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A FIXED-POINT THEOREM AND RELATIVE ASPHERICITY

by Max FORESTER and Colin ROURKE

ABSTRACT. We give short new geometric proofs of theorems of Bogley and Pride
and of Serre. Both follow quickly from a global fixed-point theorem. The Bogley-Pride
theorem concerns aspherical relative group presentations and was applied in [5] to the
multivariable adjunction problem. Serre’s theorem is a basic result concerning group
cohomology and finite subgroups.

1. INTRODUCTION

Suppose that a group G acts on a set X. We say that G has a global
fixed point if there is a point x € X which is the unique fixed point of each
element g € G. Let p be a prime. A space is said to be Z/pZ-acyclic if all
reduced homology (or equivalently if all reduced cohomology) groups with
Z/pZ-coefficients vanish. A space has finite Z/pZ-homological dimension if
all but a finite number of these groups vanish. This note is concerned with
the following theorem.

THEOREM 1.1 (Global Fixed-Point Theorem). Suppose that a finite group
G acts cellularly on a CW-complex Q freely away from the 0-skeleton.
Suppose further that

(@) for each prime factor p of |G

, Q is Z/pZ-acyclic, and

(b) for each element g of G of prime order p the quotient Q/{g) has finite
Z/pZ-homological dimension.

Then G has a global fixed point.
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The theorem is closely related to standard results proved using Smith
theory or Tate cohomology. A standard result in Smith theory states that if a
finite p-group acts simplicially on a Z/pZ-acyclic simplicial complex which
is finite-dimensional, then the fixed-point set is Z/pZ-acyclic [2, Ch. I,
Theorem 5.2]. In particular, if the fixed-point set is discrete then it consists
of exactly one point. A special case of Theorem 1.1 then follows directly.
(For a proof based on Tate cohomology, due to Swan [7], see [3, Ch. VII,
Theorem 10.5].)

We shall give a direct elementary proof of Theorem 1.1.

Further we shall apply the result to provide short geometric proofs of a
theorem of Bogley and Pride [1] about aspherical relative presentations and
of Serre’s Theorem [6] from which Bogley and Pride deduced their theorem.
Serre’s theorem is a basic result in group theory. A standard result states that
groups of finite cohomological dimension are torsion-free. Serre’s theorem 1is
effectively a relative version of this : if some subgroups of a group carry all the
high dimensional cohomology, then they contain all the torsion. See Section 4
for a precise statement. It has been applied in particular by Huebschmann [6]
to small cancellation groups and by Bogley and Pride [1] to aspherical relative
presentations. A special case of the Bogley-Pride theorem was applied in [5]
to the multivariable adjuction problem, where a short proof of this special
case was given. Our proofs here use similar ideas.

2. PROOF OF THE GLOBAL FIXED-POINT THEOREM
The theorem follows immediately from Lemmas 2.1 and 2.2.

LEMMA 2.1. Every non-trivial element g € G fixes a unique vertex of Q.

Proof. Denote Q/(g) by T and let f: Q — T be the natural projection.
STEP 1. If g has prime order p then g has at least one fixed point.

Suppose that g has no fixed points. We will inductively construct
Z/pZ-cycles ¢; in T in all dimensions. Start with ¢o any vertex and
let bo = f'cy. Then by consists of p points and hence is zero in
Ho(Q,Z/pZ) = Z/pZ. So by is the boundary of a 1-chain a; and we
define ¢; = f(a;). Now suppose that c¢; has been constructed. Let b; = f~1¢;
which is a Z/pZ-cycle in Q and which p-fold covers c;. Since Q is acyclic,
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b; is the boundary of a Z/pZ-chain a;; say. Then Ci+1 = f(ai+1) 1s the
next cycle.

We claim that all these cycles are non-zero in Z/pZ-homology. It then
follows that T has infinite Z/pZ-homological dimension, contradicting the
hypotheses. Hence ¢ has a fixed point.

To see the cycles are all essential notice that the construction is natural
and maps to a similar construction in the universal Z/pZ-bundle. We use
Milnor’s construction for the universal bundle, namely E = lim; x; P where P
is a p point space, *; denotes the i-fold join P Px*---x P (that is, i join
operations on i+ 1 copies of P), and the action is the join of the cyclic action
on P. If we apply the construction to the i-th stage %P — R = %P/ Z/pZ
then the cycles b; are the subsets ;P for j < i. So in this case b; is the top
(fundamental) cycle in *;P and is therefore non-zero. But if any of the cycles
¢j, J < i 1is zero, so are all subsequent ones and then b; would be zero. It
follows that c;, j < i are non-zero in R and hence, in the limit all the c; are
non-zero.

STEP 2. If g has prime order p then g has at most one fixed point.

Suppose g fixes at least two points (which must be vertices). Choose
two x,y say. Let ¢; be an arc in T from f(x) to f(y) and let by = f~!(cy)
(@ Z/pZ-cycle). Then b; bounds a chain a, in Q. Let ¢ = f(ap),
a Z/pZ-cycle in T. The construction now proceeds as in step 1.

We claim that as before all these cycles in T are non-zero in the
Z/pZ-homology. It then follows that 7 has infinite Z/pZ-homological
dimension, contradicting the hypotheses. Hence g has at most one fixed
point.

To see this consider the universal bundle E as before. We map Q — X(E)
(the suspension of E) by mapping x and y to the two suspension points and
any other fixed points to either suspension point. Now for each fixed point a
let A be its link in Q. By universality choose an equivariant map A — E.
Then a neighbourhood of a is mapped conically. Finally the map is extended
to map the rest of Q to E by universality. Then since the construction of
the classes ¢; is again natural it maps to a similar construction in X(E). But
here we are constructing the suspensions of the classes constructed in step 1
which are all non-zero.

To finish the proof of the lemma, suppose g has order n and fixes no
point of Q. If g* fixes a point x for some k > 1, then g~ also fixes gx
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(which is not x), and then a suitable power of g contradicts step 2. Hence
(g) acts freely on Q and then a power of g contradicts step 1. Similarly if
g has at least two fixed points, then a power of g contradicts step 2.

LEMMA 2.2. If a finite group G acts on a set X in such a way that each
non-trivial element fixes a unique point, then G has a global fixed point.

Proof. Let x, denote the unique fixed point of g. Note that h(xg) = Xpgp-1
and hence G acts on {x, | g € G— {1}}. So without loss we may assume
that X = {x, | g € G—{1}}. If |G| =1 the result i5 obvious so we may
assume that |G| > 1.

Denote the stabilizer of x € X by G,. Choose any x € X and let O C X
be the orbit containing x, and let n = |O|. By the orbit stabiliser theorem
|G| = n|G,|. Notice that if y € O then G, and G, are conjugate and hence
|G,| = |Gy|. Notice also that the hypothesis of unique fixed points implies
that if x # y then G, — {1} and G, — {1} are disjoint.

Now define S = {g € G — {1} | x, € O}. Then S is the union over
y € O of the disjoint non-empty sets G, —{1} and we have |S| = n(|G,|—1),
which implies that |S| > 1(|G| — 1). Since O was an arbitrary orbit there
is not room for another such set S and we must have S = G — {1}. Thus
|G| — 1 = n(|G,| — 1) which implies n =1 and G, = G. This completes the
proof of Lemma 2.2, and of Theorem 1.1.

REMARK 2.3. We do not need Q to be a CW-complex (or the action of
G to be cellular) for the proof of the Global Fixed-Point Theorem to work
but merely that the fixed points form a discrete set and the inclusion of the
fixed points is a cofibration.

3. THE BOGLEY-PRIDE THEOREM

Let (L,K) be a relative 2-complex (a CW-pair such that L — K is at most
2-dimensional). We say that (L,K) is relatively aspherical if the map

(K ULWY, K) = m(L, K)
is surjective. As shown in [4, 3.1-3.3], this occurs if and only if
(a) m(K)— m(L) is injective, and

(b) the inclusion-induced map Zm (L) Qzx k) m(K) -+ m(L) is an isomor-
phism.
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This is the natural topological notion of asphericity but it should be noted
that it differs from the combinatorial notion used in [1]. The difference concerns
the definition of irreducibility of diagrams representing elements of (L, K) ;
see [4].

THEOREM 3.1 (Bogley-Pride [1]). If (L,K) is relatively aspherical then
every finite subgroup of (L) is contained in a unique conjugate of m (K).

Proof. By adding cells of dimension > 3 we can arrange that all the
homotopy groups of K vanish in dimensions 2 and above. This does not
change the fact that (L, K) is relatively aspherical. The easiest way to see this
is to use the diagram interpretation used in [4]: relative asphericity means
that there are no irreducible diagrams over 7;(K) using the cells of L — K.
This only depends on 7{(K) and the form of the added relators and hence is
unchanged by a change in the higher homotopy groups of K. After adding
the new cells (L) is trivial.

Let L be the universal cover of L and K the preimage of K in L. Let L
be the 2-complex obtained from L by collapsing each connected component
of K to a vertex. Since each of these components is contractible, the map
L—Lisa homotopy equivalence, and so W](Z) and wz(i) are trivial. Then
since L is 2-dimensional, it is contractible.

Note that the induced action of m;(L) on L is free away from the
0-skeleton, and the vertices have stabilisers equal to the conjugates of 7;(K)
in m(L). Hence it suffices to show that every finite subgroup of m;(L) has a
global fixed point. But L is contractible and hence acyclic (for all coefficients)
and further it is 2-dimensional. Therefore every quotient has dimension 2 (and
hence has homological dimension 2 with all coefficients). So the Global Fixed-
Point Theorem applies and every finite subgroup of (L) has a global fixed
point as required.

4. SERRE’S THEOREM
We take the statement of Serre’s Theorem from Huebschmann [6].

THEOREM 4.1 (Serre). Let G be a group and {G;}icr a family of subgroups
such that for every q > gy the canonical map HY(G,M) — I, HY(G;, M) is
an isomorphism for every G-module M. Then each finite subgroup F of G
is contained uniquely in a conjugate of one of the G; (and does not meet any
other such conjugate).



236 M. FORESTER AND C. ROURKE

Proof. Let K be the disjoint union of the K(G;, 1) for i € I and form the
open wedge K (i.e. add an arc to an external basepoint for each component)
and then construct L, a K(G, 1), by attaching cells to K.

Let L be the universal cover of L and K the inverse image of K in
L (which comprises a number of disjoint copies of universal covers of the
K(G;,1)’s). Then form L by squeezing each component of K toa point.
Then, since we are squeezing contractible subcomplexes, L is contractible
and G acts freely off the O-skeleton. Further the stabilisers of the vertices
are the conjugates of the subgroups G;, so we have to prove that each finite
subgroup F of G has a global fixed point.

To do this we use Theorem 1.1 with Q = L. The space L is contractible,
so we have hypothesis (a). We have to check (b).

Now if H is a subgroup of G then E/H is formed from a cover of L by
squeezing components of the preimage of K. But the cohomology hypotheses
lift to any cover (since they are given “for any G-module”) so Z/ H is formed
by squeezing a subspace which carries all but finitely many of the cohomology
groups and hence by excision it has finite (co)homological dimension. Thus
we have hypothesis (b) of Theorem 1.1.

REMARK 4.2. The Global Fixed-Point Theorem is stronger than needed
to prove the Bogley-Pride or Serre theorems. In these applications O was
contractible instead of just Z/pZ-acyclic for certain p and Q/(g) was either
finite dimensional or had finite homological dimension with all coefficients.
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