’est pas raisonnable. Pour chaque
premier p, il semble en fait nécessaire de multiplier (1) par un facteur correctif
Tp/Sp, OU 7, est la chance que, pour un entier n aléatoire, aucun des entiers
Sin), f(n), ..., filn) ne soit divisible par p et s, est la chance qu’aucun des
entiers constituant un k-uplet d’entiers aléatoires ne soit divisible par p. Or,

k
rpzl—M et sp:(l——l> )
14

Avec cette correction, il est maintenant raisonnable d’estimer que pour n entier
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aléatoire, la chance que fi(n), /(n),..., fu(n) soient tous premiers est

) 1
hihy - b logh(n)
On en déduit que ms(x) doit étre de 1’ordre de

C(f) 1
hihy - - by Z logk(n)’

2<n<x

ce qui est une fagon d’écrire la conjecture de Bateman-Horn, puisque

Z 1 - /x dr -~ X
logk(n) 2 logk(t) logk(x)'

2<n<x

Cette heuristique semble simple et naturelle mais elle a mis beaucoup
de temps a étre dégagée. Il existe dans la littérature de nombreux articles
antérieurs qui exposent des arguments en faveur, par exemple, de la conjecture
des nombres premiers jumeaux (Hardy et Wright [29, pp.371-373]) ou des
nombres premiers jumeaux généralisés (Cherwell [10], Cnerwell et Wright [11],
Pélya [42]). Ils se caractérisent en général par des arguments arithmético-
probabilistes assez compliqués et on peut trouver au moins deux raisons
théoriques a cela:

(i) Contrairement a ce que laisse espérer l'intuition, il n’existe aucune
mesure de probabilité p définie sur la tribu des parties de N telle que, pour
tout entier @ > 1, on ait p(aN) = 1/a. On trouvera la preuve (facile et
instructive) de ce résultat dans [50, p.271]. Ceci explique peut-€tre pourquoi
Bateman et Horn parlent de chance et non de probabilité; notons que lorsque
k = 1, Baier [2] a récemment construit un modele assez fin de nombres
premiers aléatoires dans lequel leur conjecture est vraie presque slirement.

(i) Si l’on persiste 2 employer des méthodes d’inspiration probabiliste,
alors une contradiction peut rapidement survenir. En effet, par le théoreme des
nombres premiers, on peut estimer que la chance qu’ur entier N soit premier
est environ 1/log(N). Mais, par ailleurs, on peut aussi estimer que la chance
que N ne soit divisible par aucun nombre premier inférieur a N donc soit
premier, vaut environ

e—’y

2) H (1 B Il)) ~ log(N)’

P<N

ot I’équivalent asymptotique est un théoreme de Mertens [39] et v est la
constante d’Euler. Bien que souvent utilisées au cours d’'un méme argument
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heuristique, ces deux estimations sont visiblement incompatibles puisque
e”7 # 1. Notons au passage que la divergence vers 0 du produit dans (2)
intervient dans la démonstration du résultat mentionné en (i).

Dans I’heuristique proposée par Hardy et Wright [29] concernant le
comportement des nombres premiers jumeaux, il est amusant de lire «But
this is false» en haut de la page 372 apres une utilisation de 1’équivalent (2),
puis de voir, en haut de la page 373, ce méme équivalent ponctuer la
démarche tortueuse corrigeant la premiére utilisation fautive de (2). Quelles
que soient les circonvolutions linguistiques employées pour faire «coller»
heuristique et données numériques, ce qui rend plausible (conjecturalement)
ce type d’argument est I'utilisation de probabilités conditionnelles: en effet,
la bonne question n’est pas «Avec quelle fréquence deux nombres de la
forme n,n + 2 sont-ils simultanément premiers ?» mais plutdt « Avec quelle
fréquence deux nombres sont-ils simultanément premiers sachant qu’ils sont de
la forme n,n+2 ?». Cela sous-tend I’heuristique de [29] (malgré sa difficulté)
et, de facon beaucoup plus claire, celle de Bateman et Horn.

Nous reviendrons au paragraphe 13 sur le sort de certaines heuristiques
liées a la conjecture de Goldbach.

4. UNE HYPOTHESE SIMPLIFICATRICE

Afin d’appliquer la méthode de Golomb a la conjecture de Bateman-Horn,
il est commode de supposer en plus que pour tout entier n > 1 et pour tout
couple d’entiers (i,]) tels que 1 < i < j <k, les entiers fi(n) et Ji(n) sont
premiers entre eux. Cette condition, que ’on dénommera?) hypothése F, est
a priori contraignante puisqu’elle exclut le cas des polyndmes fi(X) = X + 1
et /(X) = X + 3. Cependant, elle s’avére innocente.

THEOREME 3. Si BH( 1) est vraie pour toute famille f convenable vérifiant
I’hypothese F, alors BH(f) est vraie pour toute famille S convenable.

Démonstration.  Soient fi, f5,..., fr des polyndmes vérifiant les hypo-
theses de la conjecture de Bateman-Horn. Ces polyndmes étant deux a deux
premiers entre eux, pour tout couple d’entiers (i, /) tels que 1 < i< J<k,il
existe deux polyndmes u;; et v; J de Z[X] et un entier ¢;; # 0 tels que

%) La dénomination « hypothese F» peut sembler a juste titre peu motivée aux yeux du lecteur
mais elle I’est 2 ceux des auteurs.
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3) u; j(X)fi(X) + v (Xf(X) = ¢y -

Notons P I’ensemble des premiers divisant I'entier [[,; ;< cij, posons
No=[L,epp et

No={1<n<Ny:f(n)Z0][p] pour tout p € P}.

Hormis un nombre fini d’exceptions, les entiers n pour lesquels fi(n),
#£(n), ..., fi(n) sont tous premiers, sont dans les progressions arithmétiques
de la forme n = ny [Ny], avec ng € Ny. En effet, si n = n; [No] avec
n, & No, alors il existe un nombre premier p € P tel que f(n) = 0 [p]
et donc p divise I'un des fi(n). Or si n est assez grand*), celui des fi(n)
divisible par p ne pourra pas étre premier.

Fixons temporairement ng € Ny et posons f; ,,(X) = fi(no + NoX), ainsi
que f,,(X) = f(no + NoX) : la famille des polyndomes Sfings omgs -+ Jumo €St
toujours convenable et vérifie maintenant I’hypothese F. En effet, pour tout
entier n > 1 et tout p € P, on a f, (n) = f(ny + Non) = f(no) # 0 [p]. Donc
un p € P ne divise aucun des f;,,(n). Or comme le pged de deux Jing(n) et
fi.ng(n) ne peut €tre divisible que par un p € P (conséquence de la relation de
Bézout (3)), on en déduit que la famille f,, vérifie maintenant I’hypothese F.

Supposons maintenant que BH(f) soit vraie pour toute famille conve-
nable f satisfaisant 1’hypothese F. Avec des notatiors évidentes, pour tout
ny € N:), on a donc

Clh)  x

X — Nnp
T (X) ~ . et mrx) = e, + P(x),
2O ™ G e Tog ) £ 0%; ff&( No ) )

ol P(x) est une fonction bornée de x. Remarquons que la constante C(f,,) ne
dépend pas de np, mais seulement de No = HpefP p. En fait, on a la relation

) Clhy) H(l - M) —c(f

pINo P

car Ny (p) =0 si p € P et N; (p) = Ny(p) sip ¢ P puisque alors
(No,p) = 1. On a donc o

#No  C(f) x

No hihy---he logh(x)

Ty (x) ~
Or le théoreme des restes chinois assure que #No = Hpe? ( P — N ( p)). Ceci,

4) Ceci ne dépend que de la donnée des polyndmes fi, f2, .., fi et il y aau plus &
exceptions.
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comparé a (4), montre que C( fﬂ) - #No/Noy = C( f) et donc que

) x
hihy - hy  logh(x)’

p(x) ~
ce qui acheve la démonstration de la proposition.  []

Remarquons enfin que le méme type d’argument permet de déduire la
conjecture de Bateman-Horn généralisée aux polyndémes prenant des valeurs
entieres de la conjecture étudiée dans ce texte: si f(X) € ]lVZ[X] et Va € N,
f(a) € Z, on remarque que f,(X) = f(NX +a) € Z[X] et que, si la conjecture
de Bateman-Horn est vraie pour les f,, alors

al x—a 1 < 1 a
Fz(x)=;”f;( )“(zv;“ffa))hl...h' g

?
k log"x
et on vérifie que la constante apparaissant a droite est égale a C( J) ou encore

que
10~ 22) = g1 - 7).

pIN a=1 p|N

en appliquant deux fois le lemme chinois.

5. LE A-CALCUL ET LA CONJECTURE DE BATEMAN-HORN

Dans ce paragraphe, nous adaptons le A-calcul a la conjecture de Bateman-
Horn. Dans un premier temps, nous suivons de prés ’esquisse de Golomb
dans [24], mais un certain nombre de détails seront donnés dans les paragraphes
ultérieurs.

Etant donné un entier n > 1, on lui associe diverses fonctions définies a
partir de la décomposition primaire de n. On définit ainsi w(n) comme le
nombre de facteurs premiers distincts de n, Q(n) comme le nombre de facteurs
premiers distincts avec multiplicité de n, la fonction de von Mangolt A(n)
comme log(p) si n est une puissance de p, O sinon et enfin la fonction de
Mobius g(n) comme (—1)“™ si n est sans facteur carré, w(l) =1 et O sinon.

Donnons-nous des polyndmes fi(X) € Z[X] (j = 1,...,k), vérifiant les
hypotheses de la conjecture de Bateman-Horn, ainsi que ’hypothése F (dont
on a vu qu’elle n’était pas une condition restrictive). Considérons la série
entiére, convergente pour |z| < 1,
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(5) Gr2) = (=D Y A(AM)A(HM) - A(fulm)2",

n=1
dont nous allons étudier le comportement au voisinage de z = 1 afin d’en
déduire des conséquences arithmétiques intéressantes. L’hypothese F et une
identité de Golomb (équation (13) au paragraphe 6) assurent que, pour tout
entier n > 1,0n a

(=1
k!

©  AM)A(AM) - A(f) = 3 1ld) logh(d).

d>1
d| f(n)
En injectant cette relation dans (5) et en intervertissant les deux sommations
(ce qui est licite puisque |z] < 1 implique la convergence absolue des séries
utilisées), on obtient

6= Y ( X mayiog@) = S pa@rog@ 3
n=1 ~d>1 d=1 n=1
d| f(n) f(m=0 [d]
= g <, ) loghd) <&
=Y udloghd)y Do =3 =
d=1 =0 n=1 -1 % n=1
f(m)=0 [d] f(m)=0 [d]

La troisiéme égalité est conséquence du fait que 1’ensemble des solutions
positives de la congruence f(n) = 0 [d] est I'union disjointe des ensembles
m + Nd, ou m est n’importe quelle solution particuliere de cette congru-

ence dans {1,...,d}. Remarquons que la valeur en z = 1 du polynome
S =14 2" est trés exactement la quantité Ny(d) introduite au début du
S(m=0[d]

paragraphe 2, méme lorsque la somme est vide en convenant qu’elle vaut
alors 0. En procédant a I’échange limite-série, qui demeure la seule étape non
justifiée de cette approche?), on obtient donc

N don=1,..d "
‘ 9 . ‘(n)=0 [d]

7 lim (1 —2)G(z) = d)log'(d) ! -

M Jim (=96 =) p@log@ lim | 7= 7

iy logt @) D

I
NE

g
I

1

Un point important est évidemment de s’assurer de la convergence et de la
non-nullité de la série a droite de (7), que 1’on notera C’( /). Nous allons faire

) Voir cependant le paragraphe 12.
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mieux que cela en donnant une expression trés simple de C'( /) alaide de la
constante C(f) de Bateman-Horn. Pour cela, introduisons la série de Dirichlet

o (d)Ny (d
®) Lyt = 3 HOT D,
d=1

dont on montrera qu’elle converge absolument au moins pour Re(s) > 1,
I’encadrement 0 < N¢(d) < d impliquant seulement la convergence absolue
pour Re(s) > 2. En vertu du théoréme des restes chinois, N;(d) est
une fonction multiplicative, c’est-a-dire que Ny(didy) = N¢(d)Ns(dy) i
(di,dy) = 1. On en déduit que, pour Re(s) assez grand (en fait, c’est vrai
pour Re(s) > 1),

ao=TI-22) - 5 TH((-3) (- %)

p

Ici, on a utilisé, de facon triviale, la fonction zéta de Riemann définie pour
Re(s) > 1 par la série ou le produit

=3 =TJ0-r)".
n=1 D

Voir les livres de Titchmarsh [51] ou de Tenenbaum [50] pour les propriétés
de la fonction z€ta qui seront utilisées sans référence ici. On montre au sous-
paragraphe 7.4 que l'on peut prolonger analytiquement Ly(s) a un ouvert
contenant le demi-plan Re(s) > 1: il s’agit d’un cas particulier d’un résultat
de Kurokawa [34]. Comme la fonction ((s)™* s’annule & I’ordre k en s = 1
et que }EI}(S — 1){(s) =1, on en déduira que

©) ()= DL
I\ —* Ny (p)
= (— k! (1—— 1~f—>:—1kkzc :
()I,,I(p)( p)()(.;j)

Seule la premiere €galité nécessite quelques efforts, qui seront faits au
paragraphe 8. Ce résultat inconditionnel est dii 4 Conrad [14]: nous en donnons
une preuve plus détaillée que lui (notre fonction Ls(s) est sa fonction G(s)
lorsque son paramétre m vaut 1). A I’aide d’un théoréme taubérien, que nous
expliciterons au paragraphe 9, on traduit (7) et (9) par

1 n
(10) Jim ]:Zl A(AD)AALD) - Af(D) = C(f).
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Un résultat relativement élémentaire montre que (10) équivaut a BH(f).
L’existence d’une constante D(f) > 0 telle que (10) ait lieu avec D( f)
a la place de C(f) serait déjél_un trés beau résultat Méme en admettant
I’existence de cette limite, nous ne voyons pas comment montrer que 1’on
aurait alors nécessairement D(f) = C(f), comme 1’a fait Tchebichef [49,
p- 352, Théoreme III] en prouva_nt (un résultat équivalent a) I’implication

1
(11) lim - Am=C = C=1.
Enfin, il serait intéressant de considérer le cas des polyndmes de plusieurs

variables: bien qu’a notre connaissance il n’existe pas de conjecture similaire
a celle de Bouniakowsky, rien n’interdit de s’intéresser au comportement au

voisinage du point (z,...,z) = (1,...,1) de séries telles que, par exemple,
Z APy, .. m)) 2y -,
m,‘..,nkzo
ou P(Xi,...,Xy) € Z[X1,...,X,] prend des valeurs > 1 aux entiers positifs.

Le cas d’un polyndme quadratique en deux variables est non trivial mais
peut étre résolu a I'aide du théoreme de Dirichlet et de considération du
groupe de classes d’un corps quadratique. L’exemple le plus simple est celui
des nombres premiers (impairs) représentés par le polynome X 24 Y?: dapres
un résultat de Fermat, il s’agit des nombres premiers congrus a 1 modulo 4.
Le cas d’un polyndme quadratique binaire général est trait€ en détail par
Iwaniec [31]. On peut faire une partie de 1’étude dans le cas des formes-normes
«complétes» comme par exemple F(X,Y,Z) = X3 42V +47° — 6XYZ =
N§X + Yw + Zw?) avec w’ =2 et K = Q(w): les premiers représentés
par F(X,Y,Z) sont les premiers non inertes dans K/Q 1i. e. les premiers
p congrus 2 2 modulo 3 et les premiers congrus a 1 modulo 3 tels que
2 soit résidu cubique modulo p. Notons également que I’analogue naif de
’hypothése de Bouniakowsky — demander que pour tcut n, il existe £ et m
tels que f(¢,m) soit premier avec n — est insuffisant pour les polyndmes a
deux variables ou plus, comme le montre un exemple de Heath-Brown (voir
I’introduction de [30]).

Citons enfin ici le fort beau résultat de Friedlandzr et Iwaniec [21]: le
nombre de nombres premiers < x qui sont valeurs du polyndme X 24 Y4 est
équivalent a

V2T(1/4)72  $3/4
3732 log(x)
ou I est la fonction Gamma d’Euler. Heath-Brown [30° a adapté leur méthode
au cas du polyndéme X + 2Y>.
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6. L’ IDENTITE DE GOLOMB

Rappelons qu’une fonction arithmétique est une fonction définie sur N*
et a valeur dans C. Elle est dite multiplicative, resp. additive, si pour tout
couple d’entiers (m,n) premiers entre eux, on a f(mn) = f(m)f(n), resp.
S(mn) = f(m) + f(n) ; elle est dite totalement multiplicative, resp. totalement
additive, si f(mn) = f(m)f(n), resp. f(mn) = f(m) + f(n), pour tous entiers
m et n non nuls: g est multiplicative, w est additive et Q est totalement
additive, mais A n’a aucune propriété de la sorte.

Par ailleurs, on a

(12) A =) pld)log(n/d) = =) u(d)log(d),

dln d|n
ou la deuxiéme égalité utilise 1’additivité totale de log et I'importante identité
1 sin=1,
> wd) = .
r 0 sin>2.
[n

Nous montrons maintenant la propriété essentielle dont on a besoin pour
le A-calcul et qui généralise (12): I’identité (6) en découle.

THEOREME 4 (Golomb). Soient un entier k > 1 et des entiers

ai,...,ar > 1 deux a deux premiers entre eux. Alors, on a
- (1)
(13) [[A@) =7 > wdlog@.
J=1 dlay---ay

REMARQUE. La démonstration ci-dessous utilise I’additivité de log mais
pas son additivité totale; le résultat d’ailleurs proposé par Golomb porte plus
geénéralement sur des couples de fonctions similaires a (A, log), qu’il dénomme
fonctions primaires et logarithmétiques, par exemple (indicatrice des nombres
premiers, w).

Démonstration. Puisque les entiers ay,...,a; sont deux a deux premiers
entre eux, il y a bijection entre I’ensemble des diviseurs > 1 du produit
ay---ai et ’ensemble des k-uplets (d,...,d;) tels d; > 1 et d;| a; pour

J=1,...,k. Uhypothése que les a; sont > 1 sera utilisée plus bas.
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Comme les d; sont en plus deux a deux premiers entre eux, on peut alors
utiliser la multiplicativité de p et 1’additivité de log pour obtenir

14 > wdlogd@y= > pd--dologhtd - dy)

d|a1~-~ak d1|a1.,...,dk|ak
k

= Y u(d) i) (log(dy) + - - - + log(dy))
d1|a1,...,dk|ak

k! i i
= > = >, d)-pd)log" () - -log*(dy)
. - l]!"'lk!
ll,...,lkzo d1|a].,...,dk|ak
i1+ +iv=k

R R
= ) —ilg._.ik,H(Zu@'ﬂog“@)a
ilyeeeyis 20 =1 “dj|a; 4
iy tig=k

en convenant d’attribuer la valeur 1 a logO(l). De plus, stricto sensu, pour
utiliser le développement multinomial, il est préférable de supposer k > 2,
ce qui est loisible puisque la formule a démontrer est vraie si k = 1
(par définition).

Or puisque a; > 1, on a zdf‘“.f w(d)) logif(dj) =0 lorsque i; = 0, ce qui
annule le terme correspondant dans (14). Comme il n’y a qu’une seule fagon
d’écrire k = i} + --- + iy avec des entiers ij,...,ix > 1, a savoir de les
prendre tous égaux a 1, on déduit donc de (12) et (14) que

KoL
> udlogd) = H(Z u(d) 1og(dj))

d|a1...ak _]:1 d]-'aj

= (—l)kk' A(al) te A(al:) )

ce qui acheve la preuve. [

Notons que la méme démonstration donne le résultat suivant, puisqu’il n’y
a aucune facon d’écrire ¢ = i; +---+i; avec des entiers i; > 1 si 0 </ <k.

THEOREME 5. Soient un entier k > 1 et des entiers ay,...,a; > 1 deux
a deux premiers entre eux. Alors pour tout entier { tel que 0 < { <k, on a

> wd)loghd) = 0.

dlay--ax

On se servira de ce fait au sous-paragraphe 12.2.
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7. FONCTIONS ZETA DE DEDEKIND ET Ly(s)

Dans ce paragraphe, nous indiquons comment lier la série de Dirichlet
Ls(s) aux fonctions zé€ta de Dedekind associées aux corps de nombres
K|, K),...,K;, ce qui permettra d’en faire le prolongement analytique :
celui-ci a €té apparemment fait dans ce contexte pour la premiére fois par
Kurokawa [35], mais nous nous contentons de redémontrer la seule partie qui
nous intéresse. Cette étude justifiera au passage que le produit de Bateman-
Horn C(f) est bien convergent. Les nombres f; qui apparaissent dans les
sous—paraéraphes 7.1 et 7.2 sont des degrés résiduels et ne peuvent pas étre
confondus avec les polyndomes f; utilisés dans le reste de Iarticle (et pas dans
ces deux paragraphes).

7.1 RACINES D’UN POLYNOME MODULO p ET IDEAUX PREMIERS

Soit g un polyndme unitaire et irréductible sur Q, dont a est une
racine. Notons K = Q(«) le corps de nombres associés a g. Supposons
tout d’abord que I’anneau Ok des entiers de K vérifie Okx = Z[«]. Dans ce
cas, la factorisation dans Ok de p en idéaux premiers entiers s’écrit pOg =
pi'ps -+ pir, avec N(py) = p/, ot N(a) = [Ox : a] est I'indice d’un idéal a
de Ok. Cette factorisation correspond bijectivement a celle, dans (Z/pZ)[X],
de la réduction du polynéme g = g mod p, c’est-a-dire g = g{'g5* - - - g* avec
des g; € (Z/pZ)[X] irréductibles, de degrés respectifs Ji  voir [22, p. 129]. En
conséquence, en posant A, g = A, = #{pidéal premier de Ok : N(p) = p},

on a
(15) Ap = Ny(p).

Bien entendu, il n’est pas toujours vrai que Og = Z[a], ni que g soit
unitaire. Mais ce n’est pas un réel probleme. En effet, si ¢g(X) = aX?+---, on
le remplace alors par G(X) = a*"'g(X/a) € Z[X], qui est unitaire, engendre
le méme corps de nombres K que g et posséde la méme décomposition
modulo p que g pourvu que p{a, ce qui est vrai pour tous sauf un nombre
fini de p. De plus, si « est une racine de §, on a, de facon générale,
seulement que Z[«] est un sous-groupe d’indice fini de Ok : la factorisation
indiquée ci-dessus de pOk en idéaux premiers et I’équation (15) restent vraies
pourvu que p ¢t [(’)K : Z[a]} (c’est la généralisation proposée aprés 1’énoncé
du Theorem 23, p. 129, de [22]).

Il résulte de cette discussion que, hormis un nombre fini de nombres
premiers qui ne dépendent que de g, on a toujours A, = Ny(p).
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7.2 QUELQUES PROPRIETES DES FONCTIONS ZETA DE DEDEKIND

La fonction zéta de Dedekind associée a un corps de nombres K est par
définition la série de Dirichlet (voir [38], Chapter VIII):

1 ,
k() = Ny = [Ja-ne ™,
a p

ol a, resp. p, désigne les idéaux, resp. idéaux premiers, entiers non-nuls
de Ok. L'abscisse de convergence de la série est 1 et la deuxiéme égalité est
valable pour Re(s) > 1. Notons que (o est simplemeat la fonction zéta de
Riemann. On se servira des propri€tés suivantes :

(i) (k(s) peut étre prolongée méromorphiquement a tout C, avec un seul
pble simple en s = 1.

(ii) 1l existe une constante explicite Ckx > O telle que (k(s) ne s’annule pas
dans I’ouvert o > 1—Ck/ log(2+|t|) (avec s = o+it) qui contient le demi-plan
Re(s) > 1 et, sur ce méme ouvert, on a également |(x(s)~!| < log(|t#| + 2).

REMARQUE. En appliquant (i) et (ii) aux corps Q et K, on voit qu’il
existe une constante explicite 51( > 0 telle que la fonction (k(s)/((s) est
holomorphe et sans zéro sur ’ouvert o > 1 ~Ck /log(|t] +2). L’énoncé (i) est
trés classique (voir [38], Chapters VIII, XIII); pour une preuve de (ii) dans
le cas K = Q (qui s’adapte aisément au cas général), voir la démonstration
du Théoréme 16, p.178 et suivantes, du livre de Tenenbaum [50].

Par ailleurs, avec la définition de A, donnée au scus-paragraphe 7.1, on
peut écrire (avec N(p) = p’v)

&= [] a-Np™™" [] a N~ H<1 “MRk(s),
pfp=1 pSfp>2

ou Rg(s) =1] s >2(1 N(p)~*) est holomorphe sans zéro sur le demi-plan
Re(s) > 1/2, de “telle sorte que log(Rk(s)) est aussi holomorphe sur ce
demi-plan. Donc pour Re(s) > 1, on a

log (Ck(s)) Z L4y Z 2 4 log(Rk(s)) -
P m>2

Comme la fonction (k(s)/((s) est holomorphe et sans z€ro sur un ouvert
contenant le demi-plan Re(s) > 1, on en déduit que la série

Ay, — A~ 1
= log (¢Ck(9)/¢) — > =L—r
a ~p(p' = 1)

+ log (Rk(s)/Rq(s))
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est analytiquement prolongeable a ce méme ouvert. La convergence de la
série Zp(Ap — 1)/p en découle grice au résultat suivant, di & Newman, qui
s’applique ici car 0 < A, < deg(g) :

Soit D(s) = Y~ a,/n® une série de Dirichlet convergente sur le demi-
plan Re(s) > 1. Supposons que D soit analytiquement prolongeable & un
ouvert contenant le demi-plan fermé Re(s) > 1 et que la suite des a, soit
bornée. Alors la série Y - a,/n est convergente, de somme D(1).

Nous €noncerons et nous servirons d’une forme un peu plus générale de
ce résultat au Théoreme 10 du paragraphe 9.

7.3 CONVERGENCE DU PRODUIT C(f)

Rappelons qu’il existe deux polyndmes u;; et v;; de Z[X] et un entier
cij 7 0 tels que
u; j(X)(X) + v ;(X)(X) = ¢ .

Soit p un premier ne divisant pas [, <i<j<k Cij- On déduit de cette relation
de Bézout que pour tout entier n > 1 et tout couple (i,j) avec 1 <i < j <k,
le premier p ne divise pas le pged des entiers fi(n) et fi(n) et donc que
Ny (p) = Nj(p) + Np(p) + -+ + Ng(p). Notons A, k; les entiers associés
aux corps de nombres K; (j=1,...,k) au sous-paragraphe 7.1, ot I'on a
expliqué pourquoi I’équation N;(p) = A, x, est vraie, sauf pour un nombre
fini de premiers p. Donc Ny (p)—k = (A, k, —D+(A,x, — 1)+ - +(A,k, — 1),
sauf pour un nombre fini de premiers p. De la convergence des séries
> ,(Apx;, — 1)/p, on déduit celle de > ,N¢ (p) —k)/p. Comme

I\ —* N, k—N 1
(1——) (1—__-f(p)):1+——f(p)+0(—2),
p p p D
le produit C(f) est bien convergent.

De plus, en admettant les propriétés de L(s) qui seront démontrées dans
le paragraphe ci-dessous (voir le Théoréme 6), on a

0= T0(( )"0 -5)

Li(o)
Y k T f
- i cotgo) = Jim,

Comme la fonction Ls(s) est holomorphe en s = 1, ou elle admet un zéro
d’ordre k, on en déduit que C(f) = k!L}k)(l).
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Terminons ce paragraphe en remarquant que le produit C(f) n’est
en général pas absolument convergent. Dans [17], Davenport et Schinzel
obtiennent une expression alternative de C(f), qui, bien que particulicrement
compliquée, a 1’avantage de ne faire intervenir que des produits absolument
convergents, ce qui permet donc de calculer plus facilement C(f). Notons 7y
le nombre de racines réelles, r, le nombre de paires de racines complexes
conjuguées et D le discriminant de f. Pour tout j € {1,...,k}, au corps K;,
on associe D; son discriminant, #; son nombre de classes, R; son régulateur
et w; le nombre de ces racines de I'unité. Enfin, soient A;(p), resp. A;;i(p)
le nombre de facteurs irréductibles de degré i de la réduction modulo p de
S, resp. fi. On a alors

k

g T (R
cup = (2L

pID< Nf(P) ﬁg ( B _) A,,_,(,,))
y E((l B N_,;)(_Q) (1 B ]_7>Nf(l7) ££(1 B 1%>-A,-(p)) .

La démonstration de cette identité peut &tre reconstruite a partir des idées
utilisées dans ce paragraphe et le suivant, jointes au fait que le résidu de (k(s)
en s = 1 s’exprime comme 2" t71"2hgRg /(wk|Dk|'/?), avec des notations
évidentes (voir [22, Theorem 61, p.284]). En effet, avec les notations du
théoreme 6 du paragraphe suivant et en notant sk, le résidu de la fonction
zéta de Dedekind associée a K;, on a C(f) = M[(l)/liK, ... KK, -

7.4 PROLONGEMENT ANALYTIQUE DE Lg(s)

On a défini, pour Re(s) > 1, la série de Dirichlet

2. (d)Ny (d
L]:(S) — E _’L%(_) — H(l _ Nf (p)p—s) )
d=1

p

Nous allons montrer ici le résultat suivant, qui recoupe un article de
Kurokawa [35]. Celui-ci montre également que si # > 2, alors la fonc-
tion Ly(s) n’est pas prolongeable au dela de Re(s) > 0, nous en donnons un
preuve dans un paragraphe ultérieur. Comme on sait, Ls(s) est en revanche
méromorphiquement prolongeable a C lorsque 7 = 1 mais il semble délicat
d’en tirer des conclusions définitives.
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THEOREME 6.

(1) L’abscisse de convergence absolue de la série de Dirichlet définissant
Lf(s) est au plus 1.

(i1) 1l existe une constante explicite er > 0 et une fonction Mf(s) holomorphe
sur le demi-plan Re(s) > 1/2, sans zéro sur Re(s) > 1 — gr, telle que

Ly(s) = (G, ()G () - - Ciy(5) ™ M)

(iii) 1l existe une constante explicite By > 0 telle que la fonction Ly(s)
est analytiquement prolongeable a [’ouvert Uy défini par o > 1 —
By/log(|t| 4+ 2), sur lequel elle n’a ni zéro ni pole, sauf un zéro d’ordre
ken s=1.

(iv) Pour tout s € Uy, on a |Li(s)| < log(|r| +2)*.

Démonstration. (i) Rappelons que 0 < Ny (p) < h = deg(f) pour tout
nombre premier p. Il s’ensuit que pour tout entier d > 1, |u(d)Ns(d)| <
lu(d)| K@ par multiplicativité de Ny (cette inégalité est en général fausse
sans le facteur u(a’)). Donc

w(d)
M@M@‘ijwh _HO+£>
p

Comme ce dernier produit converge pour tout o > 1 et tout 2 > 0, on en
déduit que I’abscisse de convergence absolue de la série de Dirichlet définissant
Ly(s) est au plus 1. Pour référence future, notons que Hp(1+hp”s ) = (T (s)
avec T(s) = Hp(l—f—hp_“')(l—p‘s)h holomorphe et bornée pour Re(s) > 1/2+¢
et, par conséquent,

d=

<L o)< (o -1,

>

d=1

u(d) Vi (d) l

(i) Pour tous sauf un nombre fini de premiers p, on a Ny(p) =
Apk, + Apk, + -+ Apk, : notons Q l’ensemble des premiers oll ceci a
lieu et R I’ensemble fini des premiers «fautifs». Comme par ailleurs, pour
Re(s) > 1 et tout entier A > 1

(=) SO (-2 (o)

m=2

on a donc, pour tout p € Q,

N 1 Ap,K] +Ap,K2+"'+Ap,Kk
(16) L-“m:@@O——) ,
S S
p p
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ol E,(s) est une fonction holomorphe sur Re(s) > 1/2 qui vérifie E,(s) =
1+ O( p”za). Le produit Eq(s) = HpeQ E,(s) est donc convergent sur
Re(s) > 1/2, ou il définit une fonction holomorphe. D ou

1 - Ny (pp™*
syt A

Ly(s) = (¢ ()G () -+ G (9)) Eals) ,,gz (1

Posons

1 —Ne(pp™*
]V[]i(s) = Eq(s) l;fl}:2 (1 _p‘S)Ap,K1+"‘+AU7Kk ’
p

qui est holomorphe sur Re(s) > 1/2 puisque les seuls poles de M;(s) ne

peuvent provenir que de ceux des termes (1 — p_s)_1 , c’est-a-dire lorsque
s € i(2mw/log(p))Z. Compte-tenu de (16), les zéros de My(s) sont parmi ceux
des termes 1 — Ny (p)p™*, c’est-a-dire lorsque s € o, -+_i(27r/ log( p))Z avec
o, = log(Ny (p))/log(p). Or puisque N;(p) < min(p — 1,deg(f)), on voit
qu’il existe €/ > 0 tel que si Re(s) > 1 — ¢y, alors My(s) # 0.

(111) C’est maintenant une conséquence immédiate des propriétés analytiques
des fonctions zéta de Dedekind et M;(s).

(iv) La fonction M;y(s) est bornée sur tout demi-plan Re(s) > 1/2 + ¢
avec € > 0. On conclut grice & la majoration de la croissance des fonctions
(k(s)~! dans les ouverts de la forme o > 1 — Ck/log(]¢| + 2), sur lesquels
elles ne s’annulent pas.  []

8. VALEUR DES DERIVEES DE Ls(s) EN s = 1

Le but de ce paragraphe est de justifier que pour tout entier £ > 0, on a

Ny (d)

> ) log"d == = (=D'L(D),
d=1

ce qui, pour ¢ = k, est une égalité que nous avons promis de prouver. Ce
résultat est prouvé par Conrad [14], essentiellement au moyen de la méthode
maintenant décrite. Le Théoréme 7 ci-dessous est légerement plus fort que
celui montré par Conrad mais les deux démonstrations utilisent la méthode de
Selberg-Delange, qui semble le bon outil ici. Remarquons que le probleme est
de prouver la convergence de la série; en effet, par les propri€tés de base des
séries de Dirichlet, si elle converge en un point sy et si la fonction définie
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sur le demi-plan Re(s) > Re(sg) se prolonge (continiiment ou analytiquement)
en so, alors la valeur de la série est égale a la valeur de la fonction en sp.

Pour montrer la convergence, nous allons appliquer de nouveau le théoréme
de Newman (dans la forme donnée au Théoréme 10 au paragraphe 9 ci-dessous
et non sous celle plus faible donnée a la fin du paragraphe 7.2) tandis que
Conrad utilise un théoréme de Riesz. La dérivée /-iéme de Ls(s) est donnée
sur Re(s) > 1 par B

B0 = 1) S i log'a@) L.

d=1

Puisque Ly(s) est analytiquement prolongeable a un ouvert contenant Re(s) > 1,

ses dérivées le sont également et pour appliquer le Théoréme 10 a la série L(E) (s),
il nous reste a montrer que

Si) =) umlog"mN; (n) = o(x).

1<n<x

Dans un premier temps, notons que la transformation d’Abel montre que, pour
tous entiers ¢ > 1 et x> 2, 0on a

Se) =Y So(n) (log'(n) — log"(n + 1)) + So(x) log(x + 1)

1<n<x—1

1 /—1
< ¥ 2 Digm) + sl g,

1<n<x—1

Il nous suffit donc de montrer Sy(x) <y x/ logN (x) pour tout entier N > 0
et le résultat suivant s’aveére amplement suffisant.

THEOREME 7. Il existe une constante explicite c( f) >0 telle que, lorsque

X — +00,
S| < xexp (—e(f) v/logt)) -

Démonstration. La démarche est classique et est en fait un cas assez
simple de la méthode de Selberg-Delange (voir [50, paragraphe II, 5.4]): on
utilise la formule sommatoire de Perron et les propriétés analytiques de la
fonction Ls(s). Les constantes ¢; et celles implicites dans les symboles < et
O ci-dessous sont effectives et ne dépendent au plus que de la famille f.
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Pour simplifier, posons a, = u(n)Ny(n) et A(x) = D <<y Gn, aiNsi que
by = |p(m)|h“™ et B(x) = > <, < bn- Sion pose M(s) =), -, b,/n’, on a
vu que | >, o ap/nT| < M(k) < (k) < (k—1)7". La formule de Perron
«effective » nous donne

X l K+ioco L dT
Adt = — Le($)x° -
/1 O = i | T 6+ D

1 R+iT +] dS
— = Li(s)x’ R(, T
2in /,HT o G TR,

ou nous choisissons « = 1+ 1/log(x) et ou le reste R(x,T) vérifie

210gh(x)

—7

Sur le contour rectangulaire C de sommets x £ iT,1 — ¢y/log(T) £iT et
contenu dans I’ouvert Uy sur lequel Ly(s) est holomorphe, on a

ds
Le(s)x* ! =
/e ]:(S)xg S(S n 1) O?

puisque I’intégrande n’a aucun pdle a Dintérieur. La propriété (iv) du
Théoreme 6 nous permet de contrdler I'intégrale sur les cOtés [k — iT,
1—cy/ log(T)—iT], [1—c2/ log(T)—iT, 1 —c2/ log(T)+iT] et [1—cy/ log(T)+iT,
k + iT] et on obtient finalement la majoration

|IR(x, T)| < x

1 et , ds logh(T)
'ﬂ L_iT L[(s))a“ o 1)' <<x2( gT2 ~|—exp(——C3 log(x)/ log(T))) .

En choisissant T = exp(\/log(x)) on obtient
X N
/ A(DHdr < x? exp (—C4\/10g(x) )
1 y

Un calcul similaire, mais ol apparait un pole en s =1 avec résidu ®(x),
fournit

/v B(t)dt = ®(x) + O (x2 exp(—C5 l()g—x))
1
avec ®(x) = ¥*Q(logx) et Q polyndme explicite. Remarquons que ®"(x) =

o (log“(x)), ou I’exposant a > 0 ne dépend que de h.
Pour passer 2 A(x) (voir [50, paragraphe I1.5.4]), on écrit

x+u
Ax) =u"! / A(Hdt + 0 (u™'L)
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avec L = L f‘ﬂ |A(r) — A(x)|dz. On observe alors que L < L x+”(B(t) — B(x))dt
et on en tire que

x+u X
L< / B(r)dr — / B(r)dr

= D(x + 1) + D(x — 1) — 2B() + O (x2 exp(—c5\/10gx))
< max D"+ 0 (x2 exp(~C5\/10gx)> ,

te€x—u,x+u)
et enfin

L=0 (x exp ( @)) + 0 (u2 log“(x)) :

En choisissant u = xexp (—cm/logx) et en reportant dans les majorations
précédentes, on obtient bien A(x) < xexp(—c7y/log®)). [

9. QUELQUES THEOREMES TAUBERIENS

Pour déduire (10) de (7) et (9), on dispose d’un outil puissant, dont on
trouvera la preuve dans [27]: voir aussi [32] pour un historique des théorémes
taubériens démontrés au fil du siécle dernier.

THEOREME 8 (Hardy- Littlewood) Soit (Ap)n>0 une suite de réels positifs

satisfaisant a hm (1- z)ZA Z"=1. Alors lim ZA =1.

n—+oo n
n=0

Il suffit donc d’appliquer ce théoréme a la suite (An)n>o définie par Ay
quelconque et A, = A(fi(n))A(fo(n)) -- -A(fi(n))/C(f) > 0 pour tout n > 1,
pour déduire de lim (1 — 2)Gf(z) = (=1 k! C(f)#0 que I'on a

z—1- - -

lim_ () = Jim -~ ZA (AD)A(LD) - A(fl) = C(f)-

n—+oco n

Notons Ao(n) = |u(m)|A(m), 0,x) = Y Ao (i) Ao( () - -- Ao (fi( ) et

introduisons la variante :

n—+oco n n——+oo 1

1 n
lim S0 = lim S A(AD)A0(A()) - Ao (/i) = C(f).
Jj=1

On a le résultat suivant.
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THEOREME 9 (Baier). Pour toute famille f convenable®), on a

cf)  «x
hy...hy logh(x)

my(x) ~ &= 0(x) ~ C(f)x <= p(x) ~ C(f)x.

Ceci est fait en détail dans [1]: la démonstration de la premiere
équivalence est élémentaire et repose sur l’observation que la quantité
Ao(fl(j))Ao(fz(j)) -+ Ao(fi(j)) est nulle si I'un des fi(j) n’est pas pre-
mier et équivalente a h ... h(log j)¥ sinon. La démonstration de la deuxieme
équivalence requiert un peu plus de travail : Baier utilise notamment le théoreme
de Siegel et montre que 0 < "g/)f(x) - Hf(x) < cv/x log (x). Ceci généralise
I’équivalence classique

w(x) ~ ——— <= 0(x) ~ x <= P(x) ~ x,

()

ou m(x) compte les nombres premiers < x, 6(x) = Zpgx log(p) et ¥(x) =

> < An).
L autre théoreme taubérien (Riesz 1916, Ingham 1935, Newman 1980) que
nous avons utilisé peut s’énoncer ainsi.

THEOREME 10. Soit D(s) = Y - a,/n’ une série de Dirichlet conver-
gente sur le demi-plan Re(s) > 1. Supposons que D soit analytiquement
prolongeable & un ouvert contenant le demi-plan fermé Re(s) > 1 et que,
lorsque x — +00,

(i) ou bien a, = O(l) (Ingham-Newman),
(ii) ou bien Zl<n<x a, = o(x) (Riesz).

Alors la série Y .-, an/n est convergente, de somme D(1).

n=

Démonstration. (i) On trouve la preuve du théorérae de Ingham-Newman
(cas a, = O(1)) dans [40] ou [32, Theorem 6.1].

Notons A(x) = >, <n<x@n’ SOUS I’hypothése (ii), une variante de
la méthode de Newman (voir [32, Theorem 7.1]) établit que l’intégrale
f1+°° A(H)r2dt est convergente, de valeur D(1). Or cette intégrale vaut

. AT
lim ( o A0 )) ,
T—+o0 n T
1<n<T

d’ou le résultat énoncé. L]

6) ne satisfaisant pas obligatoirement a I’hypothese F
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Remarquons qu’en fait le théoréme de Riesz, correspondant & I’hypo-
thése (i), est plus fin car il ne requiert que le prolongement analytique au
voisinage de s = 1 (voir [43]).

Nous terminons ce paragraphe en citant le «prince» des théorémes
taubériens.

THEOREME 11 (Ikehara-Wiener). Soit (@n)n>1 une suite de réels positifs a
laquelle on associe la série de Dirichlet D(s) = Y 2 | a,/n®, que ’on suppose
convergente pour Re(s) > 1. Supposons qu’il existe p tel que D(s)—p(s—1)!
soit analytiquement, ou méme seulement continiiment, prolongeable au demi-
plan fermé Re(s) > 1. Alors

) 1
lim - E a, = p.
x—+00 X
1<n<x

REMARQUE. Ce théoréme suggére une approche plus classique de la
conjecture de Bateman-Horn qui consiste a introduire la série de Dirichlet

Dy(s) = 32 M) -+~ A (fn)

nS

n=1

C’est exactement I’approche développée par Conrad [14], auquel nous
renvoyons pour plus de détails: indiquons seulement qu’il transforme cette
série en utilisant lui aussi 1'identité de Golomb. On voit aisément que la série
converge pour Re(s) > 1 et que la conjecture de Schinzel pour la famille f
est vraie si, et seulement si, 1’abscisse de convergence est finie. -

De plus, si I’on savait que la fonction Ds(s) — C(f) (s —1)~! se prolonge
au demi-plan fermé Re(s) > 1, le théoréme de ITkehara-Wiener permettrait
précisément de conclure que la conjecture de Bateman-Horn est vraie: ici
aussi, la valeur exacte de C(f) est plus qu’il ne faut puisque obtenir un
prolongement avec une toute autre constante positive serait suffisant.

Néanmoins, compte tenu de 1’expression pour C( f), on voit qu’il serait
€quivalent de prouver que la série de Dirichlet k!Ds(s) — ¢ (s)Lj(ck)(s), ou encore
k!Ds(s)—C®(s)Ls(s), se prolonge continfiment 2 la droite Re(s) = 1. Dans cette
direction, indiquons que Korevaar [33] a proposé une conjecture concernant
le comportement analytique précis de Dxx12)(s) au voisinage de s = 1 et
qui est équivalente a BH(X(X + 2)).
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10. UNE SECONDE FACON DE PROLONGER Ly(s)

Ce paragraphe présente une esquisse de démonstration d’un théoreme de
Kurokawa [34, 35]; ce résultat n’est pas utilisé dans la suite (et peut donc
étre omis en premiere lecture) mais éclaire peut-€tre une des raisons pour
lesquelles, du point de vue analytique, le cas deg(f) =1 est tres particulier.

THEOREME 12 (Kurokawa). La fonction Ls(s) admet un prolongement
méromorphe au demi-plan Re(s) > 0. De plus, hormis le cas on deg(f) =1,
la droite Re(s) = 0 constitue une frontieére naturelle.

Nous commencons par traiter le cas ou f est produit de k facteurs
linéaires puis passerons graduellement au cas d’un polynéme cubique de
groupe de Galois &3 avant d’esquisser le cas général. Dans le premier
cas Lg(s) = P(s)Zi(s) avec P(s) un produit fini de facteurs eulériens et
Zi(s) = Hp(l — kp~*). 11 suffit donc de démontrer I’assertion du théoreme
pour Z(s).

LEMME 1. Soit k entier > 2. Il existe une unique suite d’entiers a; > 1
tels que, pour tout m > 1, on ait

(17) 1 —kT' =111 —TH%--(1—T"*"(1 + T" M Ry 1 (T))
avec R,1(T) série convergente pour |T| < 1.

Démonstration. On calcule

H(l o =TI ()

j=1 nj—O
(n +a; s
—_— d .] >Tn — B(m)Tn
n=0 m-+2n+---+mn,=n j=1 7 n=0

(disons).

On voit que, si n <m—1, ona B™ = B" Y et que B = BV +ay,.
Ainsi, si ’on veut que le produit soit égal a (1 —kT)~' =3 .o k"T" modulo
7™+ on obtient une définition par récurrence des a; : -

a; =k et, pour m > 2,

n+a —1 A1 + Q1 — 1
—
> o (rerhe (e

m42np 4 +(m—Dn,_1=m
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qui prouve I’existence et I'intégralit€ des a;. En prenant le logarithme de la
relation (17), on trouve que k" = Zj|m Jaj, ce qui permet de montrer que
a; > 1: on vérifie en effet par récurrence que 1 < ma, < k™ (noter que

Zjlm,#mjaj <YK <E'-D/(k-1). O

Par exemple, on a a; =k, a, = k(k — 1)/2 et a3 = k(k — 1)(9% + 1)/3.
On en déduit que la fonction Z(s) admet un prolongement méromorphe
a Re(s) > 0, qui est donné, pour Re(s) > 1/(m + 1), par Zi(s) =
[T~ ¢G4 IL, (1 +p~ R,y 1(p™)) . En particulier on voit que Z(s)
s’annule ou a un podle lorsque

(a) s =1/j avec ordre g;;

(b) s = 8% 4 2mim Hour p premier et m € Z avec ordre 1;

" logp ' logp
(c) s = p/j pour p zéro non trivial de ((s) et j > 1 avec ordre —a;.

COROLLAIRE 1. Si k > 2, la fonction Z;(s) ne peut pas se prolonger au
dela de Re(s) > 0.

Démonstration. L’hypothese k > 2 assure que a; # 0 pour tout j > 1,
ce dont on va se servir pour produire une suite de zéros ou podles de Z;(s)
s’accumulant sur la droite Re(s) = 0. Pour cela on observe que 1’ensemble

S logk n 2mwim
logp logp

‘ p premier, m € Z}

admet comme ensemble d’accumulation la droite Re(s) = 0. De méme,
les ensembles S’ = {p/j | p zéro non trivial de {(s) et j> 1} et §” =
{? | p = %Jr it, zéro de ((s) et j > 1} admettent aussi comme ensemble
d’accumulation la droite Re(s) = 0.

Remarquons aussi que # zl] car sinon p = k%, ce qui est impossible.
Donc, si ’on admet I’hypothése de Riemann, il ne peut y avoir aucune
compensation entre z€ros (b) et (¢); sinon on invoque I'infinité de zéros non
triviaux de partie réelle 1/2 pour voir que si on restreint S’ a S” donné par
les zéros de partie réelle 1/2, ils fournissent la méme conclusion. La droite
Re(s) = 0 est donc bien une frontiere. [

Dans le cas d’un ou plusieurs polynémes de degré > 2, nous aurons
besoin des fonctions L de Dirichlet et d’Artin (voir par exemple [38],
Chapter XII). Rappelons-en la définition et les propriétés que nous utiliserons.
Soit Gg = Gal(@/ Q) le groupe de Galois absolu du corps des rationnels
et soit p : Gog — GL(V) = GL,(C) une représentation continue ou, ce qui
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revient au méme, qui se factorise a travers un quotient fini (G = Gg/ Ker(p)
par exemple). Notons encore p : G — GL,(C) la représentation et notons F le
corps fixé par Ker{Ggo — G} de sorte que G = Gal(F/Q). On pose également
Xp = Trop qu’on appelle le caractere de la représentation. La théorie des
représentations des groupes finis en caractéristique zéro (voir par exemple
[46]) indique que la donnée de x équivaut a celle de p a isomorphisme pres.
Sur les fonctions sur G, on dispose du produit scalaire défini par:

(.1) =106 = g ST,
geaG
Pour p premier et B premier de Op au dessus de p, notons Fg = Op/B et
Dy = {0 € G| 0B = B} le groupe de décomposition de B (au dessus de
p). On sait que la réduction modulo B induit un homomorphisme surjectif
Dy — Gal(Fy /F,) dont le noyau est, par définition, le groupe d’inertie
Iy = {0 € Dy | Vx € OF, o(x) —x € B}. Pour presque tout ‘B (ou p), le
groupe d’inertie est trivial, i.e. on est dans la situation non ramifiée. Dans tous
les cas, I’existence d’un générateur canonique de Gal(Fg /Fp), le Frobenius
x — xP, induit I’existence d’un élément canonique Frobgy € Dss/Is, appelé
également Frobenius. Soit %’ un autre idéal au dessus de p, on a B’ = 0B
pour un certain 0 € G et on voit que Dy = oDgo ™! et Iy = olgo™!.
En particulier ’élément Frobss ne dépend, modulo /s et & conjugaison pres,
que de p; on se permettra donc de le noter Frob,. Ceci permet de définir
L,(p,s) = det (Id — p(Frobg )p~* | V’B)_l, que I'on note aussi L,(x,s) et,
bien sir, la fonction L d’Artin L(p,s) = Hp L,(p,s) que I’on note aussi L(, s)
si X = Xp. S1 Ar,..., A, sont les valeurs propres de p(Froby) (ce sont des
racines de 1'unité), on a A" 4 --- + X = Tr p ((Frobg3)™) = x ((Frobg)™) et
ainsi:
n

log L(p,s) = Y > log(l = Ap™)~!
1

P Jj=
n A —ms
33D PR 3 PGSO LA
p j=1m>1 m p m>1 n

Ainsi les séries et le produit d’Euler convergent absolument pour Re(s) > 1
(voir [38], Chapter XII).

PROPOSITION 1 (Artin-Brauer). La fonction L(p,s) admet un prolongement
méromorphe au plan complexe, sans zéros ni poles sur Re(s) = 1 hormis le
point s =1 ou il y a un péle d’ordre dimV°,
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REMARQUES. (i) La preuve est basée sur le théoreme de Brauer (voir
[46], théoreme 20, page 95): le caractere de toute représentation de G est
somme a coefficients dans Z de caracteres de représentations monomiales (i.e.
induites de représentations de dimension 1 de sous-groupes de G).

(i) On peut obtenir également une région sans zéro et pole (sauf s = 1)
du type Re(s) > 1 — ¢/ logIm(s) et des bornes max{|L(x,s)|, |L(x,s)| '} <
(log | Im(s)|)¢ dans ce domaine.

(iii) L’hypotheése de Riemann généralisée permet évidemment d’améliorer
ces estimations mais n’entraine pas, semble-t-il, la conjecture d’Artin qui
affirme que les L(p,s) sont entieres (hormis un pole éventuel en s = 1).

(iv) II existe une équation fonctionnelle reliant L(p, s) et L(p,1 —s) ol p
est la contragrédiente de p.

Passons maintenant a notre deuxieéme exemple: le cas «typique» d’un
polyndme cubique f de degré 3 engendrant une extension cubique K =
Q[X]1/(f) non galoisienne. C’est-a-dire [K : Q] = 3, la cloture galoisienne
F de K est de degré 6 sur Q et on a G = GalF/Q) & G; et
H = Gal(F/K) 2 Z/27.

LEMME 2. Soit p non ramifié et B un idéal de Oy au dessus de p.
(i) Si Dy = {1} alors pOx = p1paps avec N(p;) = p. En particulier
A, = 3.
(i) Si Dg est cyclique d’ordre 3, alors pOx = p avec N(p) = p°. En
particulier A, =0.

(iii)) Si Dy est cyclique d’ordre 2, alors pOg = p1p2 avec N(p1) = p et
N(p>) = p*. En particulier A, =1.

On peut interpréter cela ainsi en notant 1: &3 — GL;, : &3 — GL;
et p: 63 = GL, les trois représentations irréductibles de &3 et 1,¢,x les
caracteres associés. On a

3 si Frob, est d’ordre 1,
Ap =1+ x(Frob,) = ¢ 1 si Frob, est d’ordre 2,
0 si Frob, est d’ordre 3.

Ainsi, a un nombre fini de facteurs eulériens pres, on a

L) =] (1 - A X}f“’"f”) .
p
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Les premicres étapes du prolongement utilisent les fonctions L(eg,s) =
HPLP(E,S) et L(yx,s) = HPLP(X,S), ou Ly(e,s) = (1 — E(Frobp)p_"')_',
Ly(x,s) = det(1 — p(Frob,)p™)~! = (1 — x(Frob,)p~* + &(Frob,)p~2)~!.
Ainsi(1 — T)(1 — xT + €T?) = 1 — (1 + )T + O(T?) permet d’écrire
Li(s) = ¢ '()L(x,5)"'Ga(s) avec Gy(s) holomorphe sur Re(s) > 1/2 et
on a ainsi obtenu un prolongement méromorphe a ce demi-plan.

Ensuite, la relation

(1 —T)1 — xT 4 eT*(1 — eT*)(1 — xT* + T
=1 -1 4+T+ (x+ex+xHT° + 0T

permet d’écrire Ly(s) = ¢~ 1(s)L(x, s)~'L(g, 25) 7' L(x, 25) "' G3(s) avec G(s)
holomorphe sur Re(s) > 1 /3 et on a ainsi obtznu un prolongement
méromorphe a ce demi-plan.

On ne s’arréte pas 1a; en effet x*(0) = Tr(p® p(0)) donc Ly(p@p;T) ' =
det(1 — p ® p(Frob,)T) = 1 — x*(Frob,)T + O(T?) et clonc

(1 = T)YA — XT + eT*)(1 — eT*)(1 — xT* + eT*)(1 — x*(Frob,)T> + O(T*))
X (1 = xT? + O(TH)(1 — exT? + O(TH) = 1 — (1 + )T + O(T*

permet d’écrire

Ly(s) = ¢ ()L(x, )" (e, 28) "' L(x, 25) "
X L(p ® p,35)""L(x,35) ™' L(e ® X, 35) "' Ga(s)

avec Gy(s) holomorphe sur Re(s) > 1/4 et on a ainsi obtenu un prolongement
méromorphe a ce demi-plan.

Nous allons maintenant généraliser ce calcul a tout polyndme et tout ordre.
De maniere générale si F est la cloture galoisienne de K, G = Gal(F/Q) et
H = Gal(F/K), la décomposition de p dans Ok est gouvernée par (la classe
de conjugaison) du Frobenius au dessus de p et on pourra toujours exprimer
A, comme combinaison lin€aire de caracteres d’Artin.

PROPOSITION 2. [l existe un caracteére d’Artin x = X, (associé a une
représentation T ) tel que, pour presque tout p, on ait Ny(p) = x(Frob,). En
particulier, la fonction Ls(s) est égale, a un produit culérien fini pres, a la

fonction
. x (Frob,)
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La preuve de la proposition précédente s’appuie sur le lemme suivant qui
a son intérét propre.

LEMME 3. Soit F une extension galoisienne de Q de groupe G, H un
sous-groupe et K = F le sous-corps de F fixé par H. Notons A, le nombre
d’idéaux de K de norme p, on a alors

Ay =Y dimVZx(Frob,) = 1+ _ dim V' x(Frob,),
X x#1
oi la somme est prise sur les caractéres x des représentations irréductibles
p: G — GL(V).

REMARQUE. On peut vérifier directement que A, ne dépend que de K
(et pas de la cloture galoisienne F choisie). On notera dans la suite Jg
I’ensemble des représentations irréductibles de G et J; = Js\ {1} I’ensemble
des représentations irréductibles non triviales.

COROLLAIRE 2. Soit f = fi...fx avec f; irréductibles distincts a coeffi-
cients entiers. Posons K; = Q[X]1/(f:), choisissons ¥ une extension galoisi-
enne de groupe G avec des sous-groupes H;, tels que K; = FHi . Alors, pour
presque tout p, on a

Ne(p) =k+ Z > " dim (V) x(Frob,).

i=1 xeJg

Démonstration du Lemme 3. Soit B un idéal de Op au dessus de
p, de sorte que N(B) = p/ avec |Dg| = f. On écrit les décompositions
POk =p1---p, et p;=BY .. %(j) avec N(p;) = p//h ou f = |D,Bm/p | =
|D%(;) NH|. On voit que N(p;) =p equwaut a fi = f ou encore a D%m C H.
Par allleurs dans ce cas, en prenant les normes on obtient la valeur de
hj par pHl = NE@Or) = I, NG@BYP) = p/%. On en déduit alors
que A, = |{c € H\G|oDgo~ ' CH}| = |{oc € G| oDgo™"' C H}|/|H].
Calculons maintenant la décomposition dans la base des caracteres de la
fonction centrale donnée par ¢(9) = #{oc € G | ogo~! € H} (telle que
A, = ¢(Frob,)/|H|). Pour cela, on va utiliser le résultat classique suivant.

FaIt 1. Soit p: G — GL(V) une représentation, H C G et x = Trop.

Alors
> x@) =Y x(9) = [H|dim V"

geEH g€EH
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Démonstration. La représentation restreinte p|y se décompose en
p1 @D ps avec p; irréductibles. Or, si y est irréductible on a

1 )0 six#1,
<17X>H—1‘I_7‘ZX(9)—{1

geH st x =1,

d’ou I’affirmation. L]

Revenons a la preuve du Lemme 3. Il suffit de calculer

Gl{g,x) =) dax@= > X9

geG g,0€G
O’gO'_IEH
=" dim (VU"HU) lo~'Ho| = |H| |G| dim V! .
oG

Ainsi on a bien

H ~ 2 A

29 _ 5~ 00X _ = iyt (g
X

comme annoncé. L]

Revenons au probleme du prolongement analytique de L(s) dans le cas
général. On voit donc que, toujours a un nombre fini de facteurs eulériens
pres et avec les conventions précédentes, on a

Frob
Ly(s) = H (1 _(aixa +axz +ps + a;x:)(Fro p)) 7

P
avec disons x; = 1 et a; = r et les autres x; irréductibles et non triviaux.
On utilisera que x| ---x™ est la trace de p®™ ® --- ® p®™ donc

Lpf™ @ -+ ® pP™,5) = [J(1 =X -+ Xy (Froby)p ™)™ (1 + O(p™>))..
4

La premiere étape du prolongement analytique (jusqu’a Re(s) > 1/2) consiste
a écrire
L= (aix1+ - +ax)T = (1 = xi T -+ (1 — (1 + O(T?))
= Lp(x1, ™ -+ Ly(xe, H™(1 + O(T?))
d’ou ’on tire L]:(s) = L(x1,8)" % - L(x:,8) " %“Gy(s) avec Gy(s) définie par
un produit d’Euler convergent pour Re(s) > 1/2. En se souvenant que
L(x1,5)™% = ((s)™" et que les autres L(x;,s) sont holomorphes sans zéros

sur Re(s) = 1, on retrouve le prolongement et le comportement de Ls(s) au
voisinage de cette droite.
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LEMME 4. 1l existe une suite de représentation p; telles que

L=xT=][det(1-pT) = [] det(1-p7) (140 (1)) .
1<) 1<j<m

Pour le calcul nous utiliserons le fait classique suivant (voir Serre [46],
paragraphe 9.1, exercice 3).

FAiT 2. Soit p: G — GL(V) une représentation. Notons Sym’ p
(resp. N'p) la r-iéme puissance symétrique (resp. la r-iéme puissance
alternée). Pour un caractére x, notons W'x le caractére défini par
Wx(g) = x(g"). On a les formules

det (1 — p(9)T)" Z Xsynr p(@)T" = exp (Z ‘I”xp(g)—)

r>0 r>1

det (1 — p()T) = Y (=1 xap(@T" .

r>0

Soient p; une suite de représentations. On a

Hdet 1 - pJTJ HZXSYWP

=1 =170

— n
- Z Z XSym't p; « -+ XSym'm me

n2>0 ri+2r+---+mr,=n

— Zx(m)T"

n>0

(disons).

Observons que, pour n < m — 1, on a x"™ = x™ D  alors que
X = x@=D4x,. . Sion veut que cette expression soit égale a (1—y,T)~! =
> n>0 X5T", on trouve une définition par récurrence des p; :

Xpi = X+ €U Xp, = Xr@--@r— E XSym't p;®@---QSym'™m—1 p,_;
r+2rp+-+m—Drm—1=m

qui prouve le lemme avec p; € R(G), i.e. p; représentation « virtuelle ». En
prenant le logarithme de la relation donnée par le lemme, on obtient:

S = X, = Y ()

n>1 i>1 r>1 n>1 " jn
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D’ou la deuxieme relation y,g..gr = Zj]n ﬁlf"/jxpj qui permet de voir que
(dim )" = Zjlnjdimpj et donc dimp, = %Zﬂn w(n/j)dim7y. La fin de la
preuve que les p; sont effectives est laissée au lecteur; par exemple si on
note T" ¢ la représentation telle que 0 ® Sym"'o = T"¢ @ Sym" o, on a
p2 =T p1 =Np1, p3=Tp; et ps =T p, & T (T%01), etc.

On peut donc écrire Ly(s) = [],cic,, L(Xp;»J8) " ' Gmp1(s) avec Gy
holomorphe sur Re(s) > 1/(m + 1). Comme chacune des fonctions L(x ;,J9)
se prolonge (méromorphiquement) au plan complexe, on obtient bien ainsi un
prolongement méromorphe de de L; au demi-plan Re(s) > 0. De nouveau les
pdles ou zéros vont s’accumuler vers la droite imaginzire; c’est clair si I’on
admet I’hypothese de Riemann mais on peut s’en passer en examinant plus
finement les résultats connus sur la densité des zéros (voir [35]).

11. PREUVE DU THEOREME DE BATEMAN-STEMMLER

L’argument donné ci-dessous pour prouver le Théoreme 2 est essentielle-
ment celui dans I’article de Bateman et Stemmler [4]: il nous semble cependant
intéressant de le reproduire ici car il est court (une fois admise 1’estimation
générale du grand crible) et utilise les propriétés analytiques de la fonc-
tion Ls(s). Soit X un ensemble d’entiers contenu dans l’intervalle [1,N].
Si I'image de X dans Z/pZ a un cardinal borné par p(1 — wp) (pour des
«densités» 0 < w, < 1) alors, pour tout Q > 1, I’application du grand crible
(voir [5, Théoreme 6, page 20] ou [50, 1.4.5, Corollaire 6]) donne:

(N+0%

(18)  card(X) < o~ & L(Q):rgm(n) £I

“p

1—wp.

Dans le cas qui nous intéresse, on choisit pour X ’ensemble X( J) des
entiers n dans Uintervalle [cy/N,N] tels que les f(n) soient tous premiers
et on pose Q = N'/272_ On remarque alors que si p < Q et n € X alors,
comme fi(n) > c'nf > c/(cv/NY > Q et donc p < f(n) (au moins si la
constante ¢ a ét€ convenablement choisie): p ne divise donc pas f(n). On
peut donc €carter Ny(p) valeurs mod p. En d’autres termes, on peut appliquer
le crible & I’ensemble X( f) avec les densités w, = Ny(p)/p. Pour estimer

L(Q), posons a, = ‘“(”)’H Wp

1—w
pln P

et introduisons la série de Dirichlet

P(s) = anl a,/n*. On a
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_ Ni(pyp~'™* )
P(s) 1;[ <1 +7 N
et on voit aisément que P(s) = Ly(s + 1)7'R(s), ou R(0) =1 et le produit
définissant R est convergent pour Re(s) > —1. On a vu (Théoreme 6)
que Lg(s) est équivalente a C(f)(s — 1)* au voisinage de s = 1: la
fonction P(s) est donc équivalente & C(f)~'s™* au voisinage de s = 0
et, hormis ce pdle, admet un prolongemen{ holomorphe au demi-plan fermé
Re(s) > 0. En utilisant un théoréme taubérien, on peut conclure que
L(Q) =¥, <0 ~ k1 C(£)) ! log"(Q).
L’inégalité de grand crible (18) donne donc

IX(f)] < k25 C(fINTog (V)1 + o(1))

et finalement, comme 7/(N) < ¢v/N 4 |X(f)|, on obtient bien la majoration
annoncée par le Théoreme 2.

12. L’INTERVERSION LIMITE ET SERIE

Le probleme majeur et non résolu de la méthode de Golomb est de justifier
I’interversion limite-série dans (7). Nous discutons de cette question dans ce
paragraphe en montrant d’une part que cet obstacle peut €tre surmonté dans
le cas d’un polynéme linéaire et en montrant d’autre part que 1’analogue de
cette interversion peut €tre justifiée dans d’autres situations.

12.1 LE CAS D’UN POLYNOME LINEAIRE

Lorsqu’on spécialise la conjecture de Bateman-Horn au cas k = 1 et
f = /1 linéaire, on obtient pour f(X) = X, resp. f(X) = aX + b, le théoréme
des nombres premiers, resp. le théoreme de Dirichlet - de la Vallée-Poussin
(Théoreme 1). Un fait remarquable est que, dans ce cas, on sait justifier
I'interversion limite-somme dans I’approche par le A-calcul, qui fournit
donc une preuve du théoréme des nombres premiers dans les progressions
arithmétiques (dans le cas du théoréme des nombres premiers, cette preuve est
essentiellement celle donnée par Wiener). Il serait intéressant de démontrer le
théoréeme de Dirichlet par I’étude de la série > .-, A(an + b)/n’.

Calculons d’abord la constante C(aX+b). Pour cela, il nous faut déterminer
Nox4u(p). Si p divise a, on a Nyxi4p(p) = 0 puisque (a,b) = 1. Si p ne
divise pas a, alors (a,p) =1 et il existe un entier ¢ (unique modulo p) tel
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que ac =1 [p] et —bc est alors I'unique solution (modulo p) de 1’équation
an+b =0 [p], d’ou Nyx4p(p) =1 dans ce cas. On a donc

C(aX+b)=H((1 —%)_1(1 —%))E((l —}))_'1@ —%)) - ;(%—).

pla

Pour la démonstration du Théoréme 1 nous utilisons un résultat prouvé dans
le livre de Hardy [26, Theorem 5, p.49, II1.3.5] qui se traduit pour les séries
ainsl.

THEOREME 13 (Schur-Toeplitz). Soit une suite de fonctions ®,(z) définies
au voisinage de w € CU{oco}. Supposons qu’elles vérifient les deux conditions
suivantes :

(s1) > [ Pu(2) — Puti ()| < H,
n=1
(s2) 1i_>m d,(z)=1.

Alors, si une série > - a, est convergente, la série Y - a,®n(z) est
également et on a

oo o0 o0
Zl}g}} glanfl)n(z) = Elanzlgg Dy(z) = ) an.
n— n=

n=1

REMARQUES. (i) On peut montrer (cf. loc. cit.) que les conditions (s1), (s2)
sont également nécessaires. Dans ces conditions, on dit que la transformation
D, (z) est réguliere.

(i1) Si I’on sait que ®,(z) > 0 et que la suite est décroissante (par rapport
a n) alors

N N
D 9@ = ©ui @] = Y (Pul2) — Put1(2))
n=1

n=1

=®d(2) — (I)N-H(Z) <P(z) <H,

donc (sl) est bien vérifi€ée et on observe au passage que la suite ®,(z) est
uniformément bornée. Un peu plus généralement, si la suite est positive et
uniformément bornée (disons ®,(z) < H) et est décroissante pour n > nyg =
np(z) et croissante auparavant (on pourrait autoriser un nombre fini borné de
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changements) alors

N np—1 N
1P = Pu1@D] = Y (Pr1() — Pu(@) + D (Pu(2) — Puti (2))
n=1 n=1 n=ny

= 2@ (2) — P1(2) — Py+1(2) < 2Py (2) < 2H.

Pour appliquer le Théoréme 13, on prend’) d’abord w =1~ et

nel —
@)= "0

1 —z
On a bien sir lim,_,;- ®,(z) = 1 (condition (s2)) et un calcul direct donne

Fn—zd+z+--+2")

®,(2) — D, 1 1(2) = >0.
@ = Put12) A+z+- 4+ Hd+z+-+2)

Donc
D 1Pu@) — Pu1 @] =D (Pa@) — Put1(2)) = @1 < 1,
n=1 n=1

et la condition (s2) est également vérifi€ée. On conclut donc que, pour toute
série ) a, convergente, on a:

lim (1-2)) (fa_zz) =Y a,.
n=1 n=1

z—1-

Plus généralement, soit ¢ > 0 et z tel que [z°| < 1; on choisit

CH

D,(2) = ——nzl (_1 pe 2

qui vérifie trivialement (s2) et est uniformément bornée: c’est évident pour
¢ > 1 etsic < 1,choisissons m > 1/c et posons n = gm+r avec r < m, alors
Itz 42" > g9 et @,(2) < nz™/qz0~" = (mA4r/g) = Vatretl < o
On vérifie ensuite par calculus que, pour ¢ > 1/2, la suite ®,(z) est
décroissante et que, pour ¢ < 1/2, elle est croissante puis décroissante.
On conclut donc que, pour toute série ) a, convergente, on a:

lim (1 — z)i ;’ajzzn - ian.
n

z—1-

") Ce procédé de sommation est connu sous le nom de transformation de Lambert.



304 M. HINDRY ET T. RIVOAL

Nous sommes maintenant en mesure de justifier I'interversion limite-
série (7):

2 Ud) loghd) <~ 2 o= pu(d) log"(d)Ny(d)
DY d = ; .

d=1 ’ n=1
d| f(n)
dans le cas des théoremes des nombres premiers et de la progression
arithmétique (c’est-a-dire lorsque £k =1 et f = f; est linéaire).
Dans le cas du théoreme des nombres premiers, on a f(n) = n et donc
Y i<n<dd fon T = 2, ®y(z) = dz%(1 —2)/(1 —z%) et I’interversion limite-série
est donc justifiée par la regularité de la transformation de Lambert (12.1):

-1.

1 —z4 d

z—1-

lim 3 HOLEDZA =) _ y o HDlogd) _
d=1 d=1

Dans le cas du théoreme de la progression arithmétique, on a f(n) = an+b.
L’équation an+b = 0 [d] posseéde une unique solution ny(d) dans I’intervalle
[1,d] si (a,d) =1 et aucune solution si (a,d) > 1. Supposons donc (a,d) = 1
et soit § € (Z/aZ)* la classe de congruence de d. Soit ¢(9) le représentant
dans D’intervalle [1,a] de b6~ € (Z/aZ)*.

LEMME 5. Avec les notations précédentes, on a no(d) = ({(8)d — b)/a
pour tout d > b.

Démonstration. Tout d’abord 4(8)d — b = ¢(6)6 — b =0 [a] donc ny est
bien entier. Ensuite ang + b = £(6)d = 0 [d] et enfin, comme 1 < /(d) < a et
d>b,onabien 0<(d—b)/a<ny<d-bla<d. [

On a donc Y\ c,cyaymd = @ = 77/ (ze(‘s)/'“)d pour d > b: on
commettra 1’abus de notation sans conséquence que cette identité reste valable
pour d < b. Par ailleurs, posons G = (Z/aZ)* et G son groupe des caracteres
et étendons tout caractere y € G en un caractére de Dirichlet en posant
x(d) = x(dmoda) si (a,d) =1 et x(d) =0 si (a,d) > 1. Rappelons que

1 _ 1 six=bld],
2@ Zx(b)x(x) = {

ol 0 sixZbla]l.

En fait, si x est un caractere de Dirichlet, modulo a disons, on a

oo

D(d
to =[] (1- M2) - 3° 26000

\)
P I3 d=1
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et donc

i X(dud)logd) _ L'(x,s)

s - 2"
o d L(x, $)

Le cas du caractere unité doit étre traité séparément et correspond a ((s)~'
sauf pour les facteurs eulériens en p divisant a.
D’apres les propriétés classiques des L(y,s), la fonction

> X(du(d) log(d)/d",

d=1

a priori définie pour Re(s) > 1, admet un prolongement analytique au demi-
plan Re(s) > 1 et méme a un ouvert du type o > 1 — ¢/ log(|#| +2). Par le
théoreme de Newman ou des calculs classiques dans ce cas, on conclut que

i X(d)p(d) log(d) LD

est convergente et vaut .
d & L(x, 1)

Dans le cas du caractere unité modulo a, si I’on note (,(s) = ((s) Hp|a(1 —p*),

on a
i u(d)log(d):[—l}’l_lz__a__
d=1,(d,a)=1 d Cals) p(a)

On obtient donc en utilisant le lemme 5 et les équations (12.1) et (6):

Z p(d)log(d) 70 D(1 — 7)

z—>1— 1—-7

= lim ) Z 7 p(d) log(d) /(1 — )

Z - 14 d
S eG d=1d=6 a] <

_ o x(d)u(d) log(d)
_¢()ZZX(6) lim D

6€G d=1
_ Z Z (6 )Z x(d)u(d) log(d)
90( ) Sea

_ i u(d)IOg(d) __.a

d=1,(d,a)=1 d pla)

et I'interversion limite-série est donc justifiée.
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REMARQUE. Revenons au cas général de Bateman-Horn et posons, si
Nr(d) #0,
d(1 —2) Z1gngd,d|f(n) Z"

Np(d)(1 — z%)

qui vérifie (s2) mais probablement pas (s1) en général. Noter que le choix
de la valeur de ®,(z) lorsque Nf(d) =0 n’a a priori aucune incidence sur
le résultat & démontrer, mais qu’il peut étre déterminant pour une éventuelle
preuve. La généralisation ou variante suivante du Théor¢me 13 (qui correspond
au cas r(n) = 1) pourrait étre utile.

Dy(z) =

VARIANTE. Soit une suite de fonctions ®,(z) définies au voisinage de
w € CU{oo} et soit r(n) une suite positive décroissante. Supposons qu’elles
vérifient les deux conditions suivantes :

(s1,) > () |@(z) = Puy1 ()| < H,
n=1
(s2) ILm D,(2)=1.

Si une série Zzi] a, est convergente et telle que ZD y @n = o(r(N)), alors
la série Yy .~ a,®,(z) l'est également et on a

o0 oo oo
. . e
lim > a®,) =) a lim @,(2) =} an.
n=1 n=1 n=1
Démonstration. Quitte a remplacer a, par a, = a, pour n > 2 et
ay =ay — Y 2 a, pour n = 1, on peut supposer » ~,a, = 0 et donc
Sy = ZQJZI a, = o(r(N)). Alors si € > 0 est donné, il existe N tel que, pour
n > N on ait |S,| < er(n). Par ailleurs, d’apres (s2), si z est suffisamment
proche de w, on aura Z‘;V:l Sy |@n(z) — Puyi(2)] < = et done, en utilisant
également (sl;) on obtient

D a,@u@)| = | Su(@n(@) — Prpa(2)
n=1 n=1
<et D Su(@uz) — Puy1(2)| < +eH,
n>N
ce qui acheve la preuve. [

Choisissons une fonction r(n) telle que > d>n u(d) logk(d)Nf(d) /d =
o(r(n)). Pour que la condition (sl;) soit vérifiée, il suifirait donc que
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[o.@]

> 1) |@n(2) — @y ()| < H.

n=1
Remarquons que la majoration que nous avons prouvée au paragraphe 8
concernant la somme )., pu(d) logk(d)Nf (d) permet de prendre r(n) =
exp(—cy/logn), cette estimation pouvant bien sfir étre améliorée modulo
I’hypothése de Riemann (pour les fonctions zéta de Dedekind). Cependant
nous ne sommes pas parvenus a des majorations satisfaisantes, hormis les cas
cités.

12.2 DEUX EXEMPLES DE PASSAGE A LA LIMITE

Nous donnons maintenant deux exemples liés aux transformations de
Golomb et ou le passage a la limite est justifiable rigoureusement. Le premier
exemple est particulierement surprenant, mais la preuve que nous en donnons
est trop spéciale pour éclairer le seul cas qui nous importe, £ = k

THEOREME 14. Soit (fi,...,fi) une famille convenable vérifiant I’hypo-
thése F. Alors, pour tout entier ¢ tel que 0 < ¢ <k, on a

Zn 1,. Zn:l,...,d Z"

o0
. d] Sm)=0 [d]
lim Y pu(d) log“(d) <L"= 0l E 11(d) log? (@) lim ,
=m0 2 n=0,...d—17% 1= > 0,..d1 3"

la valeur commune étant 0.

Démonstration. On a

Zn:l,...,d
5 uld) log! (@) lim ZM = Zu(d) log" ()=
d=1 n=0,

et les résultats du paragraphe 8 justifient que ces deux séries sont égales a
(— l)eL(/)(l) On a aussi vu que la fonction Lf(s) admet un zéro d’ordre k
en s=1.Dou

oo ¥ r=lygd 2

> udloghd) lim L2 __ — o pour0 < ¢ <k.
d=1 1= Zn:O,...ﬂ’——l "

f (d)

Pour justifier que la fonction

don=,.

Frao(@) = Zu(d) log’ D" i -
d—1
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tend vers 0 quand z — 1, nous allons montrer beaucoup plus, a savoir que
Fy¢(z) est identiquement nulle! En effet, en effectuaat a Ienvers le calcul
fait au paragraphe 5, on obtient

Fre@=0-23 (3 udlog@)?

n=1d>1
d| f(n)

Or, par le théoreme 5 on a

> ud)log'd)=0 pourn>1et0 <<k,
d>1
d| f(n)

ce qui conclut la démonstration.  []

Un des problémes techniques auquel on se heurtz avec la méthode de
Golomb est le fait que ’on doive manipuler des séries non absolument con-
vergentes. La situation se simplifie notablement lorsque les séries considérées
sont absolument convergentes et que 1’on peut utiliser, par exemple, le théoreme
de convergence dominée, comme dans I’illustration suivante.

Posons

_ @(f(n))
F(z) = Z ;
— fn)
ol f(X) € Z[X] est tel que f(n) > 1 pour tout n > 1. Pour tout entier m > 1,
on a p(m)/m = Zd|m wu(d)/d, d’ou

Fm=0 [d]

Il est possible de justifier I’interversion limite-série suivante :

) Son=t,..a 7"
] 7! . Jm=0 |d]
(19) lim (1 -2 F@) ; y Hr(znzowd_lzn)

= 1(d)Ns (d
:Z—_“( )d2f( ) = Ly(2).
d=1

En effet, notons / le degré de f et s(d) le plus petit entier n € {1,...,d}
tel que d|f(n) lorsqu’il existe et s(d) = d s’il n’existe pas. Pour tout z tel
que 0 <z<1 etpourtout d >1, on a



LE A-CALCUL DE GOLOMB 309

s(d)—1

d—1
0< > ZSN@DID et Y > N > s@ @
n=0 n=0

n=1,...,d
S(m)=0 [d]

D’ou
Z n=1,....d " @ »
HD) pwzoia | @I @ _ @O @)k
d Yo, a0 @' ” dsd T ds@d) FIESY

car d | f(s(d)) implique que s(d) > d'/". Comme la série de terme général
| @d)|h@ Jd'+1/" est convergente (de valeur [1,a + hp~'1=1/7)), on peut
appliquer le théoreme de convergence dominée pour montrer (19). Le théoreme
taubérien d’Hardy-Littlewood et la transformation d’Abel nous permettent d’en
déduire le

THEOREME 15.  Pour tout polynéme f(X) € Z[X] tel que f(n) > 1, on a

L (2
> ptsa) ~ L3 5.

n<x

REMARQUES. (i) La minoration s(d) > d'/" ne peut pas étre améliorée
en général puisque pour tout entier m > 1, on s(f(m)) < m < f(m)'/". Ce
fait est une des raisons de la difficulté¢ de justifier I’interversion limite-série
lorsque h > 2.

(i1) I existe des expressions absolument convergentes de

> ud)log“(d)Ny (d)/d .

d>1
Parmi diverses possibilités, la transformation d’Abel montre que cette série
est égale a

oo J ' ‘
Z(Ing(d) — log“(d + 1)) Z H(—J)'JNf—(J) ;
d=1 pay

qui est bien absolument convergente puisque logh(d) — logk(d + 1) =
O(log" "' (d)/d) et que

d
> wiNr ()/j = Ofexp(—c+/log(d)) = Olog ™~ (d)).
j=l1
La série de fonctions correspondante

oo d ’ J
logh(d) — log“(d + 1 M) i
d;(og() og (d+ ));l-i-z—l-"--i—zf‘l ; z
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est malheureusement moins facile a étudier, bien que 1’on dispose ici de
I’intéressante propriété

J

S p(j)
2T 2 =0

j=1 n=1

Jm=0[/1

pour tout z (en vertu de la démonstration du Théoreme 14, cas ¢ = 0).

13. LA CONJECTURE DE GOLDBACH

Dans ce paragraphe, on considere le cas de la conjecture de Goldbach [23]
«Tout nombre pair est la somme de deux nombres premiers», qui ne rentre
pas dans le cadre de celle de Schinzel-Bateman-Horn. On s’intéresse tout
d’abord a divers affinements quantitatifs dans I’esprit de Bateman et Horn,
puis on montre comment adapter le A-calcul a ce cas.

13.1 LE DIFFICILE ART DE LA CONJECTURE

Les estimations numériques de la conjecture de Goldbach indiquent que
non seulement tout nombre pair n est apparemment la scmme de deux nombres
premiers, mais que le nombre d’écritures différentes de n sous cette forme
croit avec n. Il est donc naturel de s’intéresser au comportement asymptotique
de la quantité

G(n) = #{(p,q): n=p+ qetp, gsont premiers}

lorsque n — 4o00. Le premier a I’avoir fait est, semble-t-il, Sylvester [48]
en 1872 dans un article de trois pages particulierement surprenant. En effet,
on n’y trouvera que les onze expressions mathématiques suivantes (comptées
avec multiplicité): gf%, n, /n et x+y=n. Une traduction de 1’anglais
vers les mathématiques fournit néanmoins une conjecture, qui a provoqué
ce commentaire de Hardy et Littlewood [28, p.33]: «There is no sufficient

evidence to show how he was led to his result. »

CONIJECTURE 5 (Sylvester). Lorsque !’entier pair n — 400,

2n p—2
G(n) ~ . (—) .
log(n) 3<£I i \P T 1
pin
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Stickel [47] s’est intéressé a ce probleme?®) en 1896, de fagcon un peu plus
vague.

CONJECTURE 6 (Stackel). Lorsque ’entier pair n — 400, le nombre G(n)
vaut approximativement

— n . p — n2
O = 12w EI(p - 1> " @)

On peut enfin mentionner I’approche de Brun [7], datant de 1915.

CONJECTURE 7 (Brun). Lorsque [’entier pair n — +o0,

on- 11 (+-2) 11(2).

3<p</n

Comme Sylvester, il n’est pas facile de réellement comprendre ce qui a
guidé Stickel et Brun. Bien que les trois estimations soient en apparence
assez éloignées, les produits eulériens suggerent pour les trois des arguments
heuristiques utilisant le «fait» que la chance que N soit premier vaut environ
[1,.x(1 = 1/p). Quoi qu’il en soit, Landau a montré en 1900 que

THEOREME 16 (Landau). Lorsque x — 400, on a

2 (263 X
EG(n) o et nzgxnﬁ(n) 3¢(6)  2log’(x)

Comme ((2)((3)/3((6) ~ 0,6478, la conjecture de Stiickel est fausse.

Hardy et Littlewood [28] se sont eux penchés sur les conjectures de
Sylvester et Brun que, grace au théoréeme de Mertens, ils ont reformulées
ainsi:

_ 1 n p—1
G(n) ~ 2e7 7. ZH(l — T 1)2> . logz(n) . H(}—)_—2> (Sylvester)

r>3 p23
pln
_ 1 n p—1
G(n) ~ 8¢~ 27. 2H(1— 2)- > H(_) (Brun).
sy (PN dogi) pusip -2
pln

8) On apprend dans [47] que Cantor [8] fut lui aussi suffisamment intéressé par la conjecture
de Goldbach pour la vérifier jusqu’a n = 1000.
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Il en découle que ces conjectures ne peuvent pas étre vraies simultanément,
bien qu’elles ne différent finalement que d’un facteur constant.

THEOREME 17 (Hardy-Littlewood). Si G(n) = o(n/ log*(n)) pour n impair
et si, lorsque n pair — +o0,

n p—l)
G(n) ~ A - - S
pln

, . 1 ;
alors nécessairement, A = 2 Hp23(1 — (;:——1)2) . Les conjectures de Brun et
Sylvester sont donc fausses.

Cette caractérisation de la constante A est similaire au résultat de
Tchebichef rappelé a 1I’équation (11). Obtenir une telle caractérisation pour
les constantes de Bateman-Horn C(f) semble difficile: les démonstrations
des Théoremes 16 et 17 reposent sur le fait qu’il est assez facile d’analyser
le comportement en moyenne de G(n) (ou de foncticns similaires), malgré
son comportement erratique. Par exemple, Landau a remarqué que, lorsque
X — +o00, 0n a

B =2 r(x — 1)
Y Gy =) wx—p)~ /2 02 dt

n<x p<x

/ = x—t x?

~ i el

2 log(x — 1) log(?) 2log”(x)

tandis que Hardy et Littlewood ont exploité le comportement au voisinage de
z=1 de la série

i( > log(p) log@)zn = (Ep: 10g(p)z”)2 ~ 5 _1Z)2 .

n=1 p+q=n

Malheureusement, nul ne sait si ’on peut adapter ce type d’arguments au cas
de C(f).

Encouragés par les divers résultats obtenus avec leur méthode du cercle,
Hardy et Littlewood ont également conjecturé que le¢ Théoréme 17 décrit
correctement le comportement de G(n). De son c6té, Schinzel [45] est parvenu
a adapter I’heuristique de Bateman et Horn aux problemes de type Goldbach.
On reprend les notations du début du paragraphe 2: soit fi,/f,...,fi une
famille convenable de polynémes et posons f = fifs - - fk. Soit fo(X) € Z[X]
de terme dominant positif. Posons N(n) = #{m > 1 : n — fo(m) > 0},

w(n,p) =#{1 <m < p: fm)n— fo(m)) =0 [pl} et hy = deg(fo)-
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CONIJECTURE 8 (Schinzel). Lorsque n — 400 de sorte que n— fo(X) soit
irréductible et que, pour tout premier p, il existe m > 1 tel que p ne divise

pas f(m)(n — fo(m)), on a

#{m < n:fi(m),...,fi(m)etn— fo(m) premiers}
1 IR w(n p) Y N(n)
hOhl"'hkl;[((l p) (1 - )) log (N (n))

Le cas k=1, fp(X) = fi(X) = X correspond a la conjecture de Goldbach.

13.2 GOLDBACH ET GOLOMB

Pour obtenir une version quantitative de la conjecture de Goldbach, Hardy

et Littlewood [28, p.38] notent que la fonction

n—1

gn) =Y A(A(n — k)

k=1
est celle qui s’impose le plus naturellement. Cependant, en raison de la
dépendance en n du sommande, la méthode fonctionnelle de Golomb ne peut
pas étre utilisée de la méme maniere que pour la conjecture de Bateman-Horn.
De plus, pour appliquer I’identité (13), il faut restreindre la sommation aux
seuls entiers k tels (k,n) =1 et étudier

n—1 oo n—1
1 2
200 S = > AKAn -k = 5 > wdlogd D, 1,
(k,n)=1 (k,m)=1, d|k(n—k)

Nous donnons maintenant un argument analytique permettant d’estimer
G(n) d’une maniere certes moins élégante que dans le cas de Bateman-Horn
mais que nous espérons assez plausible. Nous montrons en fin de paragraphe
pourquoi, conjecturalement, g(n) et G(n) ont le méme comportement asymp-
totique.

Notons A(n,d) la somme finie tout a droite de (20): on a évidemment
A(n,d) =0 si (d,n) > 1 ou si d > max, k(n — k) = n2/4. De plus, si d =p
est premier et si (n,p) =1, on a

2
A =23 )| 2 = 20 Ry = MO ),

rln

avec R(n,p) =23, ;L(r)([%] - %) < 7(n) (= le nombre de diviseurs de n)
et N(d) = Nxu—x)(d). On peut espérer que pour d quelconque, la fonction
R(n,d) définie par



314 M. HINDRY ET T. RIVOAL

N(d) p(n)
d

(21) A(n,d) = + R(n,d)

soit petite?) en un certain sens. Notons que 1’écriture (21) est typique des
méthodes de crible, ol I’on cherche a approcher une fonction arithmétique
compliquée par des fonctions plus simples, multiplicatives par exemple: ici,
cela revient a quantifier le fait que les conditions (k,n) == 1 et d | k(n—k) sont
plus ou moins «indépendantes » pour un entier générique k lorsque (d,n) = 1.

Si I’on pouvait négliger la contribution due a R(n,d), on obtiendrait alors
I’approximation

() 2 80(’1) 3 p(d) log>(dN(d) w(n) Z p(d) log* (d)N(d)

d d
d<n?/4
@dn)=1 (d ") 1

+o(p(n)) ,

puisque la série est convergente. Or on montre que

Z u(d)lOgd(d)N(d) go(n)H<( _1)—2(1_1\7_;7_)»

d=1 p
(d,n)=1

et N(p) =1 si p|n tandis que N(p) =2 si p{n. 5i n est impair, on a
donc N(2) = 2 et le produit est nul, ce qui va dans e bon sens. Si n est
pair, des manipulations immédiates donnent alors

(22) S(n) ~ 2H< - 1)2> p_ 1+ on),

p>3

en utilisant le fait que o(p(n)) = o(n).

Estimons maintenant g(n) — G(n) lorsque n est pair. Puisque (k,n) > 1,
pour que A(k)A(n — k) # 0, le nombre k doit étre une puissance d’un
diviseur premier de n donc doit lui-méme diviser ». En majorant simplement
A(K)A(n — k) par logz(n), on a donc

n—1

23)  0<gm—-Gm= Y AKAn-k

k=1
(k,n)>1

<> ARA® - k) < logi(m T(n) < nf
kin

%) 1l s’agit évidemment du cceur du probléme: prouver que leffet de R(n,d) se dilue
finalement dans un terme d’erreur correspond au probleme de I’inversion limite-série dans le cas
de la conjecture de Bateman-Horn.
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pour tout € > O (par la majoration classique 7(n) < n®: voir [50, p.83,

?
Corollaire 11]). Comme (22) suggere que G(n) > n, on déduit donc de (22)
et (23) que

~1
ZA(k)A(n—k)wQH( (p_1)2>- izn,

p>3 pln
p=3
qui est I’'une des variantes de I’estimation prédite par Hardy et Littlewood [28].
De tels arguments s’appliquent probablement a la conjecture de Schinzel
énoncée au paragraphe 13.1. Enfin, rappelons que le théoreme le plus proche de
la conjecture de Goldbach est celui de Chen [9] : « Tout entier pair suffisamment
grand est la somme d’un nombre premier et d’un entier produit d’au plus
deux nombres premiers. »

REMERCIEMENTS. Ils vont a K. Conrad pour ses commentaires pertinents
qui nous ont permis d’améliorer une version préliminaire de ce texte.

BIBLIOGRAPHIE

[1] BAIER, S. On the Bateman-Horn conjecture. J. Number Theory 96 (2002),
432-448.

[2] —— A probabilistic model for primes in random sets. Prépublication (2002).

[3] BATEMAN, P.T. et R. A. HORN. A heuristic asymptotic formula concerning the
distribution of prime numbers. Math. Comp. 16 (1962), 363-367.

[4] BATEMAN, P.T. et R. M. STEMMLER. Waring’s problem for algebraic numbers
and primes of the form (p" — 1)/(p? — 1). Illinois J. Math. 6 (1962),
142-156.

[S] BOMBIERIL E. Le grand crible dans la théorie analytique des nombres. Astérisque
18, 1974.

[6] BOUNIAKOWSKY, V. Sur les diviseurs numériques invariables des fonctions
rationnelles entieres. Mémoires sc. math. et phys. 6 (1854), 306-329.

[7]  BRUN, V. Uber das Goldbachsche Gesetz und die Anzahl der Primzahlpaare.
Arch. f. Math. og Naturv. 34 (1915), 3-19.

[8] CANTOR, G. Vérification jusqu’a 1000 du théoréme empirique de Goldbach.
Assoc. Frang. Caen XXIII (1894), 117-134.

[9] CHEN, J.R. On the representation of a large even integer as the sum of a prime
and the product of at most two primes. Sci. Sinica 16 (1973), 157-176.

[10] CHERWELL. Note on the distribution of the intervals between prime numbers.
Quart. J. Math., Oxford Ser. 17 (1946), 46-62.
[11]  CHERWELL et E. M. WRIGHT. The frequency of prime-patterns. Quart. J. Math.,

Oxford Ser. (2) 11 (1960), 60-63.



[13]

[14]

[15]
[16]
[17]
[18]

[19]

[20]

[21]
[22]
[23]
[24]
[25]
[26]
[27]

(28]

[29]

[30]

M. HINDRY ET T. RIVOAL

COLLIOT-THELENE, J.-L. et J.-J. SANSUC. Sur le principe de Hasse et
I’approximation faible, et sur une conjecture cle Schinzel. Acta Arith.
41 (1982), 33-53.

COLLIOT-THELENE, J.-L., A. SKOROBOGATOV et P. SWINNERTON-DYER. Hasse
principle for pencils of curves of genus one whose Jacobians have rational
2-division points. Invent. Math. 134 (1998), 579—650.

CoNRAD, K. Hardy-Littlewood constants. Mathematical Properties of Se-
quences and Other Combinatorial Structures. 1.os Angeles, CA, 2002,
133-154, Kluwer Acad. Publ., Boston, 2003.

CoONRAD, B. et K. CONRAD. The Mobius function and the residue theorem. J.
Number Theory 110 (2005), 22-36.

CONRAD, B., K. CONRAD et R. GROSS. Irreducible specialization in genus 0.
Prépublication (2005).

DAVENPORT, H. et A. SCHINZEL. A note on certain arithmetical constants.
Lllinois. J. Math. 10 (1966), 181-185.

DICKSON, L. A new extension of Dirichlet’s theorem on prime numbers.
Messenger of Math. 33 (1904), 155-161.

DIRICHLET, G. L. Beweis des Satzes, dass jede unbegrenzte arithmetische Pro-
gression, deren erstes Glied und Differenz ganze Zahlen ohne gemein-
schaftlichen Factor sind, unendlich viele Primzahlen enthilt. Abh. Akad.
Berlin (1837), 45-71.

EULER, L. Découverte d’une loi tout extraordinaire des nombres par rapport
a la somme de leurs diviseurs. Bibliotheque impartiale 3 (1751), 10—
31. (La citation reproduite ici se trouve dans la réédition de I’article
dans les Opera Posthuma | (1862), 7684 et est disponible sur le site
http://math.dartmouth.edu/~euler/docs/originals/F.175.pdf.)

FRIEDLANDER, J. et H. IWANIEC. The polynomial X?*-Y* captures its primes.
Ann. of Math. (2) 148 (1998), 945-1040.

FROHLICH, A. et M.J. TAYLOR. Algebraic Number Theory. Cambridge studies
in advanced mathematics 27, 1991.

GOLDBACH, C. Lettre a L. Euler datée du 7 juin 1742. Facsimilé disponible
sur le site http://www.mathstat.dal.ca/~joerg/pic/g-letter.jpg.

GOLOMB, S. The lambda method in prime number theory. J. Number Theory
2 (1970), 193-198.

HADAMARD, J. Sur la distribution des zéros de la forction {(s) et ses consé-
quences arithmétiques. Bull. S. M. F. 24 (1896), 199-220.

HARDY, G.H. Divergent Series. Oxford University Przss, first edition, 1949.

HARDY, G. H. et J. E. LITTLEWOOD. Tauberian theorem concerning power series
and Dirichlet’s series whose coefficients are positive. Proc. Lond. Math.
Soc. (2) 13 (1914), 174-191.

HARDY, G.H. et J.E. LITTLEWOOD. Some problems of ‘Partitio Numerorum’,
III. On the expression of a number as a sum of primes. Acta Math. 44
(1923), 1-70.

HARDY, G.H. et E.M. WRIGHT. An Introduction to the Theory of Numbers.
Oxford Science Publications, fifth edition, 1979.

HEATH-BROWN, D.R. Primes represented by x° +2y°. Acta Math. 186 (2001),
1-84.



[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
(39]
[40]
[41]
[42]
[43]
[44]
[45]

[46]
[47]

[48]
[49]

[50]

[51]

[52]

LE A-CALCUL DE GOLOMB 317

IWANIEC, H. Primes represented by quadratic polynomials in two variables.
Acta Arith. 24 (1974), 435-459.

KOREVAAR, J. A century of complex tauberian theory. Bull. Amer. Math. Soc.
39 (2002), 475-531.

—— Distributional Wiener-Ikehara theorem and twin primes. Indag. Math.
(N.S.) 16 (2005), 37-49.

KUROKAWA, N. Special values of Euler products and Hardy-Littlewood con-
stants. Proc. Japan Acad. Ser. A Math. Sci. 60 (1984), 325-338.

—— On the meromorphy of Euler products I, II. Proc. Lond. Math. Soc. (3)
53 (1986), 1-47; 209-236.

LANDAU, E. Ueber die zahlentheoretische Function ¢(n) und ihre Beziehung
zum Goldbach’schen Satz. Gétt. Nachr. (1900), 177-186.

LANG, S. La conjecture de Bateman-Horn. Gaz. Math. 67 (1996), 82-84.

—— Algebraic Number Theory. Addison-Wesley, 1970.

MERTENS, F. Ein Beitrag zur analytischen Zahlentheorie. Ueber die Vertheilung
der Primzahlen. Borchardts J. fiir Math. (J. reine angew. Math.) 78 (1874),
46-63.

NEWMAN, D.J. Simple analytic proof of the prime number theorem. Amer.
Math. Monthly 87 (1980), 693—696.

DE POLIGNAC, A. Six propositions arithmologiques déduites du crible d’Eratos-
théne. Nouv. Ann. Math. 8 (1849), 423-429.

POLYA, G. Heuristic reasoning in the theory of numbers. Amer. Math. Monthly
66 (1959), 375-384.

RIESZ, M. Ein Konvergenzsatz fiir Dirichletsche Reihen. Acta Math. 40 (1916),
349-361.

SCHINZEL, A. et W. SIERPINSKL. Sur certaines hypothéses concernant les
nombres premiers. Acta Arith. 4 (1958), 185-208.

SCHINZEL, A. A remark on a paper of Bateman and Horn. Math. Comp. 17
(1963), 445-447.

SERRE, J.-P. Représentations linéaires des groupes finis. Hermann, Paris, 1967.

STACKEL, P. Ueber Goldbach’s empirisches Theorem. Garr. Nachr. (1896),
292-299.

SYLVESTER, J.J. On the partition of an even number into two primes. Proc.
Lond. Math. Soc. 4 (1872), 4-6.

TCHEBICHEF, P. L. Sur la totalité des nombres premiers inférieurs a une limite
donnée. J. de Liouville 17 (1852), 341-365.

TENENBAUM, G. Introduction a la théorie analytique et probabiliste des
nombres. Publication de I’'Institut Elie Cartan /3, Université de Nancy,
1990.

TITCHMARSH, E. C. The Theory of the Riemann Zeta-Function. Oxford Science
Publications, second edition, 1986.

DE LA VALLEE-POUSSIN, C. Recherches analytiques sur la théorie des nombres
premiers. Brux. S. sc. 21 B (1897), 251-342 et 343-368.

Certaines des références anciennes peuvent étre difficiles a trouver. Des versions
scannées des articles [25, 36, 47, 49] sont accessibles sur certaines bibliotheques
numériques recensées sur http://www.library.cornell.edu/math/digitalization.php. De



318 M. HINDRY ET T. RIVOAL

plus, la base de données Jahrbuch iiber die Fortschritte der Mathematik donne
un lien direct vers la version scannée de nombreux articles datés d’avant 1942:
http://www.emis.de/MATH/JFM/.

(Regit le 13 septembre 2005)

Marc Hindry

Institut de Mathématiques de Jussieu
Université Denis Diderot — Paris VII
Boite 7012

2 place Jussieu

F-75251 Paris Cedex 05

France

e-mail: hindry @math.jussieu.fr

Tanguy Rivoal

Institut Fourier

CNRS UMR 5582 — Université Grenoble 1
100 rue des Maths, BP 74

F-38402 Saint-Martin d’Heres Cedex
France

e-mail : rivoal@ujf-grenoble.fr



	Le Lambda-Calcul de Golomb et la conjecture de Bateman-Horn
	...


