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NEWTON-LIKE POLYNOMIALS OF LINKS

by Alexander Stoimenow *

Abstract. We show that the coefficients of the Conway polynomial of special
alternating links satisfy certain inequalities.

1. Introduction

A classical theorem of Newton (see Theorem 53 in [8]) states that if all
the zeros of a polynomial P in R[x] are real, then [P],_, [P],+ < [P]j for
any integer i with min deg P < i <maxdegP.(Here [P], is the coefficient
of x' in P, and min degP, maxdegP are the minimal resp. maximal
with [P]; / 0.) Call a polynomial satisfying these inequalities Newton-like ;

if [P],-i [PJi+i < [P]j for any i, call P weakly Newton-like. In knot theory,
Newton-like polynomials (not necessarily with all zeros real) seem to occur
in special situations. Thus we advance the following conjecture :

Conjecture 1. (1) The Alexander polynomial of an alternating link is
weakly Newton-like, and (2) if Vl is the Conway polynomial of a positive
link of n(L) components, then VL(Vz) Newton-like.

Here the Alexander polynomial A and Conway polynomial V are the
polynomial invariants for links defined in [1] and [2], taking values in
Z\t,f 11 and Z[z]resp. (The Alexander polynomial is defined only up to
units in Z[t,f_1]; we will choose the normalization depending on how it is
convenient in the context.)

There is strong empirical evidence for this conjecture. In particular, part (1)
(resp. part (2)) is true for (knots with) alternating (resp. positive) knot diagrams

* Supported by JSPS postdoc grant P04300.
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of at most 16 crossings. Part (1) is a natural strengthening of Fox's "trapezoidal

conjecture" [5], proved by Hartley [9] for rational knots, and later in a more

generalized form by Murasugi [18]. In this paper, we shall prove part (2) for

the intersection of positive and alternating links, the special alternating links.

In fact, we prove

THEOREM 1. If L is a special alternating link, then any zero of V/Xy^)
(is real and) lies in the interval [—4,0], or equivalently, all zeros of Ak he

on the complex unit circle.

As explained above, part (2) of Conjecture 1 for special alternating links

follows immediately from Theorem 1 and Theorem 53 in [8].

To further motivate Theorem 1, let us mention that both special alternating

links and zeros of the Conway (or Alexander) polynomial have been an

object of study for some time. Such links occurred first notably in the work

of Murasugi [20, 21] and later for example in [3] (as building blocks for

homogeneous links) and [24]. They have a close relation to graphs, and

so our work can be translated in a graph-theoretical context [23]. (See in

particular part 12 of Theorem 3 therein1), which is a reformulation of the

Newton property of V.) As for zeros of the Alexander polynomial, they have

been studied over the years and have importance in particular for monodromy

of fibered links [27], divisibility [22] and orderability [26] of knot groups,

and statistical mechanical models of the Alexander polynomial [16]. Lehmer's

question on the existence of a polynomial minimizing the Mahler measure

is also studied in the context of Alexander polynomials of links (see for

example [10, 30]). Empirical calculations led to the conjecture (as reported

to me by Murasugi, proposed by Hoste) that if z is a root of the Alexander

polynomial of an alternating knot, then ïte z > — 1
• Theorem 1 also proves

this conjecture for special alternating links (since for such links z — — 1 is

not a root of A).
A brief overview of the paper is as follows. §2 contains some preliminaries

on polynomials and link diagrams. §3 explains the motivation for and main

tools in the proof of Theorem 1, the Tristram-Levine signatures. Some number

theoretic and analytic lemmas are prepared in §4. In particular Corollary 1

proves the case of Theorem 1 for knots and square-free (i.e., without double

zeros) Alexander polynomials. (When no double zeros occur, the implicit
function theorem easily does the required work.) Then in §5 the proof of the

1 The reference given in [23] to [36] for the proof is outdated ; the proof is given below in

this paper.
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general case of Theorem 1 is given, using Corollary 1 and an algebraic
approximation argument. The difficulty is that this approximation has to
be carried out from within the set of square-free special alternating knot
polynomials. We will require several tools from elementary number theory,
analysis and algebra, for example a theorem of Hilbert on irreducibility of
polynomials in 2 variables and the matrix formula for the discriminant of a

polynomial. We obtain the following approximation result, which applies in a
somewhat broader context :

Proposition 1. Let for a class C of links,

Zc — {z E C\ {0} :3L e C : AL(z) 0}

and

Z'c {z G C \ {0} : 3 K G C : Ag(z) 0, K knot and AK square-free}

Then Zc C Z'c (where bar denotes closure) for C being one of the classes

of non-split (a) alternating links, (b) positive links, or (c) special alternating
links.

The paper concludes with some applications of Theorem 1 in §6.
One can (using more advanced perturbation theory for linear operators) give

a more direct proof of Theorem 1, which is entirely analytic and unrelated to
Proposition 1. The approach taken here replaces most of the analysis by algebra,
and is a continuation of our previous study of Tristram-Levine signatures [36].
Since these signatures are predominantly known as concordance invariants, we
will build on the work here to address elsewhere concordance issues of special
alternating (and more general) knots.

2. Preliminaries on polynomials and link diagrams

Let [X]ta [X]a be the coefficient of ta in a polynomial X e Z[t±l]. For
X ^ 0, let Cx {a G Z : [X]a ^ 0} and

min deg X min Cx max deg X max Cx

span X max deg X — min deg X

be the minimal and maximal degree and span (or breadth) of X, respectively.
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It makes sense to set mindegO := oo and maxdegO := — oo. Similarly one

defines for X e Z[xu...,xn\ the coefficient [X]Y for some monomial Y in
the Xi, and mindeg^.X etc.

In the sequel the symbol C denotes a not necessarily proper inclusion.

For a set S, the expression \S\ denotes the cardinality of S. Finally, let ?Re

and denote the real and imaginary part, respectively. We will also write

i — Ï for the imaginary unit, in situations where no confusion (with its

use as an index) arises.

In the sequel g(K) denotes the genus and x(K) t]ie Euler characteristic

of K (which are the minimal genus resp. maximal Euler characteristic of an

orientable spanning surface for K).
A link diagram D is called split, or disconnected, if it can be non-trivially

separated by a curve in the plane. Else we say the diagram is non-split, or

connected. A split link is a link with a split diagram. Other links are said to

be non-split. We will assume that all links we consider are non-split.

A region of a link diagram D is a connected component of the complement

of the plane curve of D. A region R of a diagram is called a Seifert circle

region (resp. non-Seifert circle, or hole region), if any two neighboring edges

in its boundary (i.e., such sharing a crossing) are equally (resp. oppositely)

oriented (clockwise or counterclockwise) as seen from inside R. A diagram

is called special if and only if all its regions are (either) Seifert circle regions

or hole regions.

It is an easy combinatorial observation that for a connected diagram any

two of the properties alternating, positive/negative and special imply the

third. A diagram with these three properties is called special alternating.
See e.g. [20]. A special alternating link is a link having a special alternating

diagram. It can also be specified (as in the introduction) as a link which is

simultaneously positive and alternating. By definition such a link has a positive

diagram, and an alternating diagram. That it has a diagram which enjoys both

properties simultaneously was proved in [24, 35].

Next we recall that for an alternating link L of n(L) components, the

genus g(L) of L coincides with the canonical genus g(D) of an alternating

diagram D of L, given by

_ c(D)-s(D) + 2-n(D)
g(P) ö

with c(D), s(D) and n(D) n(L) being the number of crossings, Seifert

circles and components of D, respectively.
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3. Alexander-Conway polynomial and Tristram-Levine signatures

We shall briefly introduce the main notions appearing in the sequel. (We
also give a few additional references for further details ; in particular the reader

may consult [36].)
Recall that if M is a Seifert matrix of size 2g x 2g corresponding to a

genus g Seifert surface of a knot K, then for any f e C with |£| 1 and

(/I we define

M^K):=(1 - OM + (1 -
where the bar denotes conjugation and )T transposition. This is a Hermitian
matrix, and all its eigenvalues are real. By a(M^) and n(Mc) we denote the
signature (sum of signs of eigenvalues) and nullity (number of zero eigenvalues)
of AT-. They turn out to be independent of the surface and Seifert matrix, and
are thus invariants of K, denoted by crF(K) and nc(K) respectively. cj^(K) is
called a generalized or Tristram-Levine signature [37, 14], It satisfies, as does
the usual (Murasugi) signature a<r_i [20], the rules

(1) <^(T+) - ^(L_) {0,1,2},
rç(Lt) - <rt(Lo) e {-1,0,1},

crç(L#K)<7^(L) o~çiK).

(Whether to have {0,1,2} or {0, —1, —2} in (1) is a matter of convention.)
Here I... Iform a skein triple

XXX
L+ L_ Lq

and \L is the mirror image of L. By K} #K2 we denote the connected sum
of K\ and K2, and #nK stands for the connected sum of n copies of K.

The main difference between the general and the usual signature a
is that ct£ may take odd values also on knots, and that nice combinatorial
formulas, as in the case of alternating links (see [20, 13, 7]), are lacking. Via
the Tristram-Murasugi inequality [37, 20], these signatures are related to the
4-genus, and hence to the unknotting number. More recently they have been
of some interest because of their relation to the classification of zero sets of
algebraic functions on projective spaces [25] and (a quantum version of) the
Jones polynomial [6].
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The (normalized) Alexander polynomial [1] can be defined from a Seifert

matrix M by
AK(t) r9 det(M - tMT).

A satisfies the skein relation

<2) i(X) - A(X) (<"=-'-">()
which defines it alternatively (up to a factor, fixed by requiring that A(O) 1 )•

We will sometimes modify À up to units in Z[f, f-1], as in the original
definition of Alexander.

Let Vk denote the Conway polynomial [2], given by

(3) VK(t1/2- rlf2)A*«.
Consequently, V also satisfies a skein relation, namely

(4) V(X)- V(X)=*V()()'
Recall also that for any alternating link L, and in the normalization of AL

given by min deg AL 0, we have

(5) 1 - x(L) max deS al max deg VL

See [4, 21]. For a link of n(L) components,

2-n(L)-X(L) 2g(L).

Since min deg Vl n(L) — 1, we have

(6) span VL max deg VL - min deg VL 2g(L).

Theorem 1 originates from a close relationship between the signature and

the number of zeros of the Alexander polynomial on the unit circle. This

relationship was (possibly first) observed by Riley in the knot case, where it
was claimed (see [19, Proposition 1] that

(7) [{zeros of AK on Sl D {öm z > 0}}| > \ |rr(iC)|

where Sl := {z : |z| 1} C C and the zeros are counted with multiplicity.

Inequality (7) requires the smoothness (in £) of branches of the eigenvalues

of the generalized Seifert forms Mç That the oli can b(î chosen smoothly was,

however, not carefully argued about in any written account I know related to the

subject. (The problem occurs at branch intersections where the implicit function

theorem fails to ensure smoothness.) This originally motivated the work on
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Theorem 1. Only quite a while after this work was done, I understood that the
smoothness problem of the at can be analytically remedied (using perturbation
theory for linear operators, see Theorem 1.10 in Chapter II of [12]). Even so,
the proof here is different, and entails steps of separate interest. In particular
Proposition 1 has some independent meaning (also for example with regard to
Hoste's aforementioned conjecture), and seems not evident analytically. Here

analysis will be replaced to large extent by algebra, and the analytic tools

required are restricted to Cauchy's integral formula and the implicit function
theorem.

The aim of the next sections is to prove inequality (7) in the case of
special alternating links, and thus Theorem 1. We will prepare some tools to
solve this problem.

4. Some lemmas

We start with several, at first sight apparently unrelated lemmas. The first
one comes from number theory and is related to the irreducibility theorem of
Hilbert (see e.g. the fourth chapter of [28]): If a polynomial F(x, y) e Z[x,y]
is irreducible over Q as a polynomial in two variables, then F(x,n) G Z[x\
is irreducible over Q for infinitely many integers n. (Note that for a one
variable polynomial in Z[x] irreducibility over Q and Z are equivalent by a
classical theorem of Gauss, see e.g. Proposition 2.4 of [31].)

LEMMA 1. If A, B E Z[x] are polynomials, such that A + nB is not
square-free for any integer n > 0, then it is also not square-free for n < 0.

Proof First assume P and Q are coprime polynomials in Z[x]. We want
to show that P + nQ is irreducible for infinitely many positive integers n.
(That it is irreducible for infinitely many integers n follows directly from
Hilbert's theorem.)

For this consider F(x, n) P(x)-\-n2Q(x). We are through if it is irreducible.
If F Fi • F2 (in a non-trivial way), the coprimality of P and Q implies that

Fi and F2 are both linear in n. Then the vanishing of the rc-linear term in F
implies that P and Q are up to sign coprime squares. By this argument we
would be through when P + kQ is not a square up to sign for some k > 0

(replace n2 by n2 +k in the definition of F).
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Thus assume P + kQ ±L\ for any k > 0. Since <2 / 0, the sign
stabilizes for k large enough (it is then positive, say), and beyond that point
all Lk are distinct. But then

Q — Lk+1 — Lk — (L>k+1 H~ ~~
5

so that the Lk can be recovered from factorizations of Q, of which there

are only finitely many, a contradiction. Therefore, P + nQ is irreducible for

infinitely many n > 0.

Now let S gcd(A,Z?). If S is not square-free, then we are done.

Otherwise, apply the above argument to P A/S and Q B/S. Then

infinitely many of the (A + nB)/S are irreducible, and discarding the finitely

many cases, where they are (irreducible) divisors of S, we find that A + nB is

square-free in contradiction to our assumption. This proves the lemma.

The next lemma is analytic. The notation fn /, for functions fn, f
defined on some domain JC and with n -A oo, indicates that fn(x) -A /(x)
for all je G /C (pointwise convergence), while fn =4 f indicates that

\/£>0 3n£ \f n > n£\/ x e JC : \ fn(x) —f(x)\ < s (uniform convergence).

Lemma 2. Assume fn and f are analytic functions on some open set

Ö C C and f ^ 0. Let fn^f converge uniformly on each compact subset

JC C Ö. Let z be a zero of f of finite order. Then there are zeros zn of fn

with zn z.

Proof By analyticity z is an isolated zero of /, so

3 s>0: /|flfce)\{z} / 0.

(Here B(z,e) { z'C : |z - z'\ < s}and/ / 0 means that / has no zero.)

Fix some e' G (0,e]. Since f„ =t/, for n large enough fn\dB(z,e')\{z} /
Let s be the order of z. Then, choosing the same branch of the s-th root,

ffl^s on dB(z->e'), and hence

f f~l/sdz—>jf~1/sdz.

dB(z,e') dB(z,e')

If now there is a sequence {/?;} such that fnj has no zero in B(z,e'), then
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/ fn,"Sdz 0, since fUj
l^s is holomorphic on B(z,£f). But

dB(z,e')

f~l/s dz 27t/ res f-i/s(z) / 0,
dB{z,e')

a contradiction.

The third preparatory lemma is a special case of what we want to prove.
Denote by /(£) ~ g(£) the property lim/(£)/g(£) 1, when £ converges to
a limit specified from the context. The symbol o(£) denotes a function with
0 ~ o(0- The term "double zero" always (also later) means at least double,
i.e., a multiple zero.

LEMMA 3. Let K be a knot, such that Vk has no double zero. Then

inequality (7) holds.

Proof. The statement is equivalent to saying that if AK has no double

root, at least |cr/2| of its roots lie on the upper (positive imaginary part)
half-arc of Sl.

Take a Seifert matrix M of K of size n — 1 — x(K) 2g(K). Then
consider

(1 — £)M + (1 — ÖMT

for £ G S1 fi { Sm z > 0 }. Since

A/KO det (M - tMT),

and

i -1 r:' -1
_

i
i-e i-e r

we have

det(A/j) (1 - £)" Ak-(1 - 0" A^Cr1).

Let Xp(Mç) be the characteristic polynomial (considered as a polynomial in
one complex variable a) of Mç. Then det(M^) xP(Mç)(0). We argued that
the function /(£) det(M^) Xp(Mç)(0) has a non-zero derivative in each

zero £0. Then by the implicit function theorem, there is an e > 0 and a
function g:(-£, e)—> (0e~27r'\ Ç0e2nie)
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(the interval on the right being meant as an arc on Sl such that g(0) £o

and xp(Mç)(o) 0 <(=> £ g(a). This shows that for £ around £0, there

is a unique (still possibly multiple) eigenvalue a of around 0. Since /
changes sign, so must a, and it must be of odd multiplicity.

Assume now that this multiplicity is k > 1. Set a ol\ • • • Since

m ~ o),

dfwith D —-(£0) / 0, we must have
<9£

a* ~ D7 • ^/£ — £o
5 i < k

with D' — \Jd / 0. We also have that at for i > k are continuous in £ and

bounded away from 0 as £ -> £o • Then consider

n xk
(8) Xp(M0(x)n - a'> • \x - + o(VTTo

/= 1 +k

with o{... meant w.r.t. the asymptotical behavior as £ —» £o. The first factor

\(x) Jl -at)
i>k

must have absolute coefficient bounded away from 0 for £ -a £q. By the

same argument we have that [Xp]k is bounded away from 0.

Now we find for m < n — k

(9) Kim Kpim+k + [ Xp]m+k+1 k{VI~& •

Here [xli and [xP]/ are to be interpreted as the coefficients of xl in

X/;W X/?CxO> XM xCxO G CM, regarded as functions of £.

A way to see (9) directly is to rewrite (8) as

XpO0 xM • kD' \J£ £o • i +oMl\/£ - Co))

where o[jc](^£ — £o) stands for a polynomial in 1/x all whose coefficients

are o(a^£ - £o) • Then

(10) xM XP(x) ' +kD' ^£-£o- | +o[Ml(\/£ - Co))

where o[[x]](^£ — £o stands for a power series in \/x which converges

absolutely for |jc| > 1 when £ is close to £0, and whose coefficients

are o(^£ — £o) when £ -A £o- Taking the coefficients in (10) we
obtain (9). (Another way to see (9) is to compare iteratedly in (8) coefficients

of xn, xn~~1, xn~2 etc.)
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But for m -1 we have [£]m 0, while [;xP]m+k and [Xp\m+k+1
are smooth and the latter is bounded away from 0, so that (9) cannot hold
for £ -» £0 • (The term v^£ — £o *s dominating in the £ -derivative, contradicting
the smoothness of the left-hand side in £.) Thus k 1.

Therefore, as desired, at each zero of A on the upper half-arc of S1,

exactly one eigenvalue of Mç (now counted with multiplicity) changes sign.
Then aç changes by ±2 each time. Now cr-\ a and a\ 0 because

Mi 0. Unfortunately, this form is singular, so a priori <j£ may change
around £ 1. If we ensure that it does not, then we obtain that an eigenvalue
of must change sign on an arc between £ -1 and £ 1 at least |cr/2|
times, and the result follows.

So we will conclude by arguing that does not change around £ 1

(i.e. remains 0 for £ close to 1). This becomes clear once we see that the

singularity £ 1 of Mç can be avoided. To do so, consider M^ M^/| 1 — £|
for £ 1. Now we have

<»> T^=^? ±^,
and looking at £ -a- 1 (while fixing the branch of the square root so
that also £^2 —> 1) reveals that the correct sign is the positive one. By
inverting (11), or by a similar calculation and limit argument, we see that

So M^ — i^x!2M — i£ 1/2Mr, which has a smooth continuation in £ » 1,
and Mj has determinant

det (M[) in det (M - MT) in A*(l) in (~\)9{K),

so is regular. Moreover, M[r -M\, so that cf(M\) 0, and clearly
cr(Me) cr(Mp for £/1.

COROLLARY 1. Let K be a special alternating knot, such that Vk has

no double zero. Then all zeros of Vk(\/z) lie in [-4,0].

Proof We have a(K) 2g(K) by [20], and equality (5) holds.
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5. Proof of Theorem 1

We will now establish the general case of Theorem 1. It follows directly
from Corollary 1 and Proposition L So we prove Proposition 1. For the proof
the notion of braiding sequences [33] is used.

Let D be an oriented link diagram and P a set of crossings in D, which we

call marked and number c\,..., cn. One can consider the family of diagrams

B {D(xi,... ,xn) :xu...,xneZ odd}

Here the diagram D(x{,.. xn) is obtained from D by replacing the crossing

d by a tangle of |jq| reverse half-twists of sign sgn (x, :

Xi -3 Xi — 1 Xi 1 Xi — 3

In [33] we called B the braiding sequence B (Z), P) associated to (D, P) with

antiparallel braidings at each crossing in P, parametrized by n |P| odd

integers x\ 5,.., xn. We shall use this terminology from now on.

LEMMA 4. Let D be a positive and/or alternating link diagram. Then

there exists a braiding sequence B — B(D,P) with the following features :

• D is a positive and/or alternating knot diagram,

• B contains an unknot diagram, and

• when smoothing out in D all marked crossings <*; G P, and removing

nugatory crossings using Reidemeister I moves, we obtain D.

Proof If D is not already a knot diagram, we describe first a way to

make D into a knot diagram D', preserving the property to be positive and/or

alternating (otherwise set D' — D).

If D is special alternating, it has 2 types of regions : Seifert circle regions

and non-Seifert circle regions. Since each edge (piece of a strand between

two crossings) is bounded by a non-Seifert circle region, it is easy to see

that D has a non-Seifert circle region R bounded by edges e\p belonging

to different components. If D is not special alternating;, choose R to possess

proper e\p but without the requirement to be a non-Seifert circle region.

The orientation of e\p may be parallel or reverse as seen from inside R.
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1. If the orientation is parallel, apply the move

a« M-x
2. If the orientation is reverse, apply the move

<i3> )*(->XX
Since the move (12) does not create a new Seifert circle, and the move (13)

creates a Seifert circle with empty interior, both moves preserve specialty of the

diagram, and if the crossings are appropriately chosen, also positivity and/or
alternation. Furthermore, the moves decrease the number of components of the
link by one. (Thus they augment the canonical genus of the diagram by one.)

Repeating this procedure, we arrive at a positive and/or alternating knot
diagram Df.

Now D' may be unknotted by switching some crossings d\,..., dk. At
each such crossing, make a replacement

(id x— ^
One obtains an unknot diagram D". The move (14) also augments the

canonical genus of the diagram by one, and at least one such move is needed
(because positive or alternating diagrams are not unknotted), so we have
g(D") > 0. (Alternatively, using (6), we see that g(D") 0 implies that Vl
is a single monomial, and there would be nothing to prove in Theorem 1.)

Now mark in D" a set P of crossings as follows :

• the crossings created by (12):

• one of the crossings created by (13):

• the two (lower) crossings created by (14):

Let D be obtained from D" by switching crossings in P so that D becomes
positive and/or alternating. Then B B(D,P) has all the stated properties.
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Proof of Proposition 1. Assume (after possibly taking the mirror image,

which does not change the zeros of V) that L is a positive and/or alternating

link and zo £ C\{0} with Vl(a/zö) 0. Let D be a positive and/or alternating

diagram of L. Then we consider the braiding sequence B — B(D,P) found

in Lemma 4. The desired conclusion will be obtained by proving algebraically
that enough of the V polynomials on B are square-free and approximating zo

by zeros of such polynomials.

Now consider the map

(15) (2Z +1)" 9 (xu...,xn)I—>V(D(*i, • • • e Z[z].

Several properties of this map can be seen by applying iteratedly the skein

relation (4) for V. An explicit account may be found in [29]. (See in particular
Theorem 3.4 (2) and its proof. Note, though, that we do not consider parallel

twists, which are also treated there, and the formulation for the Alexander

polynomial is given, equivalent up to the change of variables (3).) We know

that (15) becomes a polynomial X in x\,...,xn, with coefficients in Z[z].
(For the explanation we will just make it is useful to neglect the polynomial
structure of X in z and regard z as just a quantity entering into the coefficients

w.r.t. the jq.) Furthermore, X is at most linear in each xL (and so of total

degree at most n). We call a monomial Q — x-n... xik (with ij pairwise

distinct) in X maximal, if Q does not divide (properly) any other monomial

in X. (Note that k < n9 and if k n then Q is always maximal.) If Q is

maximal, and D is the diagram obtained by smoothing out the k crossings

Cij in D, then the coefficient of Q in X is given by [X\q (z/2)kV(D).

Assume that D(xu ..,xn) is positive and/or alternating for x\,... ,x„ >0.
(By convention, this is always so, unless D is alternating, but not positive.

In latter case, the assumption is to be understood so that we change the

sign of some xt in the argument to follow.) For x\....,xn > 0 consider

V(D(xip,... ,xnp)) with p > 0 odd. By the above remark, this is a polynomial
in p. Its leading p-coefficient is C(z)Vl(z), with C(z) (z/2)nx\ -xn.
The other factor comes from the Conway polynomial of the link obtained by

smoothing out all q which (by Lemma 4) is L. Thus as p -> oc odd,

^ V(D(x<ip,... ,xnp))(yfz) ~ C(v/z)Vl(v/^) + o{\),

where o{ 1) stands for a sequence of polynomials of bounded (z-)ctegree with

coefficients going to zero. This implies that
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2 V (D(Xxp, xnpj) l(Vz

on any compact set JC(whenp -> oo). Since C(y/z)^ 0 for z close to z0

by Lemma 2

Pp(z)V (D(Xlp,.,xnp))(y/z)
has zeros converging to z0-Thus we would be done, unless for any choice
of X],... ,xn>0, the polynomial Pp(z) has a double --zero for all sufficiently
large p. Now, assume it were so.

Fix xi,...,xn>0. The existence of a double zero in is equivalent
to the vanishing of the discriminant disc(Pp) of Pp. The discriminant
disc (/) Res (/,/'), where Res (/, g)for f, g e Z\z] is the resultant. This
resultant can be expressed as the determinant of a square matrix M/ f/ of
dimension deg_/ + dcg, g, involving the coefficients of / and g, see e.g. [15,
definition 1.93, p^ 36], Since maxdeg zPpfor p > 0, the size of
MPp,dPp/dz is 2 9(D)—1, constantly in p. (To avoid degeneracies we excluded

9(D) 0 in the proof of Lemma 4.) We know also that the function

P ' y [V (D(XlPi • • • *nP))]i

[•]/ denoting the coefficient in z\ is a polynomial in p for any i. Thus the
entries of MPp dPp/dz are polynomial in p. So disc^F^) is a polynomial in p
for p > 0. But, as we saw, this polynomial vanishes for p —» oc, and hence
it vanishes identically, in particular for p — 1.

This means that V (D(x\,..., xn)) has a double zero for any x\,..,, xn > 0,
and hence is divisible by the square of its minimal polynomial. We claim
that then V (D{x\,..., xn)) has a double zero for any odd (not necessarily
positive) x\, *.., xn. To see this, use induction on the number of negative
parameters the linear dependence of V(D(xu... ,xn)) on each xt (when
fixing the others), and Lemma 1. But B contains an unknot diagram (by
Lemma 4), whose polynomial V 1 is certainly square-free.

This (indirect) argument provides us with the desired contradiction,
originating from our assumption that almost all Pp are not square-free, and
thus completes the proof.

Remark 1. One sees from the proof of Lemma 4 and Proposition 1

that they work also for arborescent links, but in that case the proposition is
not helpful, since H. Murakami gave a proof that all (admissible) Alexander
polynomials are realized by arborescent knots [17].



226 A. STOIMENOW

6. Some inequalities

With Theorem 1 proved, it is worth remarking that it implies several further

inequalities. For example, we have

Corollary 2. For a special alternating link L and i < 1 - x(L),

(16) [Vl],_2<-x(L)[V4.

Proof. Let n(L) be the number of components of L. I sing Theorem 1,

Newton's theorem, and the positivity of all [Vl], (see [3, 34]), we have for
1 + n(L) </'<-!- x(f) and i + ;y(L) odd

,17) ^ < -1^-
<17) [vj, [VJ /+2

Thus it suffices to prove (16) for i 1 - x(L). In this case (16) is equivalent

to the inequality [A/Jo < — [A/J i, with A^ normalized so that min deg Ai 0

and [Al]0 > 0, since (in this normalization of AL) we have

(18) AdûvL(r1/2 -A2) • tu-xv-m.

The desired inequality was proved in [23, Proposition 2].

Remark 2. The inequality in the corollary is sharp (non-trivially, that is,

for 1 - x(L) > i > n(L) + 1 and i + x(L) odd) if and only if f 1 —

and L is a (2, n) -torus knot or link (with both orientations in the link case).

This follows from the remark after the proof of Proposition 2 of [23]. (Note

that not all graphs given there are relevant for link diagrams.)

Another inequality, using the specific range of zeros of V(v/?h is a lower

estimate for the coefficients of V in terms of the genus.

Corollary 3. For a special alternating link L we have

(19) [VlU_1+2i. > ^(^[WWi-
Note that the only previous results in this direction (albeit true more

generally for positive links) were that these coefficients are non-negative [3],

with the slight improvement in [34] that (for i < g{L)) they are strictly

positive, and the inequalities for knots (n(L) =1) and, 1 of [32].
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Proof. Use that [Vl]w(L)1 > 1 and that for zi3 * • •, zg(L) being the zeros
of VlCv^z), we have

=(-)' e
L J«(L)-1 /C {1, • • •, g(L)} iei 1

I'M

We conclude by giving a few examples illustrating these inequalities. One
can find alternating knots which can be excluded from being special alternating
using Corollary 2.

Example 1. The alternating knots 14i0475 and 14i25i5 of [11] have the
Conway polynomials 1 + 8z2 4- z4 + z6 + 2z8 and 1 + 3z2 + 8z4 + z6 + 2z8,
respectively, and x -7. The polynomials are positive, so that by [3] the
knots may be positive, and so (as explained, see [24, 35]) special alternating.
But they are not special alternating by Corollary 2.

For Corollary 3 we have the following

Example 2. The knots 121221 and 12i238 of [11] are alternating.
Their Conway polynomials are 1 + z2 + 4z4 4 8z6 + 5z8 4- z10 and 1 + z2 +
8z4 + 12z6 + 6z8 + z10, and genus g 5. Their polynomials are positive,
but violate (19) for i 1. The alternating knot 16377355 has g 1 and
V(z) 1 + 3z2 + z4 4- 12z6 + 28z8 + 23z10 + 8z12 + z14, which violates (19)
for i —2.

Remark 3. Conjecture 1 implies that Corollary 2 may hold also for
positive links. But Corollary 3 does make use of the range of the zeros of V
(rather than only the fact that they are real), and may not hold for some
positive links even assuming Conjecture 1. Nevertheless, we do not know of
any such links.

Remark 4. Newton's theorem shows in fact a stronger version of the
property 'Newton-like', involving combinatorial coefficients in the inequalities
(see Theorem 51 of [8]), but we preferred to omit these coefficients in order
to have a stronger analogy to the property 'weakly Newton-like' (where they
cannot appear).
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