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L'Enseignement Mathématique, t. 51 (2005), p. 265-318

LE A-CALCUL DE GOLOMB
ET LA CONJECTURE DE BATEMAN-HORN

par Marc Hindry et Tanguy Rivoal

« Les mathématiciens ont tâché jusqu 'ici en vain à découvrir un ordre
quelconque dans la progression des nombres premiers, et on a lieu de croire,
que c'est un mystère auquel l'esprit humain ne saurait jamais pénétrer. Pour
s en convaincre, on n'a qu'à jeter les yeux sur les tables des nombres
premiers, que quelques personnes se sont donné la peine de continuer au-
delà de cent-mille: et on s'apercevra d'abord qu'il n'y règne aucun ordre
ni règle.» (L. Euler [20])

1. Introduction

La répartition des nombres premiers et plus précisément la répartition de
nombres premiers d'une forme déterminée est un sujet ancien et central en
théorie des nombres. Un des premiers résultats obtenu par la voie de l'analyse
complexe est le théorème de la progression arithmétique de Dirichlet [19] dont
une version affinée due à de la Vallée-Poussin [52] s'énonce comme suit.

THÉORÈME 1 (Dirichlet, de la Vallée-Poussin). Soient des entiers a,b > 1

tels que (a, b) 1. On a

Kax+b(x) — # {n < x \ an-\~b est premier} ~ —— • —-—' <p(a) log(x)

où ip(a) {l < n < a : (a, ri) 1} aY\p^a(\ — |) est la fonction indicatrice
dyEuler.
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Le fait que 7Tax+b(x) tende vers l'infini est dû à Dirichlet [19] et le

théorème des nombres premiers (cas a 1) a été prouvé simultanément et

indépendamment par Hadamard [25]. Une variante du théorème indique que

#{p premier < y : p an + b, n e N} a le même comportement asymptotique

que x/(p(a) log(x)).
Ce résultat possède de nombreuses applications. Par exemple, bien avant

que Dirichlet ne démontre son théorème, Legendre avait indiqué comment

en déduire la loi de réciprocité quadratique, finalement démontrée

inconditionnellement par Gauss. L'existence même d'un nombre premier du type

an + b (pour tous a, b premiers entre eux) est également un point clef de la

preuve du théorème de Hasse-Minkowski: «Une quadrique possède un point
rationnel sur un corps de nombres K si et seulement si elle possède un point
rationnel sur tous les complétés Kv, lorsque v décrit les places de K.»
On dit qu'une famille de variétés algébriques vérifie le principe de Hasse si

chacun de ses membres possède un point rationnel sur un corps de nombres

K si et seulement s'il possède un point rationnel sur tous les complétés Kv ;

il existe de nombreux contre-exemples au principe de Hasse, par exemple les

courbes ou surfaces lisses cubiques.

Schinzel [44] a proposé une conjecture qualitative très générale concernant

les valeurs premières simultanément prises par une famille finie des polynômes

de Z[X]. Cette conjecture permettrait notamment de faire de grands progrès sur

les conditions de validité du principe de Hasse (voir par exemple [12, 13]). La

conjecture de Schinzel a ensuite été précisée de façon quantitative par Bateman

et Horn dans [3] à l'aide d'un raisonnement heuristique et leur estimation est

très bien confirmée numériquement. En dehors du cas d'un seul polynôme de

degré 1 (Théorème 1 ci-dessus), la conjecture de Schinzel semble totalement

hors de portée à l'heure actuelle : pour situer son niveau de difficulté, indiquons

que sa démonstration aurait comme corollaires l'infinité des nombres premiers

jumeaux et celle des nombres premiers de la forme n2 + 1.

Golomb [24] a développé une approche très intéressante et apparemment

peu connue de la conjecture des nombres premiers jumeaux, basée sur le

comportement au voisinage de z 1 de la série entière

oc

^A(2n- 1)A(2b+ l)z2n,
n=1

où A désigne la fonction de von Mangolt, familière en théorie analytique des

nombres. Une seule étape analytique (l'interversion d'une limite et d'une série)

empêche Golomb de parvenir à son but. Néanmoins, en admettant cette étape,
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il esquisse comment obtenir l'estimation asymptotique, lorsque x +00,

#{ 1 <n<x:nttn + 2 sont premiers) ~ 2 TT 1 —• —î—
43 (/>-l)2/ log (x)

conjecture bien connue et obtenue habituellement de façon heuristique (voir les
références données au paragraphe 3). Dans [14], Conrad a adapté la méthode
de Golomb, que pour des raisons évidentes nous appellerons A-calcul, au cas
de la conjecture de Bateman-Horn. Pour cela, il n'a pas utilisé une série entière
comme ci-dessus mais une série de Dirichlet, ce qui est la démarche classique
en théorie analytique des nombres: par exemple dans le cas des nombres
premiers jumeaux, il étudie le comportement de Y.^L\ - 1)A(2n + 1 )jns
au voisinage de la droite Re(s) 1.

L'analyse de Conrad est assez délicate et nous nous proposons ici de la
reprendre dans le cadre des séries entières, qui nous semble un peu plus simple
et plus frappant. Nous justifions autant que possible les diverses étapes du
A-calcul, ce qui nous amènera à démontrer divers résultats, que nous espérons
nouveaux pour certains, concernant les identités entre fonctions arithmétiques,
la théorie algébrique des nombres et les fonctions zêta de Dedekind, la théorie
analytique des nombres, les théorèmes taubériens, etc. Finalement, modulo une
seule étape analytique non justifiée, on retrouvera exactement le comportement
prédit par la conjecture de Bateman-Horn. Il est intéressant de noter que, bien
que l'approche de Conrad par série de Dirichlet présente des similitudes avec
celle que nous développons ici, il n'est pas du tout clair que les étapes non
justifiées dans chaque cas soient logiquement équivalentes.

Nous agrémentons également l'article de discussions historiques. Il nous
semble en effet intéressant de mettre en évidence la puissance heuristique du
A-calcul, en particulier face aux heuristisques de nature probabiliste (dont on
montrera qu'elles ont même pu suggérer des conjectures fausses) ou face à
celles de nature analytique issues de la méthode du cercle de Hardy-Littlewood-
Ramanujan (en général techniquement compliquées).

Le plan est le suivant. Au paragraphe 2, nous énonçons les conjectures de
Schinzel et Bateman-Horn. Au paragraphe 3, nous reproduisons l'heuristique
proposée dans [3] et la comparons à d'autres produites au fil du temps. Au
paragraphe 4, nous réduisons la conjecture à un cas plus simple, qui nous
permet de développer le A-calcul au paragraphe 5. A cet endroit, sont indiqués
tous les paragraphes concernant les justifications nécessaires à la (presque)
bonne marche de la méthode de Golomb: certains des résultats démontrés
recoupent des travaux de Baier [1], Conrad [14] et Kurokawa [34, 35].
Cette démarche peut être complètement justifiée dans le cas du théorème des
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nombres premiers (Wiener) ou, plus généralement, dans le cas du théorème

de de la Vallée-Poussin - ceci est exposé au paragraphe 12. Enfin, au

paragraphe 13, nous concluons l'article en décrivant certaines heuristiques

malheureuses produites au sujet de la conjecture de Goldbach: bien que la

méthode de Golomb ne s'applique pas aussi élégamment à ce cas, nous

montrons comment l'adapter et retrouvons une conjecture classique de Hardy

et Littlewood [28].

2. Les conjectures de Schinzel et de Bateman-Horn

Considérons k polynômes fi, fz,..., fk de Z[X], de degrés respectifs

h\, /i25 • • •, hk. Notons h h\ + I12 + • • • + / fi f2 • • 'fk » / (fi • • • fk)
et Kj le corps de nombres Q[X]/(fi(X)). Dans toute la suite, la notation a | b

signifie que a divise b et p désigne invariablement un nombre premier > 2,

ce qui vaut lorsqu'un produit infini porte sur p sans autre indication. On

s'intéresse au comportement asymptotique de

7i y(x) #{ 1 < n< x : h (ri),sontsimultanément premiers}

ce qui conduit à chercher des conditions a priori nécessaires pour que nf(x)
ne soit pas bornée :

(i) Les polynômes fi doivent tous être irréductibles sur Q : si l'un ne l'est

pas, il ne peut pas prendre une valeur première en n dès que n est assez

grand. On suppose aussi qu'il n'existe pas deux entiers distincts ij tels

que fi ±fi.
(ii) Pour tout premier p, il existe un entier n tel que p ne divise pas f(n).

(iii) En changeant au besoin un ou plusieurs fi en -fi et par une translation de

la variable commune aux fi, on peut supposer que pour tout entier n > 1,

les entiers /i(ft), /2W, • • • sont tous > 1 : la valeur de 7Tf(x) n'est

changée que d'une fonction bornée de x. Ces conditions sont commodes

mais pas nécessaires1).

On qualifiera de convenable toute famille vérifiant ces conditions. La

deuxième étant moins évidente, nous allons la motiver davantage. Supposons,

au contraire, qu'il existe un premier p divisant f(n) pour tout entier n > 1.

Alors, pour tout (éventuel) entier n > 1 tel que tous les fi(n) sont premiers,

l) La mise en œuvre de la méthode de Golomb nécessite de se placer sous (iii) ainsi que
de faire une autre hypothèse, a priori assez restrictive (voir paragraphe 4); on montrera au

Théorème 3 que l'on ne perd en fait rien en généralité.
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au moins un des ffin) vaut p, ce qui implique immédiatement qu'il y a au
plus h entiers n tels que les ffiri) soient tous premiers simultanément. Pour tout
entier d > 1 et tout g G Z[X\, posons Ng(d) #{ 1 < n < d : g(n) 0 [d\].
On peut alors remplacer la condition (ii) par la suivante :

(ii bis) Pour tout nombre premier /?, on a Nf(p)<p.
En effet, supposons qu'il existe un p tel que Nf(p) p. Cela signifie

alors que pour tout entier n dans l'une des classes de congruences m + Np
(pour un m 0,... ,p — 1), p divise f(n) puisque f(n) =f(m) 0 [p\. Donc
pour tout entier n > 1, p divise f(n). Et réciproquement. On remarque que
Nf{p) < min(h,p) et qu'il suffit donc de faire un nombre fini de calculs pour
les premiers p < h pour vérifier la condition (ii bis).

Schinzel [44, p. 188] a conjecturé que, réciproquement, si une famille de

polynômes est convenable, alors ces polynômes prennent une infinité de fois
des valeurs premières simultanément.

CONJECTURE 1 (Schinzel). Soit f une famille convenable. Alors iTf(x)
tend vers l'infini avec x.

Dans le cas d'un seul polynôme, cette conjecture est due à Bounia-
kowsky [6, 37]; dans le cas de plusieurs polynômes linéaires, elle est due à

Dickson [18]. Si l'on remplace l'anneau Z par un anneau de polynômes sur
un corps fini, alors la conjecture «trivialement» analogue à celle de Bounia-
kowsky est fausse: voir [15], ainsi que [16] pour une correction (conjecturale).
Dans [3], Bateman et Horn ont proposé une heuristique précisant de façon
quantitative la conjecture de Schinzel ; pour la formuler, on a besoin du produit

W)=n(('
dont Bateman et Horn justifient la convergence, ce que nous ferons également
au sous-paragraphe 7.3. Il en découle en particulier que C(/) est non-nul si

Nf(p) <p pour tout p.

CONJECTURE 2 (Bateman-Horn). Soit f une famille convenable. Lorsque
x —> +oo, on a

C(f) x
7TAX) ~ •

h[li2 • - • ht log (x)

On notera BH(/) la conjecture de Bateman-Horn pour la famille /.
Lorsque k1 et en notant a le coefficient dominant de /, f, BH(/)
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implique que

#{p <x : p C ./'< N )}
C(J_) xx'h

ax!h log(x)
'

La conjecture de Bateman-Horn contient la conjecture des nombres

premiers jumeaux, via la famille2) de polynômes / Plus

généralement, on peut s'intéresser aux couples de nombres premiers (p,q)
tels que q p + 2k,pour un entier k > 1 fixé, qui sont régis par

BH(X, X+ 2k). On a Nx(X+2k)(p) =1 si p \ 2k et 2 sinon.

Après simplification de la constante C(Xon obtient une conjecture

de Hardy et Littlewood [28] (obtenue par une heuristique analytique issue de

la méthode du cercle), qui précise celle de de Polignac [41]: «Tout nombre

pair peut s'écrire d'une infinité de façons différentes comme la différence de

deux nombres premiers. »

CONJECTURE 3 (Hardy-Littlewood). Soit un entier 1 fixé. Lorsque

x —y -|-oo,

#{l < n <x : n et n + 2k premiers}

Hardy et Littlewood [28] ont aussi prédit le comportement attendu des

nombres premiers de la forme n2 + 1, problème considéré par Landau dans

une conférence à Cambridge. On retrouve cette prédiction en calculant la

constante prévue par BH(X2 + 1). Comme —1 est résidu, resp. non résidu,

quadratique modulo p 1 [4], resp. p 3 [4] (voir [29, Theorem 82,

p.69]), on a NX2+i(p) *= 2 si p se 1 [4] et Nxi+l{p) 0 si p 3 [4].

Comme A^2+1(2) 1, après simplification de C(X2 + 1), on obtient donc la

formulation suivante.

Conjecture 4 (Hardy-Littlewood). Lorsque x -> +oo,

p — 1 x

p- 2 log2(x)

#{l < n < x : n2 + 1 premier} ~ f 1

p> 3 ^

(_1 )(/?—1)/2 X

p- 1 log(x)

2) On utilise le choix classique fi(X) X et /2UO — X + 2 à la place de f\(X) — X + 1

et f2(X) X + 3, qui satisfont à la condition que les polynômes prennent des valeurs > 1 aux

entiers positifs: en dehors du A-contexte, on néglige cette subtilité.



LE A-CALCUL DE GOLOMB 271

Hormis l'évidence numérique et le Théorème 1, on peut mentionner le
résultat suivant prouvé dans [4] en utilisant le « Grand Crible ». On en donnera
la preuve au paragraphe 11.

THÉORÈME 2 (Bateman-Stemmler). On a la majoration

7T/C*) < kl2*C(/)xlog-V)(l + 0(1))

Ainsi, on dispose d'une majoration qui, à la constante h\ hk kl 2k près,
est équivalente à celle conjecturée. Bateman et Horn proposent également une
extension de leur conjecture au cas plus général des polynômes qui envoient
Z dans Z. En suivant la présentation de Conrad [14], il suffit, au moins
conjecturalement, de remplacer dans la formule définissant C(/) les termes
N/( P)/p par ô/( p) mesure{x e Zp : f(x) 0 \p]}. Nous préférons nous
limiter au cas des polynômes à coefficients entiers par soucis de clarté (voir
néanmoins la remarque à la fin du paragraphe 4).

3. L'heuristique de Bateman et Horn

Nous reproduisons ici les raisons qui ont amené Bateman et Horn à formuler
leur conjecture. En vertu du théorème des nombres premiers, la chance qu'un
entier m>2soit premier est environ 1 / log(m). Comme log vaut
environ hjlog(n), la chance que /i(n), soient simultanément
premiers est environ

(1)
h\li2 hk log

Cette estimation est imprécise puisqu'elle suppose que les entiers
fk{n) sont « indépendants », ce qui n'est pas raisonnable. Pour chaque

premier p,il semble en fait nécessaire de multiplier (1) par un facteur correctif
rp/sp ' i'p est la chance que, pour un entier n aléatoire, aucun des entiers
f\(n), f2(n),.. fk(n)nesoit divisible par p et sp est la chance qu'aucun des
entiers constituant un ^-uplet d'entiers aléatoires ne soit divisible par p. Or,

Nf(p)(1

>'p 1 et sp I I

p V

Avec cette correction, il est maintenant raisonnable d'estimer que pour n entier
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aléatoire, la chance que fi(n),f2(ri),... ,/*(w) soient tous premiers est

ce qui est une façon d'écrire la conjecture de Bateman-Horn, puisque

Cette heuristique semble simple et naturelle mais elle a mis beaucoup

de temps à être dégagée. Il existe dans la littérature de nombreux articles

antérieurs qui exposent des arguments en faveur, par exemple, de la conjecture

des nombres premiers jumeaux (Hardy et Wright [29, pp. 371-373]) ou des

nombres premiers jumeaux généralisés (Cherwell [10], Cierwell et Wright [11],

Pölya [42]). Ils se caractérisent en général par des arguments arithmético-

probabilistes assez compliqués et on peut trouver au moins deux raisons

théoriques à cela:

(i) Contrairement à ce que laisse espérer l'intuition, il n'existe aucune

mesure de probabilité /x définie sur la tribu des parties de N telle que, pour

tout entier a > 1, on ait /x(aN) 1 /a. On trouvera la preuve (facile et

instructive) de ce résultat dans [50, p. 271]. Ceci explique peut-être pourquoi

Bateman et Horn parlent de chance et non de probabilité; notons que lorsque

k 1, Baier [2] a récemment construit un modèle assez fin de nombres

premiers aléatoires dans lequel leur conjecture est vraie presque sûrement.

(ii) Si l'on persiste à employer des méthodes d'inspiration probabiliste,

alors une contradiction peut rapidement survenir. En effet, par le théorème des

nombres premiers, on peut estimer que la chance qu'un entier N soit premier

est environ l/log(A0. Mais, par ailleurs, on peut aussi estimer que la chance

que N ne soit divisible par aucun nombre premier inférieur à N donc soit

premier, vaut environ

où l'équivalent asymptotique est un théorème de Mertens [39] et 7 est la

constante d'Euler. Bien que souvent utilisées au cours d'un même argument

C(f) 1

h\h2"-hk logk(n)

On en déduit que 77(x) doit être de l'ordre de

C{f_) y.
1

h0n---hk

(2)
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heuristique, ces deux estimations sont visiblement incompatibles puisque
e~7 7^ 1. Notons au passage que la divergence vers 0 du produit dans (2)
intervient dans la démonstration du résultat mentionné en (i).

Dans l'heuristique proposée par Hardy et Wright [29] concernant le
comportement des nombres premiers jumeaux, il est amusant de lire
this is false» en haut de la page 372 après une utilisation de l'équivalent (2),
puis de voir, en haut de la page 373, ce même équivalent ponctuer la
démarche tortueuse corrigeant la première utilisation fautive de (2). Quelles
que soient les circonvolutions linguistiques employées pour faire «coller»
heuristique et données numériques, ce qui rend plausible (conjecturalement)
ce type d'argument est l'utilisation de probabilités conditionnelles : en effet,
la bonne question n'est pas «Avec quelle fréquence deux nombres de la
forme n,n+2 sont-ils simultanément premiers » mais plutôt «Avec quelle
fréquence deux nombres sont-ils simultanément premiers sachant qu'ils sont de
la forme n,n +2?».Cela sous-tend l'heuristique de [29] (malgré sa difficulté)
et, de façon beaucoup plus claire, celle de Bateman et Hom.

Nous reviendrons au paragraphe 13 sur le sort de certaines heuristiques
liées à la conjecture de Goldbach.

4. Une hypothèse simplificatrice

Afin d'appliquer la méthode de Golomb à la conjecture de Bateman-Hom,
il est commode de supposer en plus que pour tout entier 1 pour tout
couple d'entiers (ij)telsque 1 < i << les entiers et sont
premiers entre eux. Cette condition, que l'on dénommera3) hypothèse F, est
a priori contraignante puisqu'elle exclut le cas des polynômes 1

et fz(X)— X +3. Cependant, elle s'avère innocente.

Théorème 3. SiBH(/)est vraie pour toute famille f convenable vérifiant
l'hypothèse F, alors BH(/) est vraie pour toute famille f convenable.

Démonstration. Soient fuf2despolynômes vérifiant les
hypothèses de la conjecture de Bateman-Horn. Ces polynômes étant deux à deux
premiers entre eux, pour tout couple d'entiers tels que 1 < / < < il
existe deux polynômes m,v et vtj de Z[X] et un entier c,v f 0 tels que

3 La dénomination « hypothèse F » peut sembler à juste titre peu motivée aux yeux du lecteur
mais elle l'est à ceux des auteurs.
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(3) uQ{X)MX)^vQ{X)fj{X)^cQ.

Notons l'ensemble des premiers divisant l'entier Ü1 </</<a posons

No Upe^pP et

No {1 < n < No : fin) ^ 0 \p\ pour tout p e y}

Hormis un nombre fini d'exceptions, les entiers n pour lesquels fin),
fin), fk(n) sont tous premiers, sont dans les progressions arithmétiques

de la forme n no [No] avec no G No- En effet, si n n\ |7Vo] avec

m ^ N0, alors il existe un nombre premier p G tel que fin) 0 [p]

et donc p divise l'un des fin). Or si n est assez grand4), celui des fin)
divisible par p ne pourra pas être premier.

Fixons temporairement no G No et posons />0(20 — fjino + NqX), ainsi

que fn0(X) /(no + N0X) : la famille des polynômes ,/j ,„0, /2,«0* • • • /Mo est

toujours convenable et vérifie maintenant l'hypothèse F. En effet, pour tout

entier n > 1 et tout p G T, on a /^(n) —fino + Non) =fim) ^ 0 [p]. Donc

un p G y ne divise aucun des />0(n). Or comme le pgcd de deux />0(n) et

fj,n0(n) ne Peut être divisible que par un p G y (conséquence de la relation de

Bézout (3)), on en déduit que la famille fm vérifie maintenant l'hypothèse F.

Supposons maintenant que BH(/) soit vraie pour toute famille convenable

/ satisfaisant l'hypothèse F. Avec des notations évidentes, pour tout

no G No, on a donc

où Pix) est une fonction bornée de x. Remarquons que la constante Ciff) ne

dépend pas de no, mais seulement de No WpeyP- En fait, on a la relation

car Nfnoip) 0 si p G V et Nfnoip) Nfip) si p <£ 7 puisque alors

(No,p) 1. On a donc

#N0 CifJ x
No h\h2'" hk log*(x)

Or le théorème des restes chinois assure que #Nq Yip^y{P~Nj ip)) Ceci,

(4)

4 Ceci ne dépend que de la donnée des polynômes f\, f2, • •, fk et il y a au plus h

exceptions.
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comparé à (4), montre que C(/J • #J40/N0 et donc que

C(f) x
71fix) ~ —— • 7

h\h2"-hk log'(jc)

ce qui achève la démonstration de la proposition.

Remarquons enfin que le même type d'argument permet de déduire la
conjecture de Bateman-Horn généralisée aux polynômes prenant des valeurs
entières de la conjecture étudiée dans ce texte: si f(X) G ^Z[X] et Va G N,
/(a) G Z, on remarque que fa(X) =f(NX + a) G Z[X] et que, si la conjecture
de Bateman-Horn est vraie pour les fa, alors

71/(x) 7Vf (- ~ (— C(f —-— • —,-A A// ^ -a)h\...hk log x

et on vérifie que la constante apparaissant à droite est égale à C(f) ou encore
que

p\N v a= 1 pjN F

en appliquant deux fois le lemme chinois.

5. Le A-calcul et la conjecture de Bateman-Horn

Dans ce paragraphe, nous adaptons le A-calcul à la conjecture de Bateman-
Horn. Dans un premier temps, nous suivons de près l'esquisse de Golomb
dans [24], mais un certain nombre de détails seront donnés dans les paragraphes
ultérieurs.

Etant donné un entier n > 1, on lui associe diverses fonctions définies à

partir de la décomposition primaire de a. On définit ainsi uj(n) comme le
nombre de facteurs premiers distincts de n, Q(n) comme le nombre de facteurs
premiers distincts avec multiplicité de n, la fonction de von Mangolt A(n)
comme log(p) si n est une puissance de p, 0 sinon et enfin la fonction de
Möbius fi(n) comme (— si n est sans facteur carré, /i( 1) 1 et 0 sinon.

Donnons-nous des polynômes fj{X) G Z[X] (j 1 vérifiant les
hypothèses de la conjecture de Bateman-Horn, ainsi que l'hypothèse F (dont
on a vu qu'elle n'était pas une condition restrictive). Considérons la série
entière, convergente pour |z| < 1,



276 M. HINDRY ET T. RIVOAL

oo

(5) Gf(z) (-1)^! A(/i(«))A(/2(«)) • • • A
n= 1

dont nous allons étudier le comportement au voisinage de z — 1 afin d'en

déduire des conséquences arithmétiques intéressantes. L'hypothèse F et une

identité de Golomb (équation (13) au paragraphe 6) assurent que, pour tout

entier n > 1, on a

(6) A(/i(«))A(/2(«)) • • • A (fk(n))fi Y n(d)logk(d).
1

d\f(n)

En injectant cette relation dans (5) et en intervertissant les deux sommations

(ce qui est licite puisque kl <1 implique la convergence absolue des séries

utilisées), on obtient

oo / X oo oo

w Z(Ei-i(d)l°zk(d)):" Eii(d)k'e(d) E
n=\ ^ d>\

' d= 1 n=\
d\ f(n) /(«)=0 M

oo oo d oo ^ t /\ d

iogV>£ Y. ?+>« Y-yr1 E -</=l £=0 n=l </=l «=1
/(w)=0 M /(«)=0 M

La troisième égalité est conséquence du fait que l'ensemble des solutions

positives de la congruence f(n) 0 [d] est l'union disjointe des ensembles

m + Nd, où m est n'importe quelle solution particulière de cette congruence

dans {1 Remarquons que la valeur en z 1 du polynôme

Yfin=\ d Zn est très exactement la quantité Nf(d) introduite au début du

/(*)=o [d]
paragraphe 2, même lorsque la somme est vide en (convenant qu elle vaut

alors 0. En procédant à l'échange limite-série, qui demeure la seule étape non

justifiée de cette approche5), on obtient donc

oo E«=l z"

(7) lim (1 - z) Gf(z) V 11loglim I A«)=oM
~ H \ 2^n=0,...,d-lZz—y 1—

d= 1

y ß(d) iogk(d)
N/ (d)

d= 1

Un point important est évidemment de s'assurer de la convergence et de la

non-nullité de la série à droite de (7), que l'on notera C(/). Nous allons faire

5) Voir cependant le paragraphe 12.
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mieux que cela en donnant une expression très simple de C'(f) à l'aide de la
constante C(/) de Bateman-Horn. Pour cela, introduisons la série de Dirichlet

(8) Lf(s)-jrti ds

dont on montrera qu'elle converge absolument au moins pour Re(s) > 1,
l'encadrement 0 < Nf (d) < d impliquant seulement la convergence absolue

pour Re(s) > 2. En vertu du théorème des restes chinois, Nf(d) est

une fonction multiplicative, c'est-à-dire que Nf(d\d2) — Nf(dx)Nf(d2) si

(dud%) 1. On en déduit que, pour Re(s) assez grand (en fait, c'est vrai
pour Re(s) > 1

Ici, on a utilisé, de façon triviale, la fonction zêta de Riemann définie pour
Re(s) > 1 par la série ou le produit

oo 1

«•>-£*-no-f-v-
n= 1 p

Voir les livres de Titchmarsh [51] ou de Tenenbaum [50] pour les propriétés
de la fonction zêta qui seront utilisées sans référence ici. On montre au sous-
paragraphe 7.4 que l'on peut prolonger analytiquement Lf(s) à un ouvert
contenant le demi-plan Re(s) > 1 : il s'agit d'un cas particulier d'un résultat
de Kurokawa [34]. Comme la fonction C0)~* s'annule à l'ordre k en s 1

et que lim(s — l)Ç(s) 1, on en déduira que

(9) C'(/) (—l)*Lf(l)

=(—D"«n((i-i)"'(i-^))=(-!>*««/).
Seule la première égalité nécessite quelques efforts, qui seront faits au

paragraphe 8. Ce résultat inconditionnel est dû à Conrad [14] : nous en donnons
une preuve plus détaillée que lui (notre fonction Lf(s) est sa fonction G(s)
lorsque son paramètre m vaut 1). A l'aide d'un théorème taubérien, que nous
expliciterons au paragraphe 9, on traduit (7) et (9) par

(10) ,JtïÊA(/iO))A(AO))-A(/iO)) =C(f).
7=1
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Un résultat relativement élémentaire montre que (10) équivaut à BH(/).
L'existence d'une constante D(f) > 0 telle que (10) ait lieu avec D(f
à la place de C{f) serait déjà un très beau résultat Même en admettant

l'existence de cette limite, nous ne voyons pas comment montrer que l'on
aurait alors nécessairement D(f) C(/), comme l'a fait Tchebichef [49,

p. 352, Théorème III] en prouvant (un résultat équivalent à) l'implication

(11) lim -A(n)C =>
n<x

Enfin, il serait intéressant de considérer le cas des polynômes de plusieurs

variables : bien qu'à notre connaissance il n'existe pas de conjecture similaire

à celle de Bouniakowsky, rien n'interdit de s'intéresser au comportement au

voisinage du point (zi,..., Zk) (1, • • • 51) de séries telles que, par exemple,

^2 A(P(nu,..,nk))z!ls

où PCXj,..., Xk) G Z[Xi,... ,Xk] prend des valeurs > 1 aux entiers positifs.

Le cas d'un polynôme quadratique en deux variables est non trivial mais

peut être résolu à l'aide du théorème de Dirichlet et de considération du

groupe de classes d'un corps quadratique. L'exemple le plus simple est celui

des nombres premiers (impairs) représentés par le polynôme X2 + Y2 : d'après

un résultat de Fermât, il s'agit des nombres premiers congrus à 1 modulo 4.

Le cas d'un polynôme quadratique binaire général est traité en détail par
Iwaniec [31]. On peut faire une partie de l'étude dans le cas des formes-normes

«complètes» comme par exemple F(X, F,Z) X3 + 2F3 + 4Z3 — 6XYZ

Nq(X + Ylj + Zoo1) avec a;3 2 et K Q(to) : les premiers représentés

par F(X, F, Z) sont les premiers non inertes dans K/Q i. e. les premiers

p congrus à 2 modulo 3 et les premiers congrus à 1 modulo 3 tels que

2 soit résidu cubique modulo p. Notons également que l'analogue naïf de

l'hypothèse de Bouniakowsky - demander que pour tout n, il existe £ et m

tels que /(£, m) soit premier avec n — est insuffisant pour les polynômes à

deux variables ou plus, comme le montre un exemple de Heath-Brown (voir
l'introduction de [30]).

Citons enfin ici le fort beau résultat de Friedlander et Iwaniec [21] : le

nombre de nombres premiers < x qui sont valeurs du polynôme X2 + F4 est

équivalent à

V/2r(l/4)2 x3/4

37r3/2 log(x) '

où r est la fonction Gamma d'Euler. Heath-Brown [30] a adapté leur méthode

au cas du polynôme X3 + 2 F3.
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6. L'identité de Golomb

Rappelons qu'une fonction arithmétique est une fonction définie sur N*
et à valeur dans C. Elle est dite multiplicative, resp. additive, si pour tout
couple d'entiers (m, n) premiers entre eux, on a f(mri) f(m)f(n), resp.
f(mn) f{m) + f(n) ; elle est dite totalement multiplicative, resp. totalement
additive, si f(mn) f(m)f(n), resp. f(mn) f(m) + fin), pour tous entiers

m et n non nuls: p est multiplicative, u est additive et Q est totalement
additive, mais A n'a aucune propriété de la sorte.

Par ailleurs, on a

(12) A(n) p(d) log(n/d) -^ p(d) log(d),
d\n d\n

où la deuxième égalité utilise l'additivité totale de log et l'importante identité

^2ß(d)
d\n

I 1 si n 1,

I 0 si n > 2.

Nous montrons maintenant la propriété essentielle dont on a besoin pour
le A-calcul et qui généralise (12): l'identité (6) en découle.

Théorème 4 (Golomb). Soient un entier k > 1 et des entiers

a\,... ,dk > 1 deux à deux premiers entre eux. Alors, on a

(Ï3) n= ^(d) logV).
j= 1 d\a\---ak

Remarque. La démonstration ci-dessous utilise l'additivité de log mais

pas son additivité totale; le résultat d'ailleurs proposé par Golomb porte plus
généralement sur des couples de fonctions similaires à (A, log), qu'il dénomme
fonctions primaires et logarithmétiques, par exemple (indicatrice des nombres
premiers, w).

Démonstration. Puisque les entiers ai,... ,ak sont deux à deux premiers
entre eux, il y a bijection entre l'ensemble des diviseurs > 1 du produit
a\ - - - ak et l'ensemble des duplets {du dk) tels dj > 1 et dj \ aj pour

j — 1 L'hypothèse que les aj sont > 1 sera utilisée plus bas.
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Comme les dj sont en plus deux à deux premiers entre eux, on peut alors

utiliser la multiplicativité de fi et l'additivité de log pour obtenir

(14) ^2 lj(d) logk(d) log*M
d\a\---ak d\\au...,dk\ak

p(d\) • • • (i{dk)(\og{d\) + • • • + log(4))
d\ \au...,dk\ak

E i I~ 13 M^i)---M(<4)log"W)---logHdk)
iu...,ik>0 d\ \a\dk\ak

i\4 hh=k

iH 1~h—k

en convenant d'attribuer la valeur 1 à log°(l). De plus, stricto sensu, pour
utiliser le développement multinomial, il est préférable de supposer k > 2,

ce qui est loisible puisque la formule à démontrer est vraie si k 1

(par définition).
Or puisque aj > 1, on a Y2dj\aj M0!/) \oglj (dj) — 0 lorsque fi 0, ce qui

annule le terme correspondant dans (14). Comme il n'y a qu'une seule façon

d'écrire k — i\ + • • • + ^ avec des entiers fi,..., fi > 1, à savoir de les

prendre tous égaux à 1, on déduit donc de (12) et (14) que

£ m log \d)tt4!7TT ]q^ /,(,/ log(dß)

d\a\ •••ak j= 1 4la/

(-l)tÂ!A(û1)-"A(a/:),

ce qui achève la preuve.

Notons que la même démonstration donne le résultat suivant, puisqu'il n'y
a aucune façon d'écrire i — fi + • • • + fi avec des entiers fi > 1 si 0 < £ < k.

Théorème 5. Soient un entier k> 1 et des entiers a\,... ,ak > 1 deux

à deux premiers entre eux. Alors pour tout entier i tel que 0 < £ < k, on a

J2 IJ(d)log>'(d)=0.
d\ci\ • • -cik

On se servira de ce fait au sous-paragraphe 12.2.
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7. Fonctions zêta de Dedekind et Lf{s)

Dans ce paragraphe, nous indiquons comment lier la série de Dirichlet
Lf(s) aux fonctions zêta de Dedekind associées aux corps de nombres

ce qui permettra d'en faire le prolongement analytique:
celui-ci a été apparemment fait dans ce contexte pour la première fois par
Kurokawa [35], mais nous nous contentons de redémontrer la seule partie qui
nous intéresse. Cette étude justifiera au passage que le produit de Bateman-
Horn C(f) est bien convergent. Les nombres f qui apparaissent dans les

sous-paragraphes 7.1 et 7.2 sont des degrés résiduels et ne peuvent pas être
confondus avec les polynômes fi utilisés dans le reste de l'article (et pas dans

ces deux paragraphes).

7.1 Racines d'un polynôme modulo p et idéaux premiers

Soit g un polynôme unitaire et irréductible sur Q, dont a est une
racine. Notons K Q(a) le corps de nombres associés à g. Supposons
tout d'abord que l'anneau Or des entiers de K vérifie Ok Z[a]. Dans ce

cas, la factorisation dans Or de p en idéaux premiers entiers s'écrit pOk
PÎP? ' ' 'Prr> avec N(pj) pfi, où N(a) [Or ' a] est l'indice d'un idéal a
de Or. Cette factorisation correspond bijectivement à celle, dans (Z//?Z)[X],
de la réduction du polynôme g g mod p, c'est-à-dire g — g\]g2 • • • g6/ avec
des gj e (Z/pZ)[X] irréductibles, de degrés respectifs fi : voir [22, p. 129]. En

conséquence, en posant Ap,K Ap #{p idéal premier de Or : N(p) p],
on a

(15) Ap Ng(p).

Bien entendu, il n'est pas toujours vrai que Or Z[a\, ni que g soit
unitaire. Mais ce n'est pas un réel problème. En effet, si g(X) aXd H on
le remplace alors par g(X) ad~lg(X/a) eZ[X], qui est unitaire, engendre
le même corps de nombres K que g et possède la même décomposition
modulo p que g pourvu que p \ a, ce qui est vrai pour tous sauf un nombre
fini de p. De plus, si a est une racine de g, on a, de façon générale,
seulement que Z[a\ est un sous-groupe d'indice fini de Or : la factorisation
indiquée ci-dessus de pOr en idéaux premiers et l'équation (15) restent vraies

pourvu que p \ \Or : Z[a]] (c'est la généralisation proposée après l'énoncé
du Theorem 23, p. 129, de [22]).

Il résulte de cette discussion que, hormis un nombre fini de nombres
premiers qui ne dépendent que de g, on a toujours Ap Ng{p).
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7.2 Quelques propriétés des fonctions zêta de Dedekind

La fonction zêta de Dedekind associée à un corps de nombres K est par
définition la série de Dirichlet (voir [38], Chapter VIII) :

a p

où a, resp. p, désigne les idéaux, resp. idéaux premiers, entiers non-nuls

de Ok> L'abscisse de convergence de la série est 1 et la deuxième égalité est

valable pour Re(s) > 1. Notons que Çq est simplement la fonction zêta de

Riemann. On se servira des propriétés suivantes :

(i) Ck(s) peut être prolongée méromorphiquement à tout C, avec un seul

pôle simple en s 1.

(ii) Il existe une constante explicite Ck > 0 telle que CkO) ne s'annule pas

dans l'ouvert a > 1—CK/ log(2+|f|) (avec s a+it) qui contient le demi-plan

Re(s) > 1 et, sur ce même ouvert, on a également |CkCs)_1| <C log(|f| + 2).

Remarque. En appliquant (i) et (ii) aux corps Q et K, on voit qu'il
existe une constante explicite Ck > 0 telle que la fonction CkOO/CCÉ) est

holomorphe et sans zéro sur l'ouvert a > 1 — Ck/ log(|f| +2). L'énoncé (i) est

très classique (voir [38], Chapters VIII, XIII); pour une preuve de (ii) dans

le cas K Q (qui s'adapte aisément au cas général), voir la démonstration

du Théorème 16, p. 178 et suivantes, du livre de Tenenbaum [50].

Par ailleurs, avec la définition de Ap donnée au sous-paragraphe 7.1, on

peut écrire (avec N(p p^p)

Ck (s) n (1 - mrsrlna- IL1
pjp l P/p>2

où rK(s) np/,, >2(1 — N(p)-5) est holomorphe sans zéro sur le demi-plan

Re(j) > 1/2, de telle sorte que log(RK(s)) est aussi holomorphe sur ce

demi-plan. Donc pour Re(s) > 1, on a

l0g(CK(s)) + + l0g(^K^)) •

p P m> 2

Comme la fonction CkW/C(s) est holomorphe et sans zéro sur un ouvert

contenant le demi-plan Re(s) > 1, on en déduit que la série

X ^(CkW/CW) - X yyh7) +
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est analytiquement prolongeable à ce même ouvert. La convergence de la
série ^2p(Ap — l)/p en découle grâce au résultat suivant, dû à Newman, qui
s'applique ici car 0 < Ap < deg(g) :

Soit D(s) YlT=\an/nS une série de Dirichlet convergente sur le demi-
plan Re(s) > 1. Supposons que D soit analytiquement prolongeable à un
ouvert contenant le demi-plan fermé Re(s) > 1 et que la suite des an soit
bornée. Alors la série YlT=\an/n est convergente, de somme D( 1).

Nous énoncerons et nous servirons d'une forme un peu plus générale de

ce résultat au Théorème 10 du paragraphe 9.

7.3 Convergence du produit C(f)
Rappelons qu'il existe deux polynômes uq et vld de Z[X] et un entier

Cjj ^ 0 tels que

uij(X)fi(X) + vij(X)fj(X) ciJ.
Soit p un premier ne divisant pas CU- °n déduit de cette relation

de Bézout que pour tout entier n> 1 et tout couple (ij) avec 1 < i <j<k,
le premier pne divise pas le pgcd des entiers f,(n) et f/n) et donc que
N/(p) Nft (p) + NfJp) + + Njt( p). Notons Ap^ les entiers associés

aux corps de nombres K; (j \,... ,k) au sous-paragraphe 7.1, où l'on a

expliqué pourquoi l'équation Nf( p) Ap,Kj est vraie, sauf pour un nombre
fini de premiers p. Donc Nf (p)-k(APK|- 1)+(Ap,k2 -1)+- • '+(A/xK( -1),
sauf pour un nombre fini de premiers p. De la convergence des séries

JlptAp.Kj ~ 1 )/p,ondéduit celle de ^p(Nj (p) — k)/p. Comme

(1 _^£)).1 + i^£) + 0(.),
le produit C(/) est bien convergent.

De plus, en admettant les propriétés de Lf(s) qui seront démontrées dans
le paragraphe ci-dessous (voir le Théorème 6), on a

C(J)

lim £(cr) Lf(cr) lim
cr-A-l+ (<J — 1)*

Comme la fonction L/(s) est holomorphe en 5 1, où elle admet un zéro
Tm
Lfd'ordre k, on en déduit que C(f) k\Lf\ 1).
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Terminons ce paragraphe en remarquant que le produit C(/) n'est

en général pas absolument convergent. Dans [17], Davenport et Schinzel

obtiennent une expression alternative de C(/), qui, bien que particulièrement

compliquée, a l'avantage de ne faire intervenir que des produits absolument

convergents, ce qui permet donc de calculer plus facilement C(/). Notons r\
le nombre de racines réelles, r2 le nombre de paires de racines complexes

conjuguées et D le discriminant de /. Pour tout j G {1,... ,&}, au corps Ky-,

on associe Dj son discriminant, hj son nombre de classes, Rj son régulateur

et wj le nombre de ces racines de l'unité. Enfin, soient At(p), resp. Aij(p)
le nombre de facteurs irréductibles de degré i de la réduction modulo p de

/, resp. fj. On a alors

p\D V F 7=1 i>2 F 7

p\DX F F i> 2 F 7

La démonstration de cette identité peut être reconstruite à partir des idées

utilisées dans ce paragraphe et le suivant, jointes au fait que le résidu de Ck(^)

en .v — 1 s'exprime comme 2r>+r^hKRK/(wK\DK\1/2),avec des notations

évidentes (voir [22, Theorem 61, p. 284]). En effet, avec les notations du

théorème 6 du paragraphe suivant et en notant le résidu de la fonction

zêta de Dedekind associée à Ky on a C(f) • • • ^Kk •

7.4 Prolongement analytique de Lf(s)

On a défini, pour Re(s) > 1, la série de Dirichlet

¥J, g; no
d= 1 p

Nous allons montrer ici le résultat suivant, qui recoupe un article de

Kurokawa [35]. Celui-ci montre également que si h > 2, alors la fonction

Lf(s) n'est pas prolongeable au delà de Re(s) > 0, nous en donnons un

preuve dans un paragraphe ultérieur. Comme on sait, Lf(s) est en revanche

méromorphiquement prolongeable à C lorsque h 1 mais il semble délicat

d'en tirer des conclusions définitives.
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Théorème 6.

(i) L'abscisse de convergence absolue de la série de Dirichlet définissant
Lf(s) est au plus 1.

(ii) Il existe une constante explicite Sf > 0 et une fonction Mf(s) holomorphe
sur le demi-plan Re(s) >1/2, sans zéro sur Re(s) > 1 — £/, telle que

(iii) Il existe une constante explicite Bf > 0 telle que la fonction Lf(s)
est analytiquement prolongeable à l'ouvert Uf défini par o > f —

Bf/log(\t\ +2), sur lequel elle n'a ni zéro ni pôle, sauf un zéro d'ordre
k en s 1.

(iv) Pour tout s G Uf, on a |L/(V)| <log(|f| +2)*.

Démonstration, (i) Rappelons que 0 < Nf(p) < h — deg(/) pour tout
nombre premier p. Il s'ensuit que pour tout entier d> 1, W)Nf(d)\ <
\p(d)\hU3{-d) par multiplicativité de Nf (cette inégalité est en général fausse

sans le facteur p(d)). Donc

Comme ce dernier produit converge pour tout a > 1 et tout h > 0, on en
déduit que l'abscisse de convergence absolue de la série de Dirichlet définissant

Lf(s) est au plus 1. Pour référence future, notons que Ylp(l+hp'~s
avec */'(s) ry 1 +hp~s)(l —p~s)h holomorphe et bornée pour Re(.v) > 1 /2 ' r
et, par conséquent,

(ii) Pour tous sauf un nombre fini de premiers p, on a Nf p) —

Ki + Apfc + • • • + Ap^k : notons Q l'ensemble des premiers où ceci a

lieu et 31 l'ensemble fini des premiers «fautifs». Comme par ailleurs, pour
Re(s) > 1 et tout entier A > 1

Lf(s) — (Ck, 0)Ck2 (s) - - Ck*M)

on a donc, pour tout p G Q,

(16)
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où Ep(s) est une fonction holomorphe sur Re(s) >1/2 qui vérifie Ep(s) —

1 + 0(/?~2cr). Le produit Eq(s) YlpeQEp(s) est donc convergent sur

Re(s) > 1/2, où il définit une fonction holomorphe. D' où

LAS)=(a, (sy&is) • • fowr'gofr) n (1
_1g"-^(KP?-+AP,Kt -

pGOl
K F }

Posons

qui est holomorphe sur Re(s) > 1/2 puisque les seuls pôles de Mf(s) ne

peuvent provenir que de ceux des termes (l — p~s) c'est-à-dire lorsque

^ G i(2ir/ log(/?))Z. Compte-tenu de (16), les zéros de Mf{s) sont parmi ceux
des termes 1 - Nf(p)p~s, c'est-à-dire lorsque s G op -f iÇln/ log(/?))Z avec

(jp \og(Nf (p))/ log(p). Or puisque Nf(p) < min(p - l,deg(/)), on voit

qu'il existe e/ > 0 tel que si Re(s) > 1 — ey, alors / 0.

(iii) C'est maintenant une conséquence immédiate des; propriétés analytiques
des fonctions zêta de Dedekind et

(iv) La fonction Mf(s) est bornée sur tout demi-plan Re(s) > 1/2 + £

avec £ > 0. On conclut grâce à la majoration de la croissance des fonctions

CkC?)-1 dans les ouverts de la forme a > 1 — Ck/ log(|^| + 2), sur lesquels

elles ne s'annulent pas.

8. Valeur des dérivées de Lf(s) en s - 1

Le but de ce paragraphe est de justifier que pour tout entier t > 0, on a

f>wiogV)^=<-i)'4'><i >,

d= 1

ce qui, pour t — k, est une égalité que nous avons promis de prouver. Ce

résultat est prouvé par Conrad [14], essentiellement au moyen de la méthode

maintenant décrite. Le Théorème 7 ci-dessous est légèrement plus fort que
celui montré par Conrad mais les deux démonstrations utilisent la méthode de

Selberg-Delange, qui semble le bon outil ici. Remarquons que le problème est

de prouver la convergence de la série; en effet, par les propriétés de base des

séries de Dirichlet, si elle converge en un point so et si la fonction définie
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sur le demi-plan Re(s) > Re(s0) se prolonge (continûment ou analytiquement)
en 5"o, alors la valeur de la série est égale à la valeur de la fonction en sq-

Pour montrer la convergence, nous allons appliquer de nouveau le théorème
de Newman (dans la forme donnée au Théorème 10 au paragraphe 9 ci-dessous
et non sous celle plus faible donnée à la fin du paragraphe 7.2) tandis que
Conrad utilise un théorème de Riesz. La dérivée É-ième de Lf(s) est donnée
sur Re(s) > 1 par

ifw=.d
Puisque Lf(s) est analytiquement prolongeable à un ouvert contenant Re(s) > 1,

ses dérivées le sont également et pour appliquer le Théorème 10 à la série Lf\s),
il nous reste à montrer que

Se(x) ^ p(ri) log\n)Nf (n) o(x).
1 <n<x

Dans un premier temps, notons que la transformation d'Abel montre que, pour
tous entiers £> l et x> 2, on a

Se(x) ^2 soM (loge(n) - log\n + 1)) + S0(x) log\x + 1)

\<n<x-\

< ^2 ^\So(n)\ H- |S0(v)| log£(x).
1<«<JC-1

n

Il nous suffit donc de montrer S0(jc) <^N x/\o^(x) pour tout entier N > 0
et le résultat suivant s'avère amplement suffisant.

Théorème 7. Il existe une constante explicite c(f) > 0 telle que, lorsque
x —>• +oo,

|S0(x)| < xexp Viög(x)) •

Démonstration. La démarche est classique et est en fait un cas assez
simple de la méthode de Selberg-Delange (voir [50, paragraphe II, 5.4]) : on
utilise la formule sommatoire de Perron et les propriétés analytiques de la
fonction Lj(s). Les constantes cj et celles implicites dans les symboles et
O ci-dessous sont effectives et ne dépendent au plus que de la famille /.
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Pour simplifier, posons an ji(ri)Nf{ri) et A(x) J2i<n<xan> ainsi fiue

bn \ii(n)\h^n) et B(x) Y,\<n<xbn- Si on Pose M(s) £„>i on a

vu que | ^2n>î < M(*0 < CMh < («- l)_/l- La formule de Perron

«effective» nous donne

,K+i°o1 pK-\-too
/ A(f)df — / L/(.s-)xi+l

7l ^i7r JK-ioo s(s + 1)

AÎ+ ïT
1 /•«+" dv_ / L/.v)xï+l —— H- T),

2Î7T JK—iT+

où nous choisissons k —1 + 1/ log(x) et où le reste R(x, vérifie

1^,7)1«^!^.
Sur le contour rectangulaire G de sommets k ± iT, 1 - c^l log(r) ± iT et

contenu dans l'ouvert Uf sur lequel Lf(s) est holomorphe, on a

dsf L/(i)xî+1-
./e "

0,
s(s + 1)

puisque l'intégrande n'a aucun pôle à l'intérieur. La propriété (iv) du

Théorème 6 nous permet de contrôler l'intégrale sur les côtés -
l-ct/log(T)-iT], [l-c2/\og(T)-iT,l-c2/loget [l-c2/log(7>NT,

k + iT] et on obtient finalement la majoration

2- [ Lf(s)x°+l—« x2 (-g,T)+ exp(—C3 log(x)/ log(T))
2*7T JK-iT - s(s +1) V T

En choisissant T exp(yïog(x)) on obtient

A(t)àt < x2 exp (-c4V//log(x)
11 v

Un calcul similaire, mais où apparaît un pôle en s 1 avec résidu O(x),
fournit

^

B(t)dt O(x) + <9 (x2exp(-c5

/

i;
avec O(x) x2ß(logx) et ß polynôme explicite. Remarquons que 0"(x)
O (logö(x)), où l'exposant a > 0 ne dépend que de h.

Pour passer à A(x) (voir [50, paragraphe II.5.4]), on écrit

pX-\-U

A(x)u~l A(t)dt +
JX
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avec Lf*+"\A(t) - A(x)|df. On observe alors que < - B(x))dt
et on en tire que

nX-\-U nX

L< B(t)dt- / B(t)dt
Jx Jx—U

— <D(x + u) + <E>(x - u) - 2<D(X) + O (x2 exp(-c5y^ögx)^

S "2 ,Ä+.J ®"<') + 0 eX"(-CiV^)) '

et enfin

L=o(x2exp (-cs/loga-))) + 2loga(x))

En choisissant u xexp {—c$y/logx) et en reportant dans les majorations
précédentes, on obtient bien A(x) < xexp(~c7^/^ög(x)).

9. Quelques théorèmes taubériens

Pour déduire (10) de (7) et (9), on dispose d'un outil puissant, dont on
trouvera la preuve dans [27] : voir aussi [32] pour un historique des théorèmes
taubériens démontrés au fil du siècle dernier.

Théorème 8 (Hardy-Littlewood). Soit (An)n>0 une suite de réels positifs
oo

J
n

satisfaisant à lim (1 - z)A„z"1. Alors lim - Y" A, 1.^' n—>-+00 n ^'n=0 j—0

Il suffit donc d'appliquer ce théorème à la suite (A„)„>0 définie par Ao
quelconque et An A(/i(«))A (f2(n))•• • A > 0 pour tout n > 1,

pour déduire de lim (1 - z)Gf_(z)(-1 / 0 que l'on a

n ^-(n)=« E A(fiU))MHAU))
M

Notons Ao(n) - |M«)|A(«), */(*) - E,<,Ao(/i(y))Ao(/*(/)) et
introduisons la variante:

JîL ~ ö/{w) JîL lS2MAU))Ao(f2U))Ao =c(f).
7=1

On a le résultat suivant.
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THÉORÈME 9 (Baier). Pour toute famille f convenable6), on a

C(f) x
TÏ/M ~ -,—=7- ' ; it : ~c(f)x <=* ~

hi...hn log (x) -
0/(x) ~ C(/)x <=** tjjfix) ~ C(f_)x

Ceci est fait en détail dans [1]: la démonstration de la première

équivalence est élémentaire et repose sur l'observation que la quantité

Ao(/iO'))A0(/2Ü)) •••AoUO')) est nulle si l'un des /(/) n'est pas

premier et équivalente à h\ hk(logj)k sinon. La démonstration de la deuxième

équivalence requiert un peu plus de travail : Baier utilise notamment le théorème

de Siegel et montre que 0 < %(x) - 0/(x) < c^ß log*(x). Ceci généralise

l'équivalence classique

où 7r(x) compte les nombres premiers < x, 6(x) — l°g(/?) et ijj(x) —

L'autre théorème taubérien (Riesz 1916, Ingham 1935, Newman 1980) que

nous avons utilisé peut s'énoncer ainsi.

Théorème 10. Soit D(s) î an/nS une série de Dirichlet convergente

sur le demi-plan Re(s) > 1. Supposons que D soit analytiquement

prolongeable à un ouvert contenant le demi-plan fermé Re(s) > 1 et que,

lorsque x +oo,

(i) ou bien an 0(1) (Ingham-Newman),

(ii) ou bien J2i<n<xan ~ (Riesz).

Alors la série YlT=\an/n est convergente, de somme D( 1).

Démonstration, (i) On trouve la preuve du théorème de Ingham-Newman

(cas an — O(l)) dans [40] ou [32, Theorem 6.1].

Notons A(x) Ei<n<xani sous l'hypothèse (ii), une variante de

la méthode de Newman (voir [32, Theorem 7.1]) établit que l'intégrale

f^00 A(t)t~2dt est convergente, de valeur D( 1). Or cette intégrale vaut

7r(x) ~ -—— <=> 0(x) ~ x lß(x) ^ X
log(x)

d'où le résultat énoncé.

6) ne satisfaisant pas obligatoirement à l'hypothèse F
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Remarquons qu'en fait le théorème de Riesz, correspondant à l'hypothèse

(ii), est plus fin car il ne requiert que le prolongement analytique au
voisinage de s 1 (voir [43]).

Nous terminons ce paragraphe en citant le «prince» des théorèmes
taubériens.

Théorème 11 (Ikehara-Wiener). Soit (an)n>\ une suite de réels positifs à
laquelle on associe la série de Dirichlet D(s) an/ns, que Von suppose
convergente pour Re{s) > 1. Supposons qu'il existe p tel que D(s)-p(s-1)_1
soit analytiquement, ou même seulement continûment, prolongeable au demi-
plan fermé Re^) > 1. Alors

Remarque. Ce théorème suggère une approche plus classique de la
conjecture de Bateman-Horn qui consiste à introduire la série de Dirichlet

C'est exactement l'approche développée par Conrad [14], auquel nous
renvoyons pour plus de détails: indiquons seulement qu'il transforme cette
série en utilisant lui aussi l'identité de Golomb. On voit aisément que la série

converge pour Re(s) > 1 et que la conjecture de Schinzel pour la famille /
est vraie si, et seulement si, l'abscisse de convergence est finie.

De plus, si l'on savait que la fonction Df(s) - C(f)(s - l)"1 se prolonge
au demi-plan fermé Re(s) > 1, le théorème de Ikehara-Wiener permettrait
précisément de conclure que la conjecture de Bateman-Horn est vraie: ici
aussi, la valeur exacte de C(f) est plus qu'il ne faut puisque obtenir un
prolongement avec une toute autre constante positive serait suffisant.

Néanmoins, compte tenu de l'expression pour C(/), on voit qu'il serait

équivalent de prouver que la série de Dirichlet k\Df(s)~ Ç(s)Lf\s), ou encore

klDfis^C^Lfis) se prolonge continûment à la droite Re(s) 1. Dans cette
direction, indiquons que Korevaar [33] a proposé une conjecture concernant
le comportement analytique précis de Dx{x+2)(s) au voisinage de s 1 et
qui est équivalente à BH(X(X + 2)).

1 <n<x
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10. Une seconde façon de prolonger Lf{s)

Ce paragraphe présente une esquisse de démonstration d'un théorème de

Kurokawa [34, 35] ; ce résultat n'est pas utilisé dans la suite (et peut donc

être omis en première lecture) mais éclaire peut-être une des raisons pour
lesquelles, du point de vue analytique, le cas deg(/) 1 est très particulier.

Théorème 12 (Kurokawa). La fonction Lf{s) admet un prolongement

méromorphe au demi-plan Re(s) > 0 .De plus, hormis le cas où deg(/ 1,

la droite Re(.s) 0 constitue une frontière naturelle.

Nous commençons par traiter le cas où / est produit de k facteurs

linéaires puis passerons graduellement au cas d'un polynôme cubique de

groupe de Galois 63 avant d'esquisser le cas général. Dans le premier

cas Lf(s) P(s)Zk(s) avec P(s) un produit fini de facteurs eulériens et

zk(s) Y\p(l - kp~s). Il suffit donc de démontrer l'assertion du théorème

pour Zk(s).

Lemme 1. Soit k entier >2. Il existe une unique suite d'entiers aj > 1

tels que, pour tout m> 1, on ait

(17) 1 _ kT(1 - 7T'(1 - T2T••(!— ry( 1 +

avec Rm+i(T) série convergente pour \T\ < 1.

Démonstration. On calcule

aj — 1

1
jJnjna -vr->=nEr;!

j= 1 J= 1 nj=0
V J

00 m / \ 1 \ °°

E E nro!'7)r' E
n=0 n\-\-ln2-\ hmnm=n ./= 1 J «—0

(disons).
On voit que, si n < m — 1, on a Bet que B^ B^+ am.

Ainsi, si l'on veut que le produit soit égal à (1 -kT)~l X^>o knTn modulo

Tm+1, on obtient une définition par récurrence des aj :

ci\ — k et, pour m > 2,

^n\ + a\ — l\ /nm—\ + am—\ — 1

a\ - 1 V am-1 - 1
yr- ^

ni +2n2H \-{m— l)nm-1 —m
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qui prouve l'existence et l'intégralité des aj. En prenant le logarithme de la
relation (17), on trouve que km J2j\mJaj > ce 9ui Permet de montrer que

aj > 1 : on vérifie en effet par récurrence que 1 < mam < km (noter que

£/| mJïmPj< E < <*" ~ 1 )/(* " !))•

Par exemple, on a ai k, ai — k(k — l)/2 et a3 k(k — 1)(9A; + l)/3.
On en déduit que la fonction Zk(s) admet un prolongement méromorphe
à Re(s) > 0, qui est donné, pour Re(s) > l/(m + 1), par Zk(s) —

n;i, ïlP(1 + p~(m+l)sRm+i(p~s))En particulier on voit que Zk(s)
s'annule ou a un pôle lorsque

(a) s l/j avec ordre aj ;

(b) s iog| + ïogp ' Pour P Premier et m G Z avec ordre 1 ;

(c) s p/j pour p zéro non trivial de ((s) et j > 1 avec ordre —aj.

Corollaire 1. Si k > 2, la fonction Zjfs) ne peut pas se prolonger au
delà de Re(s) > 0.

Démonstration. L'hypothèse k > 2 assure que ay / 0 pour tout y > 1,

ce dont on va se servir pour produire une suite de zéros ou pôles de Zk(s)
s'accumulant sur la droite Re(s) 0. Pour cela on observe que l'ensemble

f log A: 27nra 1

S < h p premier, me Z >

1 log plog/; J

admet comme ensemble d'accumulation la droite Re(s) 0. De même,
les ensembles S' — {p/j \ p zéro non trivial de £(5) et j 72 1} et ^
{y I p j + zéro de C(^) et j > 1} admettent aussi comme ensemble
d'accumulation la droite Re(^) 0.

Remarquons aussi que j. car sinon p 0, ce qui est impossible.
Donc, si l'on admet l'hypothèse de Riemann, il ne peut y avoir aucune
compensation entre zéros (b) et (c) ; sinon on invoque l'infinité de zéros non
triviaux de partie réelle 1/2 pour voir que si on restreint S' à S" donné par
les zéros de partie réelle 1/2, ils fournissent la même conclusion. La droite
Re(s) 0 est donc bien une frontière.

Dans le cas d'un ou plusieurs polynômes de degré > 2, nous aurons
besoin des fonctions L de Dirichlet et d'Artin (voir par exemple [38],
Chapter XII). Rappelons-en la définition et les propriétés que nous utiliserons.
Soit Gq Gal(Q/Q) le groupe de Galois absolu du corps des rationnels
et soit p : Gq —y GL(V) GLW(C) une représentation continue ou, ce qui
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revient au même, qui se factorise à travers un quotient fini (G Gq/Kqy(p)
par exemple). Notons encore p : G —» GLn(C) la représentation et notons F le

corps fixé par Ker{GQ -G G} de sorte que G Gal(F/Q). On pose également

Xp Trop qu'on appelle le caractère de la représentation. La théorie des

représentations des groupes finis en caractéristique zéro (voir par exemple

[46]) indique que la donnée de % équivaut à celle de p à isomorphisme près.

Sur les fonctions sur G, on dispose du produit scalaire défini par:

</,/') </,/% jL
1 1

g£G

Pour p premier et 93 premier de Op au dessus de p, notons F<g Of/® et

D?ß {a G G | cr93 93} le groupe de décomposition de 93 (au dessus de

p). On sait que la réduction modulo 93 induit un homomorphisme surjectif
Dr& -» Gal(F<8/Fp) dont le noyau est, par définition, le groupe d'inertie

{a e Dr& | Vx G Of, cr(x) — x G 93}. Pour presque tout 93 (ou p), le

groupe d'inertie est trivial, i.e. on est dans la situation non ramifiée. Dans tous

les cas, l'existence d'un générateur canonique de GafiF^/F^), le Frobenius

xg/, induit l'existence d'un élément canonique Frob^ G ZAg//®, appelé

également Frobenius. Soit 93' un autre idéal au dessus de p, on a 93' cr93

pour un certain a G G et on voit que — aD^o ~l et 7®/ al^a~l.
En particulier l'élément Frob<8 ne dépend, modulo 7<b et à conjugaison près,

que de p ; on se permettra donc de le noter Frob/?. Ceci permet de définir

Lp{p,s) det (id - p(Frob®)p~* | F7®)
1

f que l'on note aussi Lp(x,s) et,

bien sûr, la fonction L d'Artin L(p,s) YIPLP(p, s) que l'on note aussi L(%, s)

si x — Xp- Si Ai,..., Xn sont les valeurs propres de p(Frob^) (ce sont des

racines de l'unité), on a + • • • + Trp((Frobs$)m) x((Frob^)m) et

ainsi :

n

log L(p, s)Xlog^ ~ Vs )"'
P 7=1

n \m n-ms

EE E =E E * «f»®)") —
p j= 1 m> 1 p m> 1

Ainsi les séries et le produit d'Euler convergent absolument pour Re(s) > 1

(voir [38], Chapter XII).

PROPOSITION 1 (Artin-Brauer). La fonction L(p,s) admet un prolongement

méromorphe au plan complexe, sans zéros ni pôles sur Re(s) — 1 hormis le

point s 1 où il y a un pôle d'ordre dim VG.
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Remarques, (i) La preuve est basée sur le théorème de Brauer (voir
[46], théorème 20, page 95): le caractère de toute représentation de G est

somme à coefficients dans Z de caractères de représentations monomiales (i.e.
induites de représentations de dimension 1 de sous-groupes de G).

(ii) On peut obtenir également une région sans zéro et pôle (sauf s 1

du type Re(s) > 1 — c/logIm(s) et des bornes max{|L(x, s)\, |L(x, <C

(log | Im(s)|)c dans ce domaine.

(iii) L'hypothèse de Riemann généralisée permet évidemment d'améliorer
ces estimations mais n'entraîne pas, semble-t-il, la conjecture d'Artin qui
affirme que les L(p, 5) sont entières (hormis un pôle éventuel en s 1

(iv) Il existe une équation fonctionnelle reliant L(p, s) et L(p, 1 — s) où p
est la contragrédiente de p.

Passons maintenant à notre deuxième exemple: le cas «typique» d'un
polynôme cubique / de degré 3 engendrant une extension cubique K
Qffl/(/) non galoisienne. C'est-à-dire [K : Q] 3, la clôture galoisienne
F de K est de degré 6 sur Q et on a G Gal(F/Q) 63 et

H Gal(F/K) Z/2Z.

LEMME 2. Soit p non ramifié et 03 un idéal de Oy au dessus de p.
(i) Si {1} alors pön P1P2P3 avec N(pi) p. En particulier

Ap 3.

(ii) Si D%3 est cyclique d'ordre 3, alors pOn p avec N(p) p3. En

particulier Ap — 0.

(iii) Si D<8 est cyclique d'ordre 2, alors pOm P1P2 avec N(pi) p et

N(P2) p2 - En particulier Ap 1.

On peut interpréter cela ainsi en notant 1: 03 —^ GLi, e : 03 —y GL\
et p: 03 -» GL2 les trois représentations irréductibles de ©3 et l,5,x les

caractères associés. On a

3 si Frobp est d'ordre 1,

Ap 1 + ^(Frob^) < 1 si ¥robp est d'ordre 2,
^0 si Frobp est d'ordre 3.

Ainsi, à un nombre fini de facteurs eulériens près, on a
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Les premières étapes du prolongement utilisent les fonctions L(s,s)
Y[pLp(s,s) et L(Xj s) YipLp(X^), où Lp(s,s) (1 - s(FrobP)p~s)~l,

Lp(Xis) det(l - p(Fvobp)p-s)~l (1 - x(FrobP)p~s + ^(Frob^)/?-2*)-1.
Ainsi (1 — T)(l — xT + eT2) 1 — (1 + x)T + 0(T2) permet d'écrire

Lf(s) £_1(X)L(x, s)~lG2(s) avec Gi{s) holomorphe sur Re(s) > 1/2 et

on a ainsi obtenu un prolongement méromorphe à ce demi-plan.
Ensuite, la relation

(1 - T)(l-XT + sT2)(1 - eT2)(1 - XT2 + eT4)

1 - (1 X2)T3 + 0(T4)

permet d'écrire Lfis) (~l(s)L(xys)~lL(e, 2s)~lL(x, 2s)-1G3(s) avec G(s)

holomorphe sur Re(s) > 1/3 et on a ainsi obtenu un prolongement
méromorphe à ce demi-plan.

On ne s'arrête pas là; en effet x2(a) — Tr(p(g)p(cr)) donc Lp(p0p; T)~x

det(l — p (g) ^(Frob^r) 1 — x2(Frobp)r + 0(T2) et clone

(1 - T)(1 - XT + eT2)(1 - eT2)(1 - XT2 + 1 - x2(Frob/,)r3 + OCT4))

x (1 - XF3 + 0{T4)){\ - eXT3 + OiT4)) 1 - (1 + + 4)

permet d'écrire

W Cl(S)L(X,s)-lL(£,2s)-lL(X,2srl

x L(/o <g> p, 3s)_1L(x, 3s)_1L(e 3

avec G^s) holomorphe sur Re(s) > 1/4 et on a ainsi obtenu un prolongement
méromorphe à ce demi-plan.

Nous allons maintenant généraliser ce calcul à tout polynôme et tout ordre.

De manière générale si F est la clôture galoisienne de K, G — Gal(F/Q) et

H Gal(F/K), la décomposition de p dans (9k est gouvernée par (la classe

de conjugaison) du Frobenius au dessus de p et on pourra toujours exprimer
Ap comme combinaison linéaire de caractères d'Artin.

PROPOSITION 2. Il existe un caractère d'Artin x — Xr (associé à une

représentation r) tel que, pour presque tout p, on ait N/(p) ^(Frob^). En

particulier, la fonction Lf(s) est égale, à un produit eulérien fini près, à la

fonction

qw n(i-^)-
P \ F /
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La preuve de la proposition précédente s'appuie sur le lemme suivant qui
a son intérêt propre.

Lemme 3. Soit F une extension galoisienne de Q de groupe G, H un

sous-groupe et K F77 le sous-corps de F fixé par H. Notons Ap le nombre

d'idéaux de K de norme p, on a alors

Ap ^ dim V^xCPmbp) I + ^ dim V^xfFrob,,),
X X^l

où la somme est prise sur les caractères \ des représentations irréductibles

p : G —> GL(V).

Remarque. On peut vérifier directement que Ap ne dépend que de K
(et pas de la clôture galoisienne F choisie). On notera dans la suite Jg

l'ensemble des représentations irréductibles de G et JJ Jg\{1} l'ensemble
des représentations irréductibles non triviales.

Corollaire 2. Soit f f\.. .fi avec fi irréductibles distincts à coefficients

entiers. Posons K; Q[X]/(fi), choisissons F une extension galoisienne

de groupe G avec des sous-groupes Hi, tels que K, F77,. Alors, pour
presque tout p, on a

k

Nf (p) k + ^T ^ dim (v"') \CFrob,,).
'=1xeaj

Démonstration du Lemme 3. Soit 93 un idéal de Of au dessus de

p, de sorte que N(fil3) // avec \Dr&\ =/. On écrit les décompositions
pOK p, • • • p,. et pj <Bi;) • • 53^ avec N(pj) où f) /p.|

|Dçgij) nH\. On voit que N(pj) — p équivaut à fij —f ou encore à D^u) c H.
Par ailleurs, dans ce cas, en prenant les normes on obtient la valeur de

hj par z?!77! Nq(PjOy) YÙL\ ^q(®P) Pf hj• On en déduit alors

que Ap \{cr e H\G \ C H}\ \{a G G | aD^a~l C H}\/\H\.
Calculons maintenant la décomposition dans la base des caractères de la
fonction centrale donnée par fi(g) #{a C G | crg<j~l H} (telle que
Ap </>(Frobp)/\H\). Pour cela, on va utiliser le résultat classique suivant.

Fait 1. Soit p : G —» GL(F) une représentation, H C G et x — Trop.
Alors

A(g)^2 x(g) \H\ dim VH

gGHg&H
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Démonstration. La représentation restreinte p\u se décompose en

Pi © • • • ® ps avec pi irréductibles. Or, si \ est irréductible on a

0 si x ï-1,

si x =: 1,

d'où l'affirmation.

Revenons à la preuve du Lemme 3. Il suffit de calculer

lGl> x)XI <t>(g)x(g)XI
g£G g,<r£G

<jgcr~l £H

X dim (y* 'Ha) \a~lH\H\ |G| dim VH.
cr£G

Ainsi on a bien

comme annoncé.

Revenons au problème du prolongement analytique de Lf(s) dans le cas

général. On voit donc que, toujours à un nombre fini de facteurs eulériens

près et avec les conventions précédentes, on a

(aixi+ a2X2 H h a^XFrob^)'
lL(s) n 1

p

avec disons xi 1 et a\ r et les autres Xi irréductibles et non triviaux.
On utilisera que xT ' ' ' xTr est la trace de pfm] (g) • • • g) pfmr donc

L(pfmi<g> • • • ® pfm>,s)JJd - X?^(Frob^-T'd + 0{p~2s)).
P

La première étape du prolongement analytique (jusqu'à ReO) >1/2) consiste
à écrire

1 - (a.X i + • • • + atX,)T(1 - X•••(1-+ 0(T2))

Lp(xi,T)-"-Lpix» 'n~aid +
d'où l'on tire Lf(s) L(x\,s)~ai • • -L(xt, s)~atG2(s) avec G2(s) définie par
un produit d'Euler convergent pour Re(s) > 1/2. En se souvenant que

L(x\,s)~ai ((s)~r et que les autres L(xi,s) sont holomorphes sans zéros

sur Re(s) 1, on retrouve le prolongement et le comportement de Lf(s) au

voisinage de cette droite.
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Lemme 4. Il existe une suite de représentation pj telles que

1 - XtTndet (1 - PjV)det (1 - PjV) (l +
1 <J 1 <j<m

Pour le calcul nous utiliserons le fait classique suivant (voir Serre [46],
paragraphe 9.1, exercice 3).

Fait 2. Soit p: G —> GL(V) une représentation. Notons Symr p
(resp. Arp) la r-ième puissance symétrique (resp. la r-ième puissance
alternée). Pour un caractère x, notons W\ le caractère défini par
WX(g) x(dr) • On a les formules

det(l - p(g)Tyl^xsym'pigyr exp(^WrXp(5)A)
r>0 r>1 r

det(l - p(g)T) ^(-ÎXXA rp(g)Tr.r>0

Soient pj une suite de représentations. On a

m m

j= 1 j= 1 rt>0

~ XSymri pi • • • XSyufm PmTn

n>0 ri+2/"2H 1-mrm=n

Ex«m)rl
n>0

(disons).
Observons que, pour n < m- 1, on a xim) xim_1)> alors que

Xm" Xm'_l,+Xp„, • Si on veut que cette expression soit égale à (1 ~xrT)~l
E„>o XT" > on trouve une définition par récurrence des p, :

Xpi Xr Ct Xp~Xt0-"0t E XSymri pi0-"(g)Symrm-1 pOT_!

O +2r2H (-(m — l)rm_ i =m

qui prouve le lemme avec pj G R(G), i.e. pj représentation «virtuelle». En
prenant le logarithme de la relation donnée par le lemme, on obtient:

»>1 y>l r>l r n>\ j\n "
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D'où la deuxième relation xr®...®r ^2j\nf^n^Xpj qui permet de voir que
(dimr)w J2j\n]^mPj et donc dimpn ±

Y^j,\n p(n/7)(dim t)'. La fin de la
preuve que les pj sont effectives est laissée au lecteur; par exemple si on
note Tn a la représentation telle que a (g) Sym"-1 cr Tn a © Sym" cr, on a

P2 T2 pi A2pi, p3 T3 pi et p4 T4 pi © T2 {T2pi), etc.
On peut donc écrire Lf_(s) Ui<j<mL(XPjJs)-lGm+i(s) avec Gm+1

holomorphe sur Re(s) > 1 /(m + 1). Comme chacune des fonctions L(xPjJs)
se prolonge (méromorphiquement) au plan complexe, on obtient bien ainsi un
prolongement méromorphe de de Lf au demi-plan Re(» > 0. De nouveau les

pôles ou zéros vont s'accumuler vers la droite imaginaire; c'est clair si l'on
admet l'hypothèse de Riemann mais on peut s'en passer en examinant plus
finement les résultats connus sur la densité des zéros (voir [35]).

11. Preuve du théorème de Bateman-Stemmler

L'argument donné ci-dessous pour prouver le Théorème 2 est essentiellement

celui dans l'article de Bateman et Stemmler [4] : il nous semble cependant
intéressant de le reproduire ici car il est court (une fois admise l'estimation
générale du grand crible) et utilise les propriétés analytiques de la fonction

Lf(s). Soit X un ensemble d'entiers contenu dans l'intervalle [ 1, 2V].
Si l'image de X dans Z//?Z a un cardinal borné par p( 1 — ujp) (pour des

«densités» 0 < ujp < 1) alors, pour tout Q > 1, l'application du grand crible
(voir [5, Théorème 6, page 20] ou [50, 1.4.5, Corollaire 6]) donne:

(18) card(X) < (A/}Q2) avec L(Q) V \/,(n) TT
i(ô) ^

Dans le cas qui nous intéresse, on choisit pour X l'ensemble X(f) des

entiers n dans l'intervalle [c\/N,N] tels que les fi(ri) soient tous premiers
et on pose Q Nl/2~£. On remarque alors que si p < Q et n G X alors,

comme fi(n) > c'nhi > c'(cy/N)hi > Q et donc p < fi{n) (au moins si la
constante c a été convenablement choisie): p ne divise donc pas fi(n). On

peut donc écarter Nf(p) valeurs mod p. En d'autres termes, on peut appliquer
le crible à l'ensemble X{f_) avec les densités ujp Nf(p)/p. Pour estimer

L(<2), posons an \p{n)\T\— et introduisons la série de Dirichlet
I

1 ~ "pp\n

p(s) J2n>\an/nS- On a
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fW=nf'+ ^^"'"',1111 1-N,(p)p-<J

et on voit aisément que P(s) Lf(s + 1 )~lR(s), où R(0) 1 et le produit
définissant R est convergent pour Re(s) > —1. On a vu (Théorème 6)

que Lf(s) est équivalente à C(f)(s — l)k au voisinage de s 1 : la

fonction P(s) est donc équivalente à C(f)~ls~k au voisinage de s 0

et, hormis ce pôle, admet un prolongement holomorphe au demi-plan fermé

ReCs) > 0. En utilisant un théorème taubérien, on peut conclure que
L(Q) Y.n<Q"n ~ (*! a/))"1 log*(ß).

L'inégalité de grand crible (18) donne donc

|X(/1| < k\2k C(f_)N\og~k(N)(+o(l))

et finalement, comme 7Tf(N)<cv^+|X(/)|, on obtient bien la majoration
annoncée par le Théorème 2.

12. L'interversion limite et série

Le problème majeur et non résolu de la méthode de Golomb est de justifier
l'interversion limite-série dans (7). Nous discutons de cette question dans ce

paragraphe en montrant d'une part que cet obstacle peut être surmonté dans

le cas d'un polynôme linéaire et en montrant d'autre part que l'analogue de

cette interversion peut être justifiée dans d'autres situations.

12.1 Le cas d'un polynôme linéaire

Lorsqu'on spécialise la conjecture de Bateman-Horn au cas k — 1 et

/ =/i linéaire, on obtient pour f{X) X, resp. f(X) aX + b, le théorème
des nombres premiers, resp. le théorème de Dirichlet - de la Vallée-Poussin

(Théorème 1). Un fait remarquable est que, dans ce cas, on sait justifier
l'interversion limite-somme dans l'approche par le A-calcul, qui fournit
donc une preuve du théorème des nombres premiers dans les progressions
arithmétiques (dans le cas du théorème des nombres premiers, cette preuve est

essentiellement celle donnée par Wiener). Il serait intéressant de démontrer le
théorème de Dirichlet par l'étude de la série A(an + b)/ns.

Calculons d'abord la constante C(aX-\-b). Pour cela, il nous faut déterminer

Nax-\-b(p)> Si p divise a, on a NaX-\-b(p) 0 puisque (a,b) 1. Si p ne
divise pas a, alors (a,p) =1 et il existe un entier c (unique modulo p) tel
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que ac 1 [p] et —bc est alors l'unique solution (modulo p) de l'équation
an + b 0 [p], d'où Nax+b(p) — 1 dans ce cas. On a donc

p\a p\a

Pour la démonstration du Théorème 1 nous utilisons un résultat prouvé dans

le livre de Hardy [26, Theorem 5, p. 49, III.3.5] qui se traduit pour les séries

ainsi.

Théorème 13 (Schur-Toeplitz). Soit une suite de fonctions On(z) définies

au voisinage de uj G CU{oo}. Supposons qu'elles vérifient les deux conditions
suivantes :

oo

(si) 52
n= 1

(s2) lim <1>„(z) 1.

Alorsy si une série an est convergente, la série Y1^L\ an®n(z) l'est
également et on a

oo oo oo

lim y] an<bn(z) Y ~]anlim<&„(z) VV.
Z-+ujAzz-—'n—1 n=1 n — 1

Remarques, (i) On peut montrer (cf. loc. cit.) que les conditions (si), (s2)

sont également nécessaires. Dans ces conditions, on dit que la transformation

On(z) est régulière.

(ii) Si l'on sait que On(z) > 0 et que la suite est décroissante (par rapport

an) alors

N N

^2 |4>„(z) - 4>b+I(Z)| "
n= 1 ri= 1

<l>i(z) - 4>iv+i(z) < <ï>i(z) <

donc (si) est bien vérifiée et on observe au passage que la suite On(z) est

uniformément bornée. Un peu plus généralement, si la suite est positive et

uniformément bornée (disons On(z) < H) et est décroissante pour n > no

no(z) et croissante auparavant (on pourrait autoriser un nombre fini borné de
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changements) alors

N «o — l N

E - *«-^>1 E -*»(*)) + E(®w(z) Ow_|_i(z))

«= 1 n= 1 «=«o

2O„0(z) - OKz) - 0^v+1(z) < 2O„0(z) < 2H.

Pour appliquer le Théorème 13, on prend7) d'abord u l~ et

1 - Zn

On a bien sûr | — 1 (condition (s2)) et un calcul direct donne

z" (n-z(l + z H bz""1))
<ï>„(z) - 4>„+i(z) TT—E > 0.

(1 +zH bz" ')(1 -bzH bz")

Donc

oo oo

E - ®»+i(z)l E (*«<*) - ®»+i(z)) ®i(z) < 1.
n— 1 n= 1

et la condition (s2) est également vérifiée. On conclut donc que, pour toute
série Yjnan convergente, on a:

OO y. OO

^O-aErT^E*-2-H- (1 — z
n= 1 n= 1

Plus généralement, soit c > 0 et z tel que \zc\ < 1 ; on choisit

nzcn{ 1 - z)
<*>„(z) - 1

qui vérifie trivialement (s2) et est uniformément bornée: c'est évident pour
c > 1 et si c < 1, choisissons m > 1/c et posons qm+r avec r < m, alors
1-fzH hz"-1 > qz?~l et Ow(z) < nzcn/qzq~x (ra+r/g)z(cm_1^+7r+1 < 2m.
On vérifie ensuite par calculus que, pour c > 1/2, la suite Ow(z) est
décroissante et que, pour c < 1/2, elle est croissante puis décroissante.
On conclut donc que, pour toute série J2n an convergente, on a :

oo rrl oo

z-+1- 1 — Z
n= 1 n— 1

7) Ce procédé de sommation est connu sous le nom de transformation de Lambert.



304 M. HINDRY ET T. RIVOAL

Nous sommes maintenant en mesure de justifier l'interversion limite-
série (7):

p(d)logk(d) fi(d)logk(d)Nf(d)
iim n L d

d= 1
^ *=1 d=l

rfl/(n)

dans le cas des théorèmes des nombres premiers et de la progression

arithmétique (c'est-à-dire lorsque k 1 et / —f\ est linéaire).
Dans le cas du théorème des nombres premiers, on a fin) — n et donc

Ei<n<dAm^ zd' dzd(^-z)l(\-zd) et l'interversion limite-série

est donc justifiée par la régularité de la transformation de Lambert (12.1):

^ fi(d) log{d) zd(l-z) n(d) log(d)
z-n-^ 1 — zd ~^ d '

d= 1 d=\

Dans le cas du théorème de la progression arithmétique, on a f(n) an+b.
L'équation an + b 0 [d] possède une unique solution no(d) dans l'intervalle

[1, d] si (a, d) 1 et aucune solution si (a, d) > 1. Supposons donc (a, d) 1

et soit 5 G (Z/flZ)* la classe de congruence de d. Soit £{8) le représentant
dans l'intervalle [l,a] de bô~l G (Z/aZ)*.

Lemme 5. Avec les notations précédentes, on a no(d) (£{8)d — b)/a
pour tout d > b.

Démonstration. Tout d'abord £(8)d — b £{8)8 — b 0 [a\ donc no est

bien entier. Ensuite ano + b £(8)d 0 [d] et enfin, comme 1 < £(8) < a et

d > b, on a bien 0 < (d — b)/a < no < d — b/a < d.

On a donc Y.\<n<d,d\f(n)z"~ pour d > b : on

commettra l'abus de notation sans conséquence que cette identité reste valable

pour d < b. Par ailleurs, posons G (Z/aZ)* et G son groupe des caractères

et étendons tout caractère % G G en un caractère de Dirichlet en posant

X(d) — x(Jmodfl) si (a,d) 1 et x(J) 0 si (a,d) > 1. Rappelons que

1 I 1 si x b [a],
-t-T X(b)x(x)L
(fia) i I 0 si x ^ b [a].

xgg v

En fait, si % est un caractère de Dirichlet, modulo a disons, on a

y( N_i TT/^i X(P)^ xUOßid)

p v 7 ä?=i
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et donc

X(d)ß(d) log s)E
d=l

ds Ux, s)2
'

Le cas du caractère unité doit être traité séparément et correspond à C(s)-1
sauf pour les facteurs eulériens en p divisant a.

D'après les propriétés classiques des L(%,s), la fonction

E X(d)v(d)log
d= 1

a priori définie pour Re(s) > 1, admet un prolongement analytique au demi-

plan ReO) > 1 et même à un ouvert du type a > 1 — c/ log(|/j + 2). Par le
théorème de Newman ou des calculs classiques dans ce cas, on conclut que

X(d)p<(d) \og(d) Z/(x, 1)

/ v
est convergente et vaut ——^

d= 1 MX? 1)

Dans le cas du caractère unité modulo a, si l'on note C*(x) CW Ylp\a^~P
on a

-i /

E l-dd) log
d

d=\}(dM)=\

-1
Cato.

5=1
ip(a)

On obtient donc en utilisant le lemme 5 et les équations (12.1) et (6):

n(d)log(d)znoW(l - z)
lim

j, 1 -d= 1

lim V V =it<d)log(d)^a(l-z)
Z—>1 ~ ^ 1 —

ôeGd=l,d=ô [a]

1

1;„ z=äX(d)ß(d)logEE*(*) E5VG) z'-^ï-f-f" 1 + zH + zd~l
6^GXtG d=l

1 ^ -sx\ X(d)ß(d) l°g(^)
Li E E vL) x

<5eGXëG rf=1
(f(a)

U K^K_I

/i(d) log(d) aE
^1,(^=1

d fi")

et l'interversion limite-série est donc justifiée.
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Remarque. Revenons au cas général de Bateman-Horn et posons, si

Nf(d)^0,
d( 1 — z)Yh<n<d,d\f(n)^

Nf(d)( 1 - zd)

qui vérifie (s2) mais probablement pas (si) en général. Noter que le choix
de la valeur de lorsque Nf (d) 0 n'a a priori aucune incidence sur

le résultat à démontrer, mais qu'il peut être déterminant pour une éventuelle

preuve. La généralisation ou variante suivante du Théorème 13 (qui correspond

au cas r(n) 1 pourrait être utile.

Variante. Soit une suite de fonctions On(z) définies au voisinage de

w G CU{oo} et soit r(ri) une suite positive décroissante. Supposons qu elles

vérifient les deux conditions suivantes :

(Sir)

(S2)

E
n= 1

r(»)|0„(z)-<&„+1(z)j <H,

lim 4>„(z) « 1.

Si une série YZZ=\anest convergente et telle que E«>wö« °(r(N))> alors
la série an®n(z)l'est également et on a

oo oo oo

lim VG an<S>n{z)V a" lim E
n— 1 n= 1 n= 1

Démonstration. Quitte à remplacer an par a'n -- an pour n > 2 et

a\ — a\ — Y^=\an Pour n — 1, on peut supposer Y^=\an 0 et donc

Sn J2n= i ün — Alors si e > 0 est donné, il existe N tel que, pour
n > N on ait |S„| < er(n). Par ailleurs, d'après (s2), si z est suffisamment

proche de a;, on aura \Sn\ |On(z) — Ow+i(z)| < s et donc, en utilisant

également (slr) on obtient

oo

E
n= 1

an®n(z) sr Sn(®n(z)-4>b+i(z))
n— 1

< e +
n>N

^ s T"

ce qui achève la preuve.

Choisissons une fonction r(n) telle que J2d>n u(d)\ogk(d)Nf(d)/d
o(r(n)). Pour que la condition (slr) soit vérifiée, il suffirait donc que
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oo

Y r{n)|<D„(z)- <ï>„+i(z)| < H.
n= 1

Remarquons que la majoration que nous avons prouvée au paragraphe 8

concernant la somme ^d<np<(d)\ogk(d)Nf (d) permet de prendre r(n)
exp(—c\/log n), cette estimation pouvant bien sûr être améliorée modulo
l'hypothèse de Riemann (pour les fonctions zêta de Dedekind). Cependant
nous ne sommes pas parvenus à des majorations satisfaisantes, hormis les cas
cités.

12.2 Deux exemples de passage à la limite
Nous donnons maintenant deux exemples liés aux transformations de

Golomb et où le passage à la limite est justifiable rigoureusement. Le premier
exemple est particulièrement surprenant, mais la preuve que nous en donnons
est trop spéciale pour éclairer le seul cas qui nous importe, £ — k.

THÉORÈME 14. Soit (/l,... Jk) une famille convenable vérifiant l'hypothèse

F. Alors, pour tout entier £ tel que 0 < £ < k, on a

oo n=l,...,d Z qq n=l,...,d Z?

lim £„WIog'W) X>W)logV) lim M
"'~!m '-i' jzi E.-o,

la valeur commune étant 0.

Démonstration. On a

OO ^2n=l,...,d Zn
oo

Yv(d)WW) lim /W=° M
rc Y 'l(d)

d= 1
Z_>1 2^n=0,...,d-l Z

d=1
d

et les résultats du paragraphe 8 justifient que ces deux séries sont égales à

(-l)Zy£)(l). On a aussi vu que la fonction Lf(s) admet un zéro d'ordre k
en s l. D'où

oo ^2 n=l,...,d Z

Y/i(^i!og"U) lim M— _ Q pGur
d=l Z^n=0,...,d— 1 ^

Pour justifier que la fonction

oo y
v n=l,...,d Z

FfAà
d— i 2-^n=0,...,d— 1 ^
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tend vers 0 quand z 1~, nous allons montrer beaucoup plus, à savoir que
est identiquement nulle En effet, en effectuait à l'envers le calcul

fait au paragraphe 5, on obtient

oo

Ffjiz)(1 - z)^2(53 v(d) logV))z" •

n= 1 d> 1

d\f(n)

Or, par le théorème 5 on a

li{d) log£(d) — 0 pour n > 1 et 0 < £ < k,
d> î

d\f{n)

ce qui conclut la démonstration.

Un des problèmes techniques auquel on se heurte avec la méthode de

Golomb est le fait que l'on doive manipuler des séries non absolument

convergentes. La situation se simplifie notablement lorsque les séries considérées

sont absolument convergentes et que l'on peut utiliser, par exemple, le théorème

de convergence dominée, comme dans l'illustration suivante.

Posons

az) E ¥>(/(")) „
/<»>

Z

où f(X) G Z[X] est tel que f(n) > 1 pour tout n > 1. Pour tout entier m > 1,

on a Lp(m)/m d'où

f(z) y y zn.h«1-* h
/(«)=0 \d]

Il est possible de justifier l'interversion limite-série suivante :

oo / E d Z

(19) lim (1-;)«!) ^^ lim M

ß(d)Nf

d

=L/(2)-
</=l

En effet, notons /z le degré de / et j(d) le plus petit entier n G {1,..., d]
tel que d\f(n) lorsqu'il existe et s{d) d s'il n'existe pas. Pour tout z tel

que 0 < z < 1 et pour tout d > 1, on a
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d-1 s(d)~ 1

o < ztl - Nf(d)zS{d) et zH - z" - s(d^s(d)~l •

n=\ n=0 n=0
f(n)=0 [d]

D'où

M") /(/i)=0 [d]

d £»=iQ,...,d-\'
< zW)\Nf{d) < ^ \fi(d)\h^

ds(d) ds(d) dx+x!h

car d | f(s(d)) implique que s{d) dx/h. Comme la série de terme général
\/jJ(d)\huj(d)/dx+l/h est convergente (de valeur + hp~x~x/h)), on peut
appliquer le théorème de convergence dominée pour montrer (19). Le théorème
taubérien d'Hardy-Littlewood et la transformation d'Abel nous permettent d'en
déduire le

THÉORÈME 15. Pour tout polynôme f(X) G Z[X] tel que f(n) >1, on a

<p(f(n))~xdx)^ 1

n<x

Remarques, (i) La minoration s(d) dx!h ne peut pas être améliorée

en général puisque pour tout entier m 1, on s(f(m)) < m <^f(m)l/h. Ce

fait est une des raisons de la difficulté de justifier l'interversion limite-série
lorsque h > 2.

(ii) Il existe des expressions absolument convergentes de

J>(û01og k(d)Nf(d)/d.
d> 1

Parmi diverses possibilités, la transformation d'Abel montre que cette série

est égale à

f>gv>-iogv+i))£^^^,
d= 1 j= 1

J

qui est bien absolument convergente puisque logk(d) — logk(d -f- 1)

0(logk~l (d)/d) et que
d

(j)/j 0(exp(—cyiog(ûO) 0(log
j= i

La série de fonctions correspondante
oo d j
^(iog'w-log'V+ ")E +z+<i=l 7=1 n= 1

/(*)=<> [J
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est malheureusement moins facile à étudier, bien que l'on dispose ici de

l'intéressante propriété

OO jY,-—^^ E z" °^1 + z + +^7=1 n= 1

f(n)=0 [j]

pour tout z (en vertu de la démonstration du Théorème 14, cas £ 0).

13. La conjecture de Goldbach

Dans ce paragraphe, on considère le cas de la conjecture de Goldbach [23]
«Tout nombre pair est la somme de deux nombres premiers», qui ne rentre

pas dans le cadre de celle de Schinzel-Bateman-Hom. On s'intéresse tout
d'abord à divers affinements quantitatifs dans l'esprit de Bateman et Horn,

puis on montre comment adapter le A-calcul à ce cas.

13.1 Le difficile art de la conjecture

Les estimations numériques de la conjecture de Goldbach indiquent que

non seulement tout nombre pair n est apparemment la somme de deux nombres

premiers, mais que le nombre d'écritures différentes de n sous cette forme
croît avec n. Il est donc naturel de s'intéresser au comportement asymptotique
de la quantité

G(n) — #{(Pj q) : n — p + q et /?, q sont premiers}

lorsque n -boo. Le premier à l'avoir fait est, semble-t-il, Sylvester [48]

en 1872 dans un article de trois pages particulièrement surprenant. En effet,

on n'y trouvera que les onze expressions mathématiques suivantes (comptées

avec multiplicité): n, ^/n et x-\-y — n. Une traduction de l'anglais
vers les mathématiques fournit néanmoins une conjecture, qui a provoqué

ce commentaire de Hardy et Littlewood [28, p. 33] : « There is no sufficient
evidence to show how he was led to his result. »

CONJECTURE 5 (Sylvester). Lorsque Ventier pair n -> -boo,

p\n
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Stäckel [47] s'est intéressé à ce problème8) en 1896, de façon un peu plus

vague.

CONJECTURE 6 (Stäckel). Lorsque Ventier pair n —» +oo, le nombre G(n)
vaut approximativement

©(n)=—^— • n ~~ — 2~—•

l°g (»)
p|„ \P ~1 / log (n)ip(n)

On peut enfin mentionner l'approche de Brun [7], datant de 1915.

CONJECTURE 7 (Brun). Lorsque Ventier pair n —> +oo,
2\ /p — 1

o<„)~2». n ('-;j nVp_2
3<p<y/n F/ P>3 VjP

Pi"

Comme Sylvester, il n'est pas facile de réellement comprendre ce qui a

guidé Stäckel et Brun. Bien que les trois estimations soient en apparence
assez éloignées, les produits eulériens suggèrent pour les trois des arguments
heuristiques utilisant le « fait » que la chance que N soit premier vaut environ

n^<iv(l ~ 1 /p)- Qu°i 9u'il en soit, Landau a montré en 1900 que

THÉORÈME 16 (Landau). Lorsque x —> +oo, on a

è 2 log (x) 4 3a6) 21°g W

Comme £(2)£(3)/3£(6) ^ 0,6478, la conjecture de Stäckel est fausse.

Hardy et Littlewood [28] se sont eux penchés sur les conjectures de

Sylvester et Brun que, grâce au théorème de Mertens, ils ont reformulées
ainsi :

G(n) ~ 2<?-7 • 21~T 1 — —j— • TT f-—(Sylvester)4s V (P - I)2 J log2(n) \P~2)
p\n

G(n)~ 8e~27 2 H (l —
1 T —jj—. TT (Brun).(p-v2J log2(»)

p\n

8 On apprend dans [47] que Cantor [8] fut lui aussi suffisamment intéressé par la conjecture
de Goldbach pour la vérifier jusqu'à n 1000.
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Il en découle que ces conjectures ne peuvent pas être vraies simultanément,
bien qu'elles ne diffèrent finalement que d'un facteur constant.

Théorème 17 (Hardy-Littlewood). Si G(n) o(nj ]og2(ri)) pour n impair
et si, lorsque n pair —>• +00,

G(n)^A.^_.TT
log (n)

p\n

alors nécessairement, A 2 ^>3(1 ~~ (p-i)2) • ^es conJectures de Brun et

Sylvester sont donc fausses.

Cette caractérisation de la constante A est similaire au résultat de

Tchebichef rappelé à l'équation (11). Obtenir une telle caractérisation pour
les constantes de Bateman-Horn C(f) semble difficile: les démonstrations

des Théorèmes 16 et 17 reposent sur le fait qu'il est assez facile d'analyser
le comportement en moyenne de G(n) (ou de fonctions similaires), malgré

son comportement erratique. Par exemple, Landau a remarqué que, lorsque

x —y H-oo, on a

n<x p<x

r2 x~t dt
%2

h log(* - t) log(0
1

2 log2(v) '

tandis que Hardy et Littlewood ont exploité le comportement au voisinage de

z= 1 de la série
00

1

53( 53 iog(p)iog(<7))z" (53i°g(^)^) ~
(1 _ z)2

•

n— 1 p-\-q—n p

Malheureusement, nul ne sait si l'on peut adapter ce type d'arguments au cas

de C(/).
Encouragés par les divers résultats obtenus avec leur méthode du cercle,

Hardy et Littlewood ont également conjecturé que le Théorème 17 décrit

correctement le comportement de G(n). De son côté, Schinzel [45] est parvenu
à adapter l'heuristique de Bateman et Horn aux problèmes de type Goldbach.

On reprend les notations du début du paragraphe 2: soit /i,/2,...,/^ une

famille convenable de polynômes et posons / /1/2 • • -fk • Soit fo(X) E Z[X\
de terme dominant positif. Posons N(n) #{m > 1 : n — fo(rn) > 0},
u(n,p) #{1 <m<p 0 [p]} et ho deg(/0).
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CONJECTURE 8 (Schinzel). Lorsque n +00 de sorte que n —fo(X) soit

irréductible et que, pour tout premier p, il existe m > 1 tel que p ne divise

pas f(m)(n —fo(jri)), on a

#{m < n :/i(m),... ,/&(ra) et n —fo(m) premiers}

N(n)((-i)"">-^)h()h[ hk y V V p) \ log

Le cas k= 1, /o(X) =/i(X) X correspond à la conjecture de Goldbach.

13.2 Goldbach et Golomb

Pour obtenir une version quantitative de la conjecture de Goldbach, Hardy
et Littlewood [28, p. 38] notent que la fonction

n— 1

g(n) A(&)A(n — k)
k=)

est celle qui s'impose le plus naturellement. Cependant, en raison de la

dépendance en n du sommande, la méthode fonctionnelle de Golomb ne peut

pas être utilisée de la même manière que pour la conjecture de Bateman-Horn.

De plus, pour appliquer l'identité (13), il faut restreindre la sommation aux
seuls entiers k tels (&, n) 1 et étudier

n— 1
1

00 n— 1

(20) S(n) V*)A(« - *)
2

l,(d) k)£2(d) Y, 1 '

k=l d= 1 k= 1

(k,ri)= 1 (k,n)=\,d\k(n—k)

Nous donnons maintenant un argument analytique permettant d'estimer
S(n) d'une manière certes moins élégante que dans le cas de Bateman-Horn
mais que nous espérons assez plausible. Nous montrons en fin de paragraphe

pourquoi, conjecturalement, g(n) et S (n) ont le même comportement asymp-
totique.

Notons A(?z, d) la somme finie tout à droite de (20) : on a évidemment

A(n,d) — 0 si (<i, n) >1 ou si d > maXkk(n — k) — n2/A. De plus, si d — p
est premier et si (n,p) 1, on a

A(n,p) 2 ^/«(/•)
r\n

rp\
2p(ri) 0,, Ntp(ri)h R(n,p) h

avec R(n,p) 2^r|n< le nombre de diviseurs de n)
et N(d) Nx(n-X)(d)- On peut espérer que pour d quelconque, la fonction

R(n,d) définie par
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(2i, AM=mm+R(,,tJ)
a

soit petite9) en un certain sens. Notons que l'écriture (21) est typique des

méthodes de crible, où l'on cherche à approcher une fonction arithmétique
compliquée par des fonctions plus simples, multiplicatives par exemple: ici,
cela revient à quantifier le fait que les conditions (k, n) --- 1 et d | k(n- k) sont
plus ou moins « indépendantes » pour un entier générique k lorsque (d, n) 1.

Si l'on pouvait négliger la contribution due à R(n,d), on obtiendrait alors

l'approximation

p, fin) /̂*(</) log \d)N{d)<p(n)^9w J- ^ -d — ^ +«<»><»)),

d<n2/4 d= 1

(d,n)=1 (d,n)=1

puisque la série est convergente. Or on montre que

ti(d)\og2(d)N(d)oo

S d V(n)
p

(d,n)—l

=^n

(22) S(«)~2p[h -H—Ï
p> 3 7 p\n

et N{p) 1 si p | n tandis que N(p) 2 si p \ n. Si n est impair, on a

donc N(2) 2 et le produit est nul, ce qui va dans le bon sens. Si n est

pair, des manipulations immédiates donnent alors

1 vnp_1
I ip\n

p> 3

en utilisant le fait que o(p(n)) o{n).
Estimons maintenant g{n) — S(^) lorsque n est pair. Puisque (&, n) > 1,

pour que A{k)A{n — k) ^ 0, le nombre k doit être une puissance d'un
diviseur premier de n donc doit lui-même diviser n. En majorant simplement
A{k)A{n — k) par log2(n), on a donc

n— 1

(23) 0 < g(n)-S (n)— A(k)A(n -
k=l

(k,n)> 1

< A(A:)A(w — k) < log2(w) r(^z) <C ne

k\n

9) Il s'agit évidemment du cœur du problème: prouver que l'effet de R(n,d) se dilue
finalement dans un terme d'erreur correspond au problème de l'inversion limite-série dans le cas
de la conjecture de Bateman-Horn.
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pour tout e > 0 (par la majoration classique r(n) <C n£ : voir [50, p. 83,

Corollaire 11]). Comme (22) suggère que SÜ0 ^ n, on déduit donc de (22)
et (23) que

k= 1 p>3 ^ {P } '
p\n

P

P> 3

qui est l'une des variantes de l'estimation prédite par Hardy et Littlewood [28].
De tels arguments s'appliquent probablement à la conjecture de Schinzel
énoncée au paragraphe 13.1. Enfin, rappelons que le théorème le plus proche de

la conjecture de Goldbach est celui de Chen [9] : « Tout entier pair suffisamment

grand est la somme d'un nombre premier et d'un entier produit d'au plus
deux nombres premiers. »

Remerciements. Ils vont à K. Conrad pour ses commentaires pertinents

qui nous ont permis d'améliorer une version préliminaire de ce texte.
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