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CAUCHY-DAVENPORT THEOREM IN GROUP EXTENSIONS

by Gyula KAROLYI*)

ABSTRACT. Let A and B be nonempty subsets of a finite group G in which
the order of the smallest nonzero subgroup is not smaller than d = |A] + |B| — 1.
Then at least d different elements of G have a representation in the form ab, where
a € A and b € B. This extends a classical theorem of Cauchy and Davenport to
noncommutative groups. We also generalize Vosper’s inverse theorem in the same
spirit, giving a complete description of critical pairs A, B for which exactly d group
elements can be written in the form ab. The proofs depend on the structure of group
extensions.

1. INTRODUCTION

Let G # 1 be any group. Denote by p(G) the order of the smallest
nontrivial subgroup of G. If G is finite, then p(G) equals the smallest prime
divisor of the order of G. On the other hand, p(G) = oo if and only if G
is torsion free. For any prime number p, we will denote by Z, the group
of p elements. Somewhat unconventionally, throughout this paper we will use
multiplicative notation even in the case of Abelian groups.

For nonempty subsets A,B C G with |A| =k and |B| = ¢, define

AB={ab|acA,be B}.

According to the Cauchy-Davenport theorem ([2], [4]), |AB| > k+ ¢ — 1
holds if G = Z,, where p is a prime number such that p>k+¢—1. This
result has been generalized in several ways, see e.g. [3, 23, 24, 25, 27].

In particular, the following improvement can easily be obtained from
Kneser’s theorem ([19], [21]) or can be proved directly with a short combi-
natorial argument, see [16].

*) On leave from Eo6tvos University, Budapest. Research partially supported by Hungarian
Scientific Research Grants OTKA T043623 and T043631.
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THEOREM 1. If A and B are nonempty finite subsets of an Abelian group
G such that p(G) > |A| + |B| — 1, then |AB| > |A| +|B| — 1.

Kneser’s theorem cannot be extended to noncommutative groups in a natural
way ([22], [28]), and the simple combinatorial proof does not work either.
Denote by pg(k,f) the minimum size of the product set AB where A and
B range over all subsets of G of cardinality k and ¢, respectively. For finite
Abelian groups G, the function p has been exactly determined by Eliahou,
Kervaire and Plagne [7]. Some partial results in the non-Abelian case were
found recently by Eliahou and Kervaire ([5], [6]). In particular, they proved
the inequality pg(k,¢) < k+ ¢ — 1 for all possible values of k and ¢ when
G is a finite solvable group. That equality holds here for k+¢—1 < p(G), a
case in which the upper bound is folklore, is contained in the following result
that we found extending some of the ideas developed in [14, 15, 17].

THEOREM 2. If A and B are nonempty subsets of a finite group G such
that p(G) > |A| + |B| — 1, then |AB| > |A| + |B] — 1.

Based on the theory of group extensions, the proof of this result is
surprisingly simple. Most of this paper is devoted to the study of critical
pairs A, B for which equality is attained in the above theorem.

According to Vosper’s inverse theorem [26], if A, B are nonempty subsets
of Z, such that [AB| = |A| +|B| — 1, then cither |A[ + |B| — 1 = p (that is,
AB = Z,), or one of the sets A and B contains only one element, or
|AB| = p — 1 and with the notation {c} =Z, \ AB, B is the complement of
the set cA~! in Z,, or both A and B are (geometric) progressions with the
same common quotient. Hamidoune and Rgdseth [12] go one step further; they
characterize all pairs A, B with |AB| = |A| + |B|. An extension of Vosper’s
theorem to arbitrary Abelian groups is due to Kemperman [18]. For a related
result, see Lev [20].

Vosper’s theorem has been extended to torsion free groups by Brailovsky
and Freiman [1]. A generalization to arbitrary noncommutative groups has
been obtained by Hamidoune [10]. To state it, we first have to recall the
following notion. Let B be a finite subset of a group C such that 1 € B. B is
called a Cauchy-subset of G if, for every finite nonempty subset A of G,

|AB| > min{|G|, |A] + |B] — 1} .

If the group G is finite, then a subset S that contans the unit element is
known to be a Cauchy subset if and only if for every subgroup H of G,
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min{|SH], |HS]} > min{|G], |H] + |$| — 1}

see Corollary 3.4 in [10]. Now Theorem 6.6 in the same paper can be stated
as follows. (Here (g) denotes the subgroup generated by the element q.)

THEOREM 3. Let G be a finite group and let B be a Cauchy subset of G
such that |G| is coprime to |B|—1. Assume that |AB| = |A|+|B|—1 < |G|—1
holds for some subset A of G. Then either |A| = 1, or A = G\ aB~! for
some a € G, or there are elements a,b,q € G and natural numbers k, I
such that

A ={a,aq, ag’,. .. ,aqk_l} and B = (G\ (g)b)U {b,qb,q%, ... ,ql_lb} _

Since without any loss of generality we may assume in Vosper’s theorem
that 1 € B, and any such B with |[B| > 2 is a Cauchy subset of Z,, Vosper’s
theorem follows immediately from the above result of Hamidoune. Note that
if G is not a cyclic group of prime order, then a subset B of G with
2 < [B| < p(G) is not a Cauchy subset in general. Thus the following result
gives a different kind of generalization of Vosper’s inverse theorem, more in
the spirit of Theorem 2.

THEOREM 4. Let A, B be subsets of a finite group G such that |A| = k,
|B|=¢ and k+{—1<p(G)— 1. Then |AB| =k+¢—1 if and only if one
of the following conditions holds :

G) k=1or=1:
(i1) there exist a,b,q € G such that

A ={a,aq,aq’,. .. ,ag" "} and B= {b,qb,q’b, . .. ¢ 'b};

(i) k+ ¢ — 1 = p(G) — 1 and there exist a subgroup F of G of order p(G)
and elements u,v € G, z € F such that

ACuF, BCFv and A=u(F\zvB™").

Note that the assertions of both Theorems 2 and 4 are obvious if p(G) =2.
Thus in view of the Feit-Thompson theorem [8], it is enough to prove the
assertions for solvable groups. Given that the results hold for cyclic groups
of prime order, the natural approach is then to transfer the results to group
extensions. In the case of Theorem 2 this is relatively simple, and depends
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only mildly on the structure of the extension, see Lerama 7. We prove this
result in the next section. The proof of Theorem 4 is more delicate; in this
case we cannot directly transfer the result to group extensions. In Section 3 we
study how much the general approach of the previous section can contribute
towards the characterization of critical pairs if we also assume that the group
H in Lemma 7 is a cyclic group of prime order, meaning that we can also take
advantage of Vosper’s inverse theorem. We complete the proof of Theorem 4
in the last section, where we finally take into account the specific structure
of cyclic extensions. The proof also relies on Hamidoune’s result Theorem 3.

Finally we note that the following alternative proof of Theorem 2 has been
suggested by Hamidoune [11]. Let A and S denote nonempty finite subsets
of an arbitrary group G. Denote by (S) the subgroup generated by S and
by v(S) the mininum order of an element in S. According to a result of
Hamidoune [9], if A UAS # A(S), then

IAUAS| > |A| + min{|S], v|S|} .

Now let A and B be arbitrary nonempty finite subsets of G satisfying
IA| + |B| =1 < p(G). If |B| = 1, then obviously AB| = |A| + [B| — 1.
Otherwise, replacing A by Ab and B by b~ !B for some element b € B, we
may assume that 1 € B. Let § = B\ {1}, then v(S) > p(G) and [($)| = p(G).
Moreover, A UAS = AB. Thus either AB = A(S), in which case

|AB| > [(S)| > p(G) > |A| + |B| - 1,
or the above theorem implies that
|AB| = |A UAS| > |A| + min{|S], »(S)} = |A| +[5] = |A| +[B[ - 1.

Even though this argument extends Theorem 2 to infinite groups, we feel
that our direct approach is more transparent. We also depend on our proof in
order to derive Theorem 4.

2. PROOF OF THEOREM 2

For simplicity, we say that the group G possesses the Cauchy-Davenport
property if for any pair of nonempty subsets A, B of G with p(G) > |A| +
IB| — 1, we have |AB| > |A| + |B| — 1. In view of our previous remarks,
Theorem 2 can be reduced to the following
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THEOREM 5. Every finite solvable group G possesses the Cauchy-
Davenport property.

Let G = Go > G; > --- > G, = {1} be a composition series of G.
Here every composition factor G;/G;,; is a cyclic group of prime order, and
the length of the series r = r(G), being equal to the total number of prime
divisors of the order of G, does not depend on the particular choice of the
composition series. If G/N = H for some proper normal subgroup N of G,
then |G| = |N|-|H| and thus p(G) = min{ p(N), p(H)}. We just remark that
even if the group G is not finite, the inequality p(G) > min{ p(N), p(H)}
is not difficult to verify. Since every cyclic group of prime order has the
Cauchy-Davenport property, Theorem 5 follows easily by induction on r from
the following lemma.

LEMMA 6. Let G be an arbitrary group with a proper normal subgroup N.
Assume that p(G) = min{ p(N), p(G/N)}. If both N and G/N possess the
Cauchy-Davenport property, then so does G.

Before we indicate how this lemma follows from a more general statement,
we briefly recall the structure of general group extensions, following the
terminology of [13]. Namely, if H = G/N, then the group G can be
reconstructed from N and H as follows. There exist a map f: H x H — N
and for every h € H an automorphism 1, € Aut(N) such that the following
conditions hold for every n € N and h;,hy, h; € H :

@ fA,h)=flh, 1) =1;

(i) f(h1, h)f(hiho, h3) = O, (f(ha, h3)) f(hy, hahs) ;
(i) I, O, (n) = f(h1, ha)Op,n, (0) fhy, h) ™

(iv) ¥, is the unit element of Aut(N).

Then G is isomorphic to the group we obtain if we equip the set of
ordered pairs {(n,h) | n € N,h € H} with the multiplication

(n1, h)(na, hy) =2 (ny 9, () f(hy, o), i)

The behavior in the second coordinate is just as in the case of direct product,
thus the properties of H can be exploited in a natural way. Note also that for
every hi,h, € H, the mapping

n— 9y, (n) f(h, hy)
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is an N — N bijection. This is the key fact that allows us to exploit also
the properties of N. Now it is clear that Lemma 6 is a special case of the
following statement.

LEMMA 7. Let N and H be arbitrary groups that possess the Cauchy-
Davenport property. Assume that bijections ©p, p,, Ynn: N — N are given
for every hi,hy € H. Define a binary operation on the set of ordered pairs
G = {(n,h)|n € N,h € H} as follows:

(11, 1) (12, h2) = (Pny i (1) Wn 1y (12), 1 H2) -
Then |AB| > |A|+|B| — 1 holds for arbitrary subsets A, B of G which satisfy

|A| 4+ |B| — 1 < min{ p(N), p(H)} .

Proof. The assertion is obvious if one of the sets A and B is infinite.
Thus we assume that A, B are finite subsets of G such that |A| + [B] — 1 <
min{ p(N), p(H)}. Write k = |A|, ¢ = |B] and let A = C, U - UG
and B = D, U---UD,, where C; = {(aj,¢) 1 < i < k} and
D; = {(byj,d) | 1 < i < ;). We assume that C = C1,y...,Csy and
D = {d,...,d;} are subsets of H of cardinality s and ¢, respectively.
We will also assume that k; < --- < k; and ¢ < --- < ¥¢,. Thus, s <k,
t<{and >, ki =k, Z?;lfi — ¢. Introduce also A; = {a; | 1 <j < ki}
and B; = {b; | 1 < j < {;}; they are subsets of N. In C;Dj, the second
coordinate of each element is c¢;d;, whereas the first coordinates form the set
Peid,(Ai)e, 4,(By) . Since @c, q and ¢4 are N - N bijections and

ki+ ¢ —1<k+{¢—1<min{pW), p(H)} < pN),
our hypothesis on the group N implies that
|CiDj| = |@e,.q(A)be,.aq (B > ki + 4 -1 > 1

holds for every 1 < i < s and 1 < j < t. Due to the symmetry of the
multiplication introduced on G, we may assume without any loss of generality
that s > 7. Consider the numbers c¢d;, c2d;, ..., cdy € H they are s different
elements of the set product CD. Since s+t—1 < k+{¢—1 < p(H), our
hypothesis on the group H implies that |[CD| > s+t — 1. Therefore there
exists a set I of t — 1 pairs (v,d) such that the numbers
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Cidt (] <i < S)7 Cydé ((735) € I)
are all different. Since the sets
GD, (1<i<s), CDs ((v,0)€l)

are pairwise disjoint subsets of AB, it follows that

(D [AB| > Y |CD|+ > [CyDy]
i=1 (v,0)€l
(2) 22(&4—&—1)4—0—1)
i=1
3) =k+th+ G -0 —s+t—1
@) =k+th+G-—0—-1) -1
(5) >k+0-1,

as was to be proved.

3. AN INTERMEDIATE STEP

Now we take a closer look at the proof of Lemma 7. For the rest of this
section we assume that the finite sets A, B satisfy

[AB| = |A| + |B| — 1 < min{ p(N), p(H)} — 1.

Then we must have equality in (5), which means that ¢; = by =--- =¥ and
also that either s =¢ or ¢, = 1 must hold. Note that we have assumed s >t.
In the case ¢ > s a similar argument yields that k; = ky = --- = ks and,

in addition, either s =¢ or k, = 1. Thus, if s > =1, then ¢ = ¢y =1, and
similarly, if t >s=1, then k= 1.

Assume now that s,r > 2. If H is a cyclic group of order p for some
prime number p, then H clearly possesses the Cauchy-Davenport property.
In (1) we also must have equality, which means that

ICD| =s+t—1<k+{—1<min{p\N), pE)} ~1<p—1.

Vosper’s inverse theorem applied to H leaves us two possibilities, one being
that C = H\ hD™' for some h € H, but this only can occur if § = k,
¢ =t and k+ /¢ = p < p(N). The other possibility is that C = {c|,...,c}
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and D = {d,,...,d}, where ¢, = ¢¢~! and d] = dg~' for suitable
elements c¢,d,q € H. There is an index 1 < o < s such that ¢, = cl,.
Clearly,
CD = {cd, cdq, cdq, . .. ,cdg*t%)
= {c\d},chd), ... chdy,chdy, ... Chdl Coidy,y . cdy}
Writing C/ = C;, ki = k; if ¢, =¢; and D} = D;, £ = {; if d; = d;, and
noticing that the sets

Cll /17CéD/l7 o '7C:1 llaC;le s % 0y C;D;7C;+ID;7 .. 7C;D;
are pairwise disjoint subsets of G that satisfy

CDj = K+ 61>k,

1

we may argue that

N

a—1 t
AB| > > |CiD| + Y [CLD| + Y 1G]]
i=1 i=1

i=a+1

v

! s—1
Sh+l-D+D ki
=1 i=1
K t
=> ki+ Y i+ @Dk —1t
i=1 i=1

k4l —1+@— Dk, —1)
>k+0—-1.
From the conditions |AB| = |A| + |B| — 1 and r > 2 it follows that k; =1,

that is, s = k. A similar argument also yields ¢ = /.
We summarize these observations in the following lemma.

LEMMA 8. Let N be an arbitrary group that possesses the Cauchy-
Davenport property, and let H =Z,, for some prime number p. Assume that
bijections op, pys Y .n: N — N are given for every hi,h, € H. Define a
binary operation on the set of ordered pairs G = {(n,h) | n € N,h € H} as
follows :

(n1, h)(n2, ha) =: (¢, (0 )Y n, 1 (n2), hi )
If A, B are subsets of G which satisfy
|AB| = |A| + |B| — 1 <min{p®N), p-— 1,

then (using the notations introduced in the proof of Lemma 7) one of the
following conditions holds :
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@ k=1o0rt=1;

(b) k,0>2 and s=t=1;

() s=k>2,t=4>2 and C,D are progressions in H with the same
common quotient;

(d s=k>2,t=0>2 k+{=p<pN) and C = H\ hD™! for a
suitable element h € H.

4. PROOF OF THEOREM 4

The ‘if’ part is quite simple. First, if k = 1 then |AB| = |B| = ¢, and if
¢ =1 then |AB| = |A| = k. Next, if the second condition holds, then again

|AB| = [{ag'b | 0<i<k+(—-2}=k+0-1,

because the order of g is at least k + /. Finally, in the third case we also
have

|AB| = [uFv \ {uzv}| = |F| -1 =k+£—1.

To prove the necessity of the conditions, we may assume that the group G
is solvable. We proceed by induction on the length of the composition series
of G. If r(G) =1 then G is a cyclic group of prime order and the result
is contained in Vosper’s theorem. So we assume that r(G) > 2 and that the
theorem has been already verified for every finite solvable group G’ with
r(G") < r(G). Choose a normal subgroup N < G such that H = G/N = 1Z,
for a prime number p. Then G is a cyclic extension of N by H, and can be
reconstructed from N and H = (h) as follows. There is an element ny € N
and an automorphism ¥ € Aut(N) such that ¥(ny) = ng, Y (n) = nonn,, ' for
every n € N and the multiplication on the set of ordered pairs

introduced as

(n1, K)o, h7) = (ny 9 (o) f(HE, b)) |
where
o { i o
fh hiy = mitri<p
no ifit+j>p

makes Go a group isomorphic to G, which we may as well identify with G.
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In particular, the function f: H x H — N satisfies among others the relations

(6) fr*, 1) = f(1,h")
and
(7) O (f(h",h?)) = f(h", ")

for every integer i and 0 <wu,v <p-—1.
According to Theorem 2, N possesses the Cauchy-Diavenport property. We
also have

A| + |B| = 1 < p(G) — 1 = min{ p(N), p} — 1.
Thus we may apply Lemma 8 with

Opip = 1d and Yy pi(n) = () f(h' h).
Accordingly, we distinguish four cases.
(@) If k=1 or ¢ =1, then condition (i) holds.
() If k,¢ >2 and s =t =1, then |A;| =k =k and |B;| = ¢; = £. Thus,

A={@,h®) | 1<i<k} and B={0,h")|1<j<¢}
with suitable integers 0 < a, 3 < p — 1. Therefore
AB = {(a9*(b)) f(h*, hP),h*TP) | 1 < i<k, 1 <j< L},

Put B) = {9%(b;) | 1 <j < (}. Then A, B are subsets of N of cardinality
k and ¢, respectively. Since every element of AB has the same second
coordinate A*T# and multiplication by f(h®,hP) is an N — N bijection,
these sets satisfy

A1B,| = |AB| =k + € —1 < p(N) - 1.

N is a finite solvable group with r(N) = r(G) — 1, thus our induction
hypothesis implies that either (bl) there exist elements a,b,q € N such that
A = {a,aq,...,a¢"" '} and B = {b,qb,...,¢" 'b}, or 02) k+£—1=
p(N) — 1 = p(G) — 1 and there exist a subgroup F of N of order p(N)
and elements u,v € N, z € F such that Ay C wF, B C Fv and
Ay =u(F\z2vB)™").

We elaborate on these two subcases separately.
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(bl) We prove that in this case condition (ii) holds. More precisely, we
prove that

®) A= {ao,a0qo,--.,a0qs '} and B = {by,qobo,-..,qy by},

where ap = (a,h*), by = (9~*(b),h?) and go = (I~%(g),1).

We may assume that a;; = aq' and biy1 = 97%(¢’b) holds for
0<i<k—1and 0<j<{¢-—1.Thus (aj,h*) = ay and (b;,h?) = by. We
proceed by induction as follows. Assume first that we have already verified
that (a;, h*) = apqy ' holds for some 1 <i<k— 1. Then

aygy = (ai, K*)qo = (ag' ™", K*)WI ™ (g), 1)
= (g™~ (@)f(h*, 1), h*) = (aq', h™) = (@i1, h®).
On the other hand, if we have (b;, hPy = qé_lbo for some 1 <j</¢-—1, then
@bo = qo(b, h¥) = (™"(g), DW~*(¢"~'b), h)
= (@9 WO~ )L, h%),h%) = @~ (¢'b), ) = (41, 1P,
since 9, and thus also ¥~¢ is an automorphism of N. This verifies (8).
(b2) In this case we can write
Ay = {uay,udy, . . . ud} and B, = {bv,byv, ... by},
where a; = ua;, 9*(b;) = ij and
9) {ar,dg,...,a} = F\z{b]",b;",... b, '}.

Let Fo = {(07%(f),1) | f € F}; then |Fo| = |F| = p(N) = p(G), and clearly
Fy is a subgroup of G isomorphic to F. Introduce also uy = (u,h*) and
vo = (W~%(v), h?), and consider the sets Ao, By C Fy defined as follows:

Ao ={(W™%@), 1) | 1<i<k} and  By={(W %), 1) | 1<j<k}.
Then A = upAy C upFy, because for any 1 < i<k,
uo(¥~ (@), 1) = (u, KW~ %(ar), 1)
= W~ @)) f(h*, 1), h*) = (ud;, h*) = (a;, h*)
holds. Similarly, for every 1 <j < ¢ we have
W~ *(by), vy = (W~%(b)), D®~*(v), h?)
= (W™’ f(1, h%), h?)
= (9™ (b), h’) = (b;, h®),
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implying that B = Byug C Fovo. Finally, applying ¥~ to Equation (9) and
observing that the map ¢: N — G defined as ¢(x) = (x,1) induces a group
isomorphism from ¥~%(F) onto F,, we find that Ay = Fo \ zoB, ' where
720 = (97%=2), 1) € F. Consequently,

A = upAp = up(Fo \ 20(Bug )™ = u(Fo \ zovoB™ 1),

justifying that condition (iii) holds in this case.

(c) s=k>2,t=4¢>2 and C, D are progressions in H with the same
common quotient. In this case we may write

A:{(Cli,C,‘) | ISZSk} and B:{(bj74)| 1§]§£}7
where ¢; = h*T=D7 and d; = hPTU=D7 with suitable integers 0 < a, 3,7 <
p—1,~#0. Let ap = (a1,¢1) = (a1,h®), by = (by,dy) = (by,h") and
qo = (x,h") where

x =0 a(fh*, h) 7).
This implies that
aoqo = (ar, h*)x, k) = (@) f(h*, h7), h°F7) = (ap, h*T7) = (a2, ¢2) .
We claim that in general,
(ac) =aogy ' and  (bjd) =gy 'bo

holds for every 1 < i < k and 1 < j < /, indicating that condition (ii) is
satisfied in this case.
Let 1<i<k,1<j</¢and m=i+j—2. Then

(@i, c)(bj, dy) = (a9 TV (b)) f(ho =07 p BHG=D7) poctftmyy

Thus, for each 0 < m < k+¢—2, there is an element x,, of AB whose second
coordinate is A*tAt™Y  Moreover, the facts that p is a prime, 1 <y <p—1
and k+ ¢ — 1 < p imply that the numbers h*+P+m (0 < m < k+{—2)
are k + ¢ — 1 different elements of H, thus the element x, € AB must be
unique. It follows that

(ai, ci)(bj, d;) = (ai, ci )by, dyr)

holds whenever i+j = i’ +j’ . We know that (az, c2) = (ai, c1)qo . For arbitrary
1 <j<?¢~—1 we have

(a2, c2)(bj,dj) = (ar, c1)(bjy1,djv1),

which then implies go(b;,d;) = (bjy1,dj+1). Thus, (b, dj) = g}~ 'bo follows
by induction on j. In particular, (b2, d>) = go(b1,d;). Thus the relation
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(@iy1,cit1)(b1,d1) = (ai, c;)(ba, d2)

implies (@i+1,ciy1) = (a;,ci)qo for every 1 < i< k— 1, and we also obtain
(aj,c;) = aoqf)‘l by induction on i.

d s=k>2,t=0>2, k+{{=p<pWN) and C = H\ hD~! for a
suitable element 2 € H. Let us note first, that we may assume ¢ > k. This is
because A = u(F \ zvB™') is equivalent to B = (F \ A~ 'uz)v and therefore,
by reversing the multiplication on G (that is, introducing a+b = ba) we may

exchange the roles of A and B without changing the statement of Theorem 4.
Once again, we may write

A={(anc) | 1<i<k} and B={b,d)|1<j<Fl}.
Introduce A = (a;,c;)"'A and B = B(b;,d;)~!, then we can write
A={lé) | 1<i<k} and B={(b,d)|1<j<1},

where (d1,¢1) = (b1,d;) = (1,1) € AN B, and writing C = {¢; | 1 <i <k}
and D = {d; | 1 <j < (}, we have |A| = |C| =k, |B| = |D| = ¢, and
C=H\hD"' holds with /i = [ 'hd;". In addition, clearly |AB| = |AB| =
|A| + |B| — 1. We distinguish two cases.

(d1) Go = (B) # G. Now we claim that A C Gy. Indeed, if a € A\ Gy then
(1,1)B and aB are disjoint subsets of AB, yielding

AB| > 2|B| =20 > p > |A] + |B| - 1,

a contradiction. Note that Gy is a proper subgroup of G, hence solvable with
r(Go) < r(G) and p(Gy) > p(G). Thus we may apply our induction hypothesis
to conclude that either there exist a, b, gy € Gy such that

A = {ad,aqo,daq}, . .. ,dqg_l} and B = {b,qob,q3b, ... ,qg_lb} ,

or p(Gp) = p(G) and there exist a subgroup F of Gy < G of order p(G) and
elements u,v € Gy, z € F such that

ACuF.BCFv and A=uF\zwB™ ).
In the first case we have
A= {aOJ aoqo, aoq(2)7 v . 7a0qg—1} and B = {b07 q0b07 Q%b(% s 7qg_lb0}

with ay = (a1,c1)a and by = b(bl,dl), and thus condition (ii) holds. In the
other case, since (1,1) € ANB, we may assume u = v = 1, and writing
up = (ay,c1), vo = (b1,d;) we may conclude that
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ACugF,BC Fvy and A =uy(F\zwB™"),
implying condition (iii).

(d2) Gy = (B) = G. In this case we show that B is a Cauchy-subset of G.
To see that, let Hy be any subgroup of G. If Hy = G, then clearly

min{|BHo|, [HoB|} = |G| > min{|G], |Ho| +|B] — 1}
If Hy={(1,1)}, then
min{|BHol, |HoB|} = |B] = min{|G], [Ho| + |8 — 1}
Otherwise B  Hy, |Hy| > p(G) > |B|, and thus
min{|BHo|, |HoB|} > 2|Ho| > |Ho| + |B| — 1 = min{|G]|, |Ho| +|B| — 1}.

Therefore we can apply Theorem 3. Since |A| # 1 and |A| + |B| < |G], it
follows that there are elements a,b,q € G and a natural number / such that

A={a,aq,aq’,...,ad""} and B=(G\(g)b)U{b,qb,¢’b,....q" 'b}.

If we had (q) # G, we would have |G| > p(G) |(q)b
follow that

, and thus it would

of < PG) — 1 p(G) —1
{=|B| > ——— —
B2 =519 = =G

a contradiction. Consequently, (¢g) =G, [ =/,

(p(G))* > p(G) > ¢,

A ={a,aq,aq’,...,ad""'} and B={b,qb,qD,... ,q"7'bY},
and with the notation ag = (ay, c1)a, by = b(b;,d;) we see that
A = {ao, aoq, aoq’*, - - - ,apg*"'} and B = {by,qbo,qbo, ... .¢" by},
implying that condition (ii) must hold.

This concludes the induction step, and the proof of Theorem 4 is complete.
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