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Proof. Let K be the disjoint union of the K(G;, 1) for i € I and form the
open wedge K (i.e. add an arc to an external basepoint for each component)
and then construct L, a K(G, 1), by attaching cells to K.

Let L be the universal cover of L and K the inverse image of K in
L (which comprises a number of disjoint copies of universal covers of the
K(G;,1)’s). Then form L by squeezing each component of K toa point.
Then, since we are squeezing contractible subcomplexes, L is contractible
and G acts freely off the O-skeleton. Further the stabilisers of the vertices
are the conjugates of the subgroups G;, so we have to prove that each finite
subgroup F of G has a global fixed point.

To do this we use Theorem 1.1 with Q = L. The space L is contractible,
so we have hypothesis (a). We have to check (b).

Now if H is a subgroup of G then E/H is formed from a cover of L by
squeezing components of the preimage of K. But the cohomology hypotheses
lift to any cover (since they are given “for any G-module”) so Z/ H is formed
by squeezing a subspace which carries all but finitely many of the cohomology
groups and hence by excision it has finite (co)homological dimension. Thus
we have hypothesis (b) of Theorem 1.1.

REMARK 4.2. The Global Fixed-Point Theorem is stronger than needed
to prove the Bogley-Pride or Serre theorems. In these applications O was
contractible instead of just Z/pZ-acyclic for certain p and Q/(g) was either
finite dimensional or had finite homological dimension with all coefficients.
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