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NEWTON-LIKE POLYNOMIALS OF LINKS

by Alexander STOIMENOW *)

ABSTRACT. We show that the coefficients of the Conway polynomial of special
alternating links satisfy certain inequalities.

1. INTRODUCTION

A classical theorem of Newton (see Theorem 53 in [8]) states that if all
the zeros of a polynomial P in R[x] are real, then [Pli-1[P)ir1 < [P],-2 for
any integer i with mindegP < i < maxdegP. (Here [P]; is the coefficient
of x' in P, and mindegP, max deg P are the minimal resp. maximal i
with [P]; # 0.) Call a polynomial satisfying these inequalities Newton-like:
if [Pli—1[P)is1 < [P]l-2 for any i, call P weakly Newton-like. In knot theory,
Newton-like polynomials (not necessarily with all zeros real) seem to occur
in special situations. Thus we advance the following conjecture :

CONJECTURE 1. (1) The Alexander polynomial of an alternating link is
weakly Newton-like, and (2) if Vi is the Conway polynomial of a positive
link of n(L) components, then ViV/z)- 1=I/2 js Newton-like.

Here the Alexander polynomial A and Conway polynomial V are the
polynomial invariants for links defined in [1] and [2], taking values in
Z[t,t7 '] and Z[z] resp. (The Alexander polynomial is defined only up to
units in Z[z,77']; we will choose the normalization depending on how it is
convenient in the context.)

There is strong empirical evidence for this conjecture. In particular, part (1)
(resp. part (2)) is true for (knots with) alternating (resp. positive) knot diagrams

*) Supported by JSPS postdoc grant P04300.



212 A. STOIMENOW

of at most 16 crossings. Part (1) is a natural strengthening of Fox’s “trapezoidal
conjecture” [5], proved by Hartley [9] for rational knots, and later in a more
generalized form by Murasugi [18]. In this paper, we shall prove part (2) for
the intersection of positive and alternating links, the special alternating links.
In fact, we prove

THEOREM 1. If L is a special alternating link, then any zero of V(\/z)
(is real and) lies in the interval [—4,0], or equivalently, all zeros of Ag lie
on the complex unit circle.

As explained above, part (2) of Conjecture 1 for special alternating links
follows immediately from Theorem 1 and Theorem 53 in [8].

To further motivate Theorem 1, let us mention that both special alternating
links and zeros of the Conway (or Alexander) polynomial have been an
object of study for some time. Such links occurred first notably in the work
of Murasugi [20, 21] and later for example in [3] (as building blocks for
homogeneous links) and [24]. They have a close relation to graphs, and
so our work can be translated in a graph-theoretical context [23]. (See in
particular part 12 of Theorem 3 therein'), which is a reformulation of the
Newton property of V.) As for zeros of the Alexander polynomial, they have
been studied over the years and have importance in particular for monodromy
of fibered links [27], divisibility [22] and orderability [26] of knot groups,
and statistical mechanical models of the Alexander polynomial [16]. Lehmer’s
question on the existence of a polynomial minimizing the Mahler measure
is also studied in the context of Alexander polynomials of links (see for
example [10, 30]). Empirical calculations led to the conjecture (as reported
to me by Murasugi, proposed by Hoste) that if z is a root of the Alexander
polynomial of an alternating knot, then e z > —1. Theorem 1 also proves
this conjecture for special alternating links (since for such links z = —1 is
not a root of A).

A brief overview of the paper is as follows. §2 contains some preliminaries
on polynomials and link diagrams. §3 explains the motivation for and main
tools in the proof of Theorem 1, the Tristram-Levine signatures. Some number
theoretic and analytic lemmas are prepared in §4. In particular Corollary 1
proves the case of Theorem 1 for knots and square-free (i.e., without double
zeros) Alexander polynomials. (When no double zeros occur, the implicit
function theorem easily does the required work.) Then in §5 the proof of the

') The reference given in [23] to [36] for the proof is outdated; the proof is given below in
this paper.
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general case of Theorem 1 is given, using Corollary 1 and an algebraic
approximation argument. The difficulty is that this approximation has to
be carried out from within the set of square-free special alternating knot
polynomials. We will require several tools from elementary number theory,
analysis and algebra, for example a theorem of Hilbert on irreducibility of
polynomials in 2 variables and the matrix formula for the discriminant of a
polynomial. We obtain the following approximation result, which applies in a
somewhat broader context:

PROPOSITION 1. Let for a class C of links,
Ze={z€ C\{0}:3LeC:Az) =0},
and
Z,={z€C\{0}:3IKe€C:Ax(zx) =0, K knot and Ax square-free} .

Then Z: C Z—é (where bar denotes closure) for C being one of the classes
of non-split (a) alternating links, (b) positive links, or (c) special alternating
links.

The paper concludes with some applications of Theorem 1 in §6.

One can (using more advanced perturbation theory for linear operators) give
a more direct proof of Theorem 1, which is entirely analytic and unrelated to
Proposition 1. The approach taken here replaces most of the analysis by algebra,
and is a continuation of our previous study of Tristram-Levine signatures [36].
Since these signatures are predominantly known as concordance invariants, we
will build on the work here to address elsewhere concordance issues of special
alternating (and more general) knots.

2. PRELIMINARIES ON POLYNOMIALS AND LINK DIAGRAMS
Let [X];« = [X], be the coefficient of 7 in a polynomial X € Z[r~']. For
X#0,let Cx ={a€Z:[X], #0} and
mindeg X = min Cx, maxdegX = max Cy,
span X = maxdeg X — mindeg X

be the minimal and maximal degree and span (or breadth) of X, respectively.
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It makes sense to set mindeg0 := oo and maxdeg( := —oo. Similarly one
defines for X € Z[x,,...,x,] the coefficient [X]y for some monomial Y in
the x;, and mindeg, X etc.

In the sequel the symbol C denotes a not necessarily proper inclusion.
For a set S, the expression |S| denotes the cardinality of S. Finally, let Re
and Sm denote the real and imaginary part, respectively. We will also write
i = +/—1 for the imaginary unit, in situations where no confusion (with its
use as an index) arises.

In the sequel g(K) denotes the genus and x(K) the Euler characteristic

of K (which are the minimal genus resp. maximal Euler characteristic of an
orientable spanning surface for K).

A link diagram D is called split, or disconnected, if it can be non-trivially
separated by a curve in the plane. Else we say the diagram is non-split, or
connected. A split link is a link with a split diagram. Other links are said to
be non-split. We will assume that all links we consider are non-split.

A region of a link diagram D is a connected comporient of the complement
of the plane curve of D. A region R of a diagram is called a Seifert circle
region (resp. non-Seifert circle, or hole region), if any two neighboring edges
in its boundary (i.e., such sharing a crossing) are equally (resp. oppositely)
oriented (clockwise or counterclockwise) as seen from inside R. A diagram
is called special if and only if all its regions are (either) Seifert circle regions
or hole regions.

It is an easy combinatorial observation that for a connected diagram any
two of the properties alternating, positive/negative and special imply the
third. A diagram with these three properties is called special alternating.
See e.g. [20]. A special alternating link is a link having a special alternating
diagram. It can also be specified (as in the introduction) as a link which is
simultaneously positive and alternating. By definition such a link has a positive
diagram, and an alternating diagram. That it has a diagram which enjoys both
properties simultaneously was proved in [24, 35].

Next we recall that for an alternating link L of n(L) components, the
genus g(L) of L coincides with the canonical genus g(D) of an alternating
diagram D of L, given by

_ o(D) ~ 5(D) +2 — n(D)
_ : ‘,

g9(D)

with ¢(D), s(D) and n(D) = n(L) being the number of crossings, Seifert
circles and components of D, respectively.
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3. ALEXANDER-CONWAY POLYNOMIAL AND TRISTRAM-LEVINE SIGNATURES

We shall briefly introduce the main notions appearing in the sequel. (We
also give a few additional references for further details; in particular the reader
may consult [36].)

Recall that if M is a Seifert matrix of size 2g x 2g corresponding to a
genus g Seifert surface of a knot K, then for any £ € C with || =1 and
& # 1 we define

Me(K) :==(1-M+(1 -EM",

where the bar denotes conjugation and ()7 transposition. This is a Hermitian
matrix, and all its eigenvalues are real. By o(M¢) and n(M¢) we denote the
signature (sum of signs of eigenvalues) and nullity (number of zero eigenvalues)
of M. They turn out to be independent of the surface and Seifert matrix, and
are thus invariants of K, denoted by o¢(K) and n¢(K) respectively. o¢(K) is
called a generalized or Tristram-Levine signature [37, 14]. It satisfies, as does
the usual (Murasugi) signature o = o_; [20], the rules

() oe(Ly) —oe(L_) € {0,1,2},
o¢(Ly) — oe(Lo) € {—1,0,1},
oe(IL) = —o¢(L),
oe(L#K) = o¢(L) + o¢(K).

(Whether to have {0,1,2} or {0,—1,—-2} in (1) is a matter of convention.)
Here L., Ly, L_ form a skein triple

KX N

and !L is the mirror image of L. By K;#K, we denote the connected sum
of K; and K;, and #"K stands for the connected sum of n copies of K.

The main difference between the general o, and the usual signature o
is that o may take odd values also on knots, and that nice combinatorial
formulas, as in the case of alternating links (see [20, 13, 7]), are lacking. Via
the Tristram—Murasugi inequality [37, 20], these signatures are related to the
4-genus, and hence to the unknotting number. More recently they have been
of some interest because of their relation to the classification of zero sets of
algebraic functions on projective spaces [25] and (a quantum version of) the
Jones polynomial [6].
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The (normalized) Alexander polynomial [1] can be defined from a Seifert
matrix M by
Ax(t) = 79 det (M —tM") .

A satisfies the skein relation

o a(X)-a) -0 ma0).

which defines it alternatively (up to a factor, fixed by requiring that A(QO) = 1).
We will sometimes modify A up to units in Z[t,z7'], as in the original
definition of Alexander.
Let Vi denote the Conway polynomial [2], given by

3) V(2 — 1712y = Ag(r).

Consequently, V also satisfies a skein relation, namely

o) -00)

Recall also that for any alternating link L, and in the normalization of Ay,
given by mindegA; = 0, we have

(5) 1 — x(L) = maxdeg A, = maxdeg V.
See [4, 21]. For a link of n(L) components,
2 —n(L) — x(L) = 29(L).
Since mindegV; = n(L) — 1, we have
(6) span V; = maxdegV, — mindeg V; = 2g(L).
Theorem 1 originates from a close relationship between the signature and
the number of zeros of the Alexander polynomial on the unit circle. This

relationship was (possibly first) observed by Riley in the knot case, where it
was claimed (see [19, Proposition 1]) that

(7) | {zeros of Ax on S'N{Sm z>0}}| > §|o(K)],

where S' := {z: ]zl = 1} € C and the zeros are counted with multiplicity.
Inequality (7) requires the smoothness (in ¢) of branches of the eigenvalues «;
of the generalized Seifert forms M, . That the ¢; can be chosen smoothly was,
however, not carefully argued about in any written account I know related to the
subject. (The problem occurs at branch intersections where the implicit function
theorem fails to ensure smoothness.) This originally motivated the work on
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Theorem 1. Only quite a while after this work was done, I understood that the
smoothness problem of the «; can be analytically remedied (using perturbation
theory for linear operators, see Theorem 1.10 in Chapter II of [12]). Even so,
the proof here is different, and entails steps of separate interest. In particular
Proposition 1 has some independent meaning (also for example with regard to
Hoste’s aforementioned conjecture), and seems not evident analytically. Here
analysis will be replaced to large extent by algebra, and the analytic tools
required are restricted to Cauchy’s integral formula and the implicit function
theorem.

The aim of the next sections is to prove inequality (7) in the case of
special alternating links, and thus Theorem 1. We will prepare some tools to
solve this problem.

4. SOME LEMMAS

We start with several, at first sight apparently unrelated lemmas. The first
one comes from number theory and is related to the irreducibility theorem of
Hilbert (see e.g. the fourth chapter of [28]): If a polynomial F(x,y) € Z[x, y]
is irreducible over Q as a polynomial in two variables, then F(x,n) € Z[x]
is irreducible over Q for infinitely many integers n. (Note that for a one
variable polynomial in Z[x] irreducibility over Q and Z are equivalent by a
classical theorem of Gauss, see e.g. Proposition 2.4 of [31].)

LEMMA 1. If A, B € Z|x] are polynomials, such that A + nB is not
square-free for any integer n > 0, then it is also not square-free for n < 0.

Proof. First assume P and Q are coprime polynomials in Z[x]. We want
to show that P + nQ is irreducible for infinitely many positive integers n.
(That it is irreducible for infinitely many integers n follows directly from
Hilbert’s theorem.)

For this consider F(x,n) = P(x)+n?Q(x). We are through if it is irreducible.
If ¥ =F;-F, (in a non-trivial way), the coprimality of P and Q implies that
Fy and F, are both linear in n. Then the vanishing of the n-linear term in F
implies that P and Q are up to sign coprime squares. By this argument we
would be through when P + kQ is not a square up to sign for some k > 0
(replace n* by n? +k in the definition of F).
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Thus assume P + kQ = +L? for any k > 0. Since Q # 0, the sign
stabilizes for k large enough (it is then positive, say), and beyond that point
all L, are distinct. But then

0=Li; — L = Lip1 + LdWigr — L),

so that the L, can be recovered from factorizations of Q, of which there
are only finitely many, a contradiction. Therefore, P + nQ is irreducible for
infinitely many n > 0.

Now let S = gcd(A,B). If S is not square-free, then we are done.
Otherwise, apply the above argument to P = A/S and Q = B/S. Then
infinitely many of the (A 4+ nB)/S are irreducible, and discarding the finitely
many cases, where they are (irreducible) divisors of S, we find that A+nB is
square-free in contradiction to our assumption. This proves the lemma. [

The next lemma is analytic. The notation f, — f, for functions f,, f
defined on some domain X and with n — oo, indicates that f,(x) — f(x)
for all x € K (pointwise convergence), while f, = f indicates that
Ve>03n. Vn>nVxeK: |fu(x) —f(x)] < e (uniform convergence).

LEMMA 2. Assume f, and [ are analytic functions on some open set
O cCand f #0. Let f, = f converge uniformly on each compact subset
K C O. Let 7 be a zero of f of finite order. Then there are zeros z, of fu
with 7, — z.

Proof. By analyticity z is an isolated zero of f, so

de>0: f|B(Z,8)\{Z} #0.

(Here B(z,e) ={7 € C:|z—7| <e} and f # 0 means that f has no zero.)
Fix some ¢’ € (0,¢]. Since f, = f, for n large enough flspc.e 0Nz # 0.
Let s be the order of z. Then, choosing the same branch of the s-th root,
Y5 = £=1s on OB(z,€'), and hence

0B(z,e’) OB(z,e)

If now there is a sequence {n;} such that f,, has no zero in B(z,¢’), then
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]{ fnjl/ Sdz =0, since f,;l/ * is holomorphic on B(z,¢’). But

OB(z,e")

fY5 dz = 27i res @ # 0,

OB(z,e’)

a contradiction. L]

The third preparatory lemma is a special case of what we want to prove.
Denote by f(§) ~ g(§) the property limf(£)/g(§) = 1, when £ converges to
a limit specified from the context. The symbol o(£) denotes a function with
0 ~ o(§). The term “double zero” always (also later) means at least double,
1.e., a multiple zero.

LEMMA 3. Let K be a knot, such that Vg has no double zero. Then
inequality (7) holds.

Proof. The statement is equivalent to saying that if Agx has no double
root, at least |0/2| of its roots lie on the upper (positive imaginary part)
half-arc of S!.

Take a Seifert matrix M of K of size n = 1 — x(K) = 2¢9(K). Then
consider

Mg=(1-M+ (1 -HM"

for €€ S'N{Sm z>0}. Since
Ax(t) = det (M — tMT) ,

and _
E—1 ¢1-1 1

1-¢ 1-¢ ¢

we have

det (M¢) = (1 — €)" Ag (%) =(1—&" A
Let x,(M¢) be the characteristic polynomial (considered as a polynomial in
one complex variable o) of M¢. Then det (M¢) = x,(M¢)(0). We argued that
the function f(§) = det(M¢) = x,(M¢)(0) has a non-zero derivative in each
zero &. Then by the implicit function theorem, there is an ¢ > 0 and a
function

g: (=g, 8) —> (Ege 2™ £he™ie)
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(the interval on the right being meant as an arc on S'), such that g(0) = &,
and x,(M¢)(o) = 0 & £ = g(a). This shows that for § around &, there
is a unique (still possibly multiple) eigenvalue o of M around 0. Since f
changes sign, so must «, and it must be of odd multiplicity.

Assume now that this multiplicity is k > 1. Set & = @) = --- = oy . Since

J©) v, D€~ &),

with D = g(&)) # 0, we must have

73
o~ D E=&, i<k
with D' =+/D # 0. We also have that «; for i > k are continuous in & and
bounded away from 0 as & — &. Then consider

" k
®  oMow= [[ G-a) (x-DE—E+o(VE—&)) .

i=1+k
with o(...) meant w.r.t. the asymptotical behavior as £ — &y. The first factor
@ ==
i>k
must have absolute coefficient bounded away from 0 for & — &. By the

same argument we have that [x,lx is bounded away from 0.
Now we find for m <n —k

(9) [X]m — [Xp]m+k + [Xp]m—i—k—H : kD/ " E - 50 + O(\/k 5 - ﬁo) »

Here [x]; and [x,]; are to be interpreted as the coefficients of x' in
Xp(X) = xp(x, &), () = X(x,&) € C[x], regarded as functions of .
A way to see (9) directly is to rewrite (8) as

X0 = 2@ - (1 kD V=& - +ol(VE—G)).

where o[x](\/€ — &) stands for a polynomial in 1/x all whose coefficients
are o(v/§ — &y). Then

10) %0 =x00  x (14 kD' VE—G- 1 +ol(VE—&)).

where of[x]](v/€ — &) stands for a power series in 1/x which converges
absolutely for |[x|] > 1 when ¢ is close to &, and whose coefficients
are 0("£ —fo) when & — &. Taking the coefficients in (10) we ob-
tain (9). (Another way to see (9) is to compare iteratedly in (8) coefficients
of x", x™ ', x"? etc.)
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But for m = —1 we have [{], = 0, while [Xplmix and  [xplmtis
are smooth and the latter is bounded away from 0, so that (9) cannot hold
for §& — &o. (The term /€ — &, is dominating in the ¢ -derivative, contradicting
the smoothness of the left-hand side in £.) Thus k= 1.

Therefore, as desired, at each zero of A on the upper half-arc of S',
exactly one eigenvalue of Mg (now counted with multiplicity) changes sign.
Then o¢ changes by £2 each time. Now o_; = ¢ and o; = 0 because
M; = 0. Unfortunately, this form is singular, so a priori o, may change
around £ = 1. If we ensure that it does not, then we obtain that an eigenvalue
of M must change sign on an arc between £ = —1 and £ =1 at least |o/2]
times, and the result follows.

So we will conclude by arguing that o, does not change around ¢ = 1
(i.e. remains O for £ close to 1). This becomes clear once we see that the
singularity £ = 1 of M, can be avoided. To do so, consider M = Mg /|1 —¢]
for £ #1. Now we have

1-¢  J1-¢_[1-¢  — 5
(1) ll_gr\/l_g—\/l_g_l—\/‘@iz& ,

and looking at §& — 1 (while fixing the branch of the square root so
that also £'/2 — 1) reveals that the correct sign is the positive one. By
inverting (11), or by a similar calculation and limit argument, we see that

1-¢ _ _igm12,
So Mj = i&'/2M — i&~'/2M", which has a smooth continuation in & = 1,
and M] has determinant
det(M}) = i" det(M — MT) = i" Ax(1) = i" = (=1)9%

so is regular. Moreover, M}" = —M/, so that oM}) = 0, and clearly
o(M¢) = O’(Mé) for £E£1. [

COROLLARY 1. Let K be a special alternating knot, such that YV has
no double zero. Then all zeros of V(\/z) lie in [—4,0].

Proof.  We have o(K) = 2g(K) by [20], and equality (5) holds. L]
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5. PROOF OF THEOREM 1

We will now establish the general case of Theorem 1. It follows directly
from Corollary 1 and Proposition 1. So we prove Proposition 1. For the proof
the notion of braiding sequences [33] is used.

Let D be an oriented link diagram and P a set of crossings in D, which we
call marked and number cy,...,c,. One can consider the family of diagrams

Bz{5(x1,...,xn):x1,...,x,, € Z odd} .

Here the diagram D(xi,...,x,) is obtained from D by replacing the crossing
c; by a tangle of |x;| reverse half-twists of sign sgn(x,):

XXX X XXX
xi= -3 xi=—1 r=1 X5 =3

In [33] we called B the braiding sequence B (ﬁ, P) associated to (13, P) with
antiparallel braidings at each crossing in P, parametrized by n = |P| odd
integers xi,...,x,. We shall use this terminology from now on.

LEMMA 4. Let D be a positive and/or alternating link diagram. Then
there exists a braiding sequence B = B (D, P) with the following features :

A~

e D is a positive and/or alternating knot diagram,
e B contains an unknot diagram, and

e when smoothing out in D all marked crossings ¢; € P, and removing
nugatory crossings using Reidemeister 1 moves, we obtain D.

Proof. If D is not already a knot diagram, we describe first a way to
make D into a knot diagram D', preserving the property to be positive and/or
alternating (otherwise set D' = D).

If D is special alternating, it has 2 types of regions: Seifert circle regions
and non-Seifert circle regions. Since each edge (piece of a strand between
two crossings) is bounded by a non-Seifert circle region, it is easy to see
that D has a non-Seifert circle region R bounded by edges e;» belonging
to different components. If D is not special alternating, choose R to possess
proper e;, but without the requirement to be a non-Seifert circle region.

The orientation of e;, may be parallel or reverse as seen from inside R.
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1. If the orientation is parallel, apply the move

(12) ) R <—> e

2. If the orientation is reverse, apply the move

- DOC

Since the move (12) does not create a new Seifert circle, and the move (13)
creates a Seifert circle with empty interior, both moves preserve specialty of the
diagram, and if the crossings are appropriately chosen, also positivity and/or
alternation. Furthermore, the moves decrease the number of components of the
link by one. (Thus they augment the canonical genus of the diagram by one.)

Repeating this procedure, we arrive at a positive and/or alternating knot
diagram D’'.

Now D’ may be unknotted by switching some crossings di,...,d;. At
each such crossing, make a replacement

AN
(14) K= é
X

One obtains an unknot diagram D”. The move (14) also augments the
canonical genus of the diagram by one, and at least one such move is needed
(because positive or alternating diagrams are not unknotted), so we have
g(D") > 0. (Alternatively, using (6), we see that g(D"") = 0 implies that V;
is a single monomial, and there would be nothing to prove in Theorem 1.)

Now mark in D" a set P of crossings as follows:

e the crossings created by (12): >2<
e one of the crossings created by (13): I/\}Z(

X
e the two (lower) crossings created by (14):

Let D be obtained from D" by switching crossings in P so that D becomes
positive and/or alternating. Then B = B(D, P) has all the stated properties. []
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Proof of Proposition 1. Assume (after possibly taking the mirror image,
which does not change the zeros of V) that L is a positive and/or alternating
link and zo € C\{0} with V.(,/z0) = 0. Let D be a positive and/or alternating
diagram of L. Then we consider the braiding sequence B = B (D, P) found
in Lemma 4. The desired conclusion will be obtained by proving algebraically
that enough of the V polynomials on B are square-free and approximating zo
by zeros of such polynomials.

Now consider the map
(15)  QZ+1" 3 (x1,...,%) — V(D(xi,...,x))() € ZIz].

Several properties of this map can be seen by applying iteratedly the skein
relation (4) for V. An explicit account may be found in [29]. (See in particular
Theorem 3.4 (2) and its proof. Note, though, that we do not consider parallel
twists, which are also treated there, and the formulation for the Alexander
polynomial is given, equivalent up to the change of variables (3).) We know
that (15) becomes a polynomial X in xj,...,x,, with coefficients in Z[z].
(For the explanation we will just make it is useful to neglect the polynomial
structure of X in z and regard z as just a quantity entering into the coefficients
w.rt. the x;.) Furthermore, X is at most linear in each x; (and so of total
degree at most n). We call a monomial Q = x; ...x; (with i; pairwise
distinct) in X maximal, if Q does not divide (properly) any other monomial
in X. (Note that k < n, and if k = n then Q is always maximal.) If Q is
maximal, and D is the diagram obtained by smoothing out the k crossings
¢ in 13, then the coefficient of Q in X is given by [X]p = (z/ 2)"V(5).

Assume that ﬁ(xl, ..., X,) is positive and/or alternating for xi,...,x, > 0.
(By convention, this is always so, unless D is alternating, but not positive.
In latter case, the assumption is to be understood so that we change the

sign of some x; in the argument to follow.) For x....,x, > 0 consider
V(D(ip, . .., x,p)) with p >0 odd. By the above remark, this is a polynomial
in p. Its leading p-coefficient is C(z)V.(z), with C(z) = (z/2)"x1 - ... Xu.

The other factor comes from the Conway polynomial of the link obtained by
smoothing out all ¢;, which (by Lemma 4) is L. Thus as p — oo odd,

1~ ]
o V(D(p, - - xap))(VZ) ~ C(V2)V(v/2) + o(1),

where o(1) stands for a sequence of polynomials of bounded (z-)degree with
coefficients going to zero. This implies that
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— V(DG1p, - . ., %)) (VZ) = C(WZ)VL(VZ)

on any compact set X (when p — oo). Since C(1/z) # 0 for z close to z,
by Lemma 2

Py(2) = V(D(x1p, - . ., x,0)) (v/2)

has zeros converging to zy. Thus we would be done, unless for any choice
of xi,...,x, > 0, the polynomial Pp(z) has a double z-zero for all sufficiently
large p. Now, assume it were so.

Fix xi,...,x, > 0. The existence of a double zero in P, is equivalent
to the vanishing of the discriminant disc (P,) of P,. The discriminant
disc (f) = Res(f,f’), where Res(f,g) for f,g € Z[z] is the resultant. This
resultant can be expressed as the determinant of a square matrix M, of
dimension deg_f +deg, g, involving the coefficients of f and g, see e. g. [15,
definition 1.93, p. 36]. Since maxdeg, P, = g(D) for p > 0, the size of
Mp, op,/0; 18 Zg(D) — 1, constantly in p. (To avoid degeneracies we excluded

g(ﬁ) = 0 in the proof of Lemma 4.) We know also that the function

p— [V(D@ip,...,xp)].,

[.]; denoting the coefficient in z', is a polynomial in p for any i. Thus the
entries of Mp sp, /9. are polynomial in p. So disc (Pp) 1s a polynomial in p
for p > 0. But, as we saw, this polynomial vanishes for p — oo, and hence
it vanishes identically, in particular for p = 1.

This means that V(ﬁ(xl, ..., X,)) has a double zero for any xi,...,x, > 0,
and hence is divisible by the square of its minimal polynomial. We claim
that then V(D(xl, . x,,)) has a double zero for any odd (not necessarily
positive) xi,...,x,. To see this, use induction on the number of negative
parameters x;, the linear dependence of V(ﬁ(xl, e ,xn)) on each x; (when
fixing the others), and Lemma 1. But B contains an unknot diagram (by
Lemma 4), whose polynomial V =1 is certainly square-free.

This (indirect) argument provides us with the desired contradiction,
originating from our assumption that almost all P, are not square-free, and
thus completes the proof. []

REMARK 1. One sees from the proof of Lemma 4 and Proposition 1
that they work also for arborescent links, but in that case the proposition is
not helpful, since H. Murakami gave a proof that all (admissible) Alexander
polynomials are realized by arborescent knots [17].
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6. SOME INEQUALITIES

With Theorem 1 proved, it is worth remarking that it implies several further
inequalities. For example, we have

COROLLARY 2. For a special alternating link L and i <1 — x(L),
(16) [Vi],y € —x@)[VL],-

Proof. Let n(L) be the number of components of L. Using Theorem 1,
Newton’s theorem, and the positivity of all [VLL (see [3, 34]), we have for
1+nl) <i<—1-—x(L) and i+ x(L) odd

[VL]i—z [VLL
[VL]i [VL] i+2
Thus it suffices to prove (16) for i = 1 — x(L). In this case (16) is equivalent

to the inequality [Ar]lo < —[AL]i, with Ay normalized so that mindegA;, =0
and [A.]yo > 0, since (in this normalization of A;) we have

(7

(18) AL = Vi (t71/? — /7). F(1=x(L)/2

The desired inequality was proved in [23, Proposition 2]. [

REMARK 2. The inequality in the corollary is sharp (non-trivially, that is,
for 1 —x(L) >i>n(L)+ 1 and i+ x(L) odd) if and only if i=1-—x()
and L is a (2,n)-torus knot or link (with both orientations in the link case).
This follows from the remark after the proof of Propcsition 2 of [23]. (Note
that not all graphs given there are relevant for link diagrams.)

Another inequality, using the specific range of zeros of V(y/z), is a lower
estimate for the coefficients of V in terms of the genus.

COROLLARY 3. For a special alternating link L we have

1 (g(L)
(19) [VL]n(L)—l—I—Zi = 4i ( i ) [VL]n(L)—l‘

l

Note that the only previous results in this direction (albeit true more
generally for positive links) were that these coefficients are non-negative [3],
with the slight improvement in [34] that (for i < g(L)) they are strictly
positive, and the inequalities for knots (n(L) = 1) anc i =1 of [32].
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Proof. Use that [VL]
of V.(1/z), we have

n(D)—1 > 1 and that for z,...,z4) being the zeros

[VL]n(L)—H—Zi _ (=1 Z H l 0

[VL]H(L)—I c{1,...,gw} i€l Zi

.....

=i

We conclude by giving a few examples illustrating these inequalities. One
can find alternating knots which can be excluded from being special alternating
using Corollary 2.

EXAMPLE 1. The alternating knots 140475 and 14455;5 of [11] have the
Conway polynomials 1+ 8z% + z* + 2% + 2% and 1 + 322 + 82* + 28 + 275,
respectively, and x = —7. The polynomials are positive, so that by [3] the
knots may be positive, and so (as explained, see [24, 35]) special alternating.
But they are not special alternating by Corollary 2.

For Corollary 3 we have the following

EXAMPLE 2. The knots 12;3; and 12j535 of [11] are alternating.
Their Conway polynomials are 1+ z2 4+ 4z* + 8z° + 578 + 71 and 1 4+ 22 +
8z 4 122° + 6z° + 7!, and genus g = 5. Their polynomials are positive,
but violate (19) for i = 1. The alternating knot 16377355 has ¢ = 7 and
V() = 1432 + 2* + 1225 + 282° + 237 + 8712 + 7!, which violates (19)
for i = 2.

REMARK 3. Conjecture 1 implies that Corollary 2 may hold also for
positive links. But Corollary 3 does make use of the range of the zeros of V
(rather than only the fact that they are real), and may not hold for some
positive links even assuming Conjecture 1. Nevertheless, we do not know of
any such links.

REMARK 4. Newton’s theorem shows in fact a stronger version of the
property ‘Newton-like’, involving combinatorial coefficients in the inequalitics
(see Theorem 51 of [8]), but we preferred to omit these coefficients in order
to have a stronger analogy to the property ‘weakly Newton-like’ (where they
cannot appear).
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