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ON THE ARAKELOV THEORY OF ELLIPTIC CURVES

by Robin DE Jong

Abstract. This paper is an introduction to the Arakelov intersection theory of
elliptic curves. We provide an alternative approach to several of the classical results.
The main new result is a formula for the "energy" of an isogeny between elliptic
curves. This formula provides an answer to a question posed by Szpiro.
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1. Introduction

The main goal of this paper is to give an introduction to the Arakelov
intersection theory of elliptic curves. Since the theory in this case can be made
completely explicit, the present paper may be of interest for people who are
interested in Arakelov theory and who want to become familiar with some
explicit examples.

The classical results on the Arakelov theory of elliptic curves can be
found in the works of Faltings [7] and Szpiro [12] on this subject. We will
obtain these results again in this paper, but our approach is different. Our
discussion is based on a projection formula for Arakelov's Green function
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which is not contained in [7] or [12]. Other results which seem new are a

projection formula for Arakelov intersections (Proposition 6.2) and a formula

for the so-called "energy" of an isogeny (Proposition 4.7). The latter formula

answers a question posed by Szpiro in [12]. To conclude our paper, we give

an elementary proof of a recent result due to Autissier [2] on the average

Faltings height of the quotients of an elliptic curve by its cyclic subgroups of

a fixed order.

2. Analytic invariants

The purpose of Arakelov intersection theory is to study curves over a

number field from two perspectives, which are placed on an equal footing:

on the one hand one considers the p-adic aspects of the curve, on the other

hand its complex analytic aspects. Both aspects are "unified" by the product

formula for number fields. We start our discussion by recalling from [1] and

[7] the main ingredients of the complex analytic part of Arakelov theory.

Let X be a compact and connected Riemann surfac e of genus g > 0. The

space of holomorphic differentials H°(X, Q^) carries then a natural hermitian

inner product (lü, rj) i-> { Jx uj A rj. Let {ujx,.., wg} be an orthonormal basis

with respect to this inner product. We have then a fundamental (l,l)-form g
on X given by g ~ XX=i AöJjfe. It is verified immediately that the form

g does not depend on the choice of orthonormal basis, and hence the form

p is canonical. Using this form, one defines the Arakclov-Green function on

X. This function gives the local intersections "at infinity" of two divisors in

Arakelov theory (cf. Section 5 below).

Definition 2.1. The Arakelov-Green function G is the unique function

R>o such that the following properties hold :

(i) for all P eX the function log G(P, Q) is C°° for Q / P ;

(ii) for all P G X we can write logG(P, Q) log \zp(Q)\ +/(ß) locally about

P, where zp is a local coordinate about P and where / is C°° about P ;

(iii) for all P G X we have dQdQ log G(P, Q)2 2tt ip[Q) for Q^P\
(iv) for all P G X we have fx log G(P, Q)g(Q) 0.

The existence of G is proved in [1]. Properties (i)—(iii) determine G up to a

multiplicative constant, which is then fixed by the normalisation condition (iv).

By an application of Stokes' theorem we obtain from (i)-(iv) the symmetry

G(P,Q) G(g,P) of the function G.
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Importantly, the Arakelov-Green function gives rise to certain canonical
metrics on the line bundles Ox(D), where D is a divisor on X. It suffices
to consider the case of a point P e X, for the general case follows then by
taking tensor products. Let s be the canonical generating section of the line
bundle Ox(P). We then define a smooth hermitian metric jj - \\0x(P) on Ox(P)
by putting \\s\\0x(p)(Q) G(P,Q) for any Q e X. By property (iii) of the
Arakelov-Green function, the curvature form of Ox(P) is equal to p, and in
general, the curvature form of Ox(D) is deg(D) • /i, with deg(D) the degree
of D.

Definition 2.2. A smooth hermitian metric || • || on a line bundle L on X
is called admissible if its curvature form is a multiple of p.

PROPOSITION 2.3. Let || • || and || • ||' be admissible metrics on a line
bundle L. Then the quotient || • ||/|j « ||# is a constant function on X.

Proof The logarithm of the quotient is a smooth harmonic function on X,
and hence it is constant.

Definition 2.4. The canonical metric ||-||Ar on the holomorphic cotangent
bundle is the unique metric that makes the adjunction isomorphism
0Xxx(—Ax)|az —» an isometry. Here the line bundle 0XxX(Ax) carries
the hermitian metric defined by ||ü||(P, Q) G(P,Q), with s the canonical
generating section of the line bundle 0XxX(Ax).

It was proved by Arakelov [1] that || • ||Ar is an admissible metric on

Proposition 2.5 (Adjunction formula). Let P be a point on X, and let
z be a local coordinate about P. Then for the norm \\dz\\At of dz in the

formula ||^||Ar(P) limô^ \z(P) - z(Q)\/G(P, Q) holds.

Proof From the definition of the canonical metric on it
follows that dz/z has unit length in QA(P). However, this line bundle
is isometric to ® Ox(P), with dz/z corresponding to dz 0 z~ls
where ^ is the canonical generating section of Ox(P). One computes that
lk_1*||(P) limG(P, Q)/\z(P) — z(Q)\ and the proposition follows.

From now on, we will focus on the case g — 1, and our first goal will
be to make the analytic theory from this section explicit.
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3. Complex projection formula

We start by studying the behavior of the fundamental (l,l)-form p with

respect to isogenics. Let X and X' be Riemann surfaces of genus 1, and

suppose that /: X->X' is a non-constant holomorphic map, say of degree N.

Let nx and px> be the fundamental (l,l)-forms of X and X', respectively.

Proposition 3.1. We have

(i) /*Mx'=N-/^x;
(ii) the canonical isomorphism f* : H°(Xf ,£lx,) —» //°(X, Q^) given by

inclusion has norm s/N.

Proof We identify X with a complex torus C/A, and obtain X' as the

quotient of C/A by a finite subgroup A'/A. Hence; we may identify X'
with C/A'. A computation shows that the differentials uj dz/VvoI(X) and

cy dz/s/vo\{K') are orthonormal bases of H°(X, Qj^) and H0(X\Qt]c,),

respectively. We obtain (ii) by observing that N vol(A)/vol(A'). Finally we

have px (i/2) • (dz A dz)/vol(A) and pX' 0'/2) • (a'z A dz)/vol(Ar) and (i)
also follows.

Proposition 3.1 gives rise to a projection formula for the Arakelov-Green

function. When D is a divisor on a compact and connected Riemann surface

X, we use the notation G(D,Q) as an abbreviation for HPeDG(P,Q)9 where

the points in D are counted with their multiplicities.

Proposition 3.2 (Complex projection formula). Let X and X' be

Riemann surfaces of genus 1 and let Gx and Gx> be the Arakelov-

Green functions of X and X ', respectively. Suppose we have a non-constant

holomorphic map f: X —ï X'. Let D be a divisor on X'. Then the canonical

isomorphism of line bundles

f* 0Xf (D) ^ Ox(fD)

is an isometry. In particular, we have a projection formula : for any P G X
the formula

Gx(f*D, P) Gx> (D,f(P))

holds.

Proof. Let N be the degree of /. By Proposition 3.1 we have
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curvf*Ox>(D) /*(curvOx>(D)) f*((degD) px,)
N • (deg D)deg ,ix

which means that f*Ox>(D)is an admissible line bundle on X. Hence
by Proposition 2.3 we have ||/*0z>)||/*ox,(£>) c • || for some
constant c where sDand sf.D are the canonical sections of Ox>(D) and

Ox(f*D), respectively. But since

In this section we give explicit formulas for the Arakelov-Green function
and the canonical norm on the holomorphic cotangent bundle. The formulas
that we obtain are already in [7], but we consider our approach to be

more direct. In fact, we proceed from the complex projection formula of
the previous section, while in [7] the discussion is based on a consideration
of the eigenvalues and eigenfunctions of the laplacian. As an application of
our results we give a formula for the so-called "energy" of an isogeny (this
terminology is adapted from [12]). We conclude this section by calculating
the value of the Arakelov-Green function on a pair of 2-torsion points.

Definition 4.1. Let Xbea 1-dimensional complex torus. Let w be a
holomorphic differential of norm 1 in H°(X,Q]C). Then we put A(X ||w||Ar
for the norm of uin£2|. This is an invariant of X.

Proposition 4.2 (Energy of an isogeny). Let X 1 -dimensional
complex tori related by an isogeny f: Xof degree N. Then the formula

[ loglirMly.
Jx

Ox/ (D) Px T; • [l°g \\f*(SD)\\f*Ox,(D)
J X

this constant is equal to 1.

4. Explicit analytic invariants

PGKer/,
n
prf p-An A (A

holds.
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Proof. Let v be the norm of the isomorphism of line bundles

f* Q|,, —4^ given by inclusion. We will compute in two ways. First of all,

consider an J e of norm 1, so that J has norm MX') in

Then by Proposition 3.1 we have that /*(u>') has norm \fN in

hence it has norm y/N A(Xin This gives

VN-A(X)
U~ MX7)

On the other hand, by Proposition 3.2, the canonical isomorphism

f{Ox>{0)) ^ Ox(Ker/)

is an isometry. Tensoring with the isomorphism f*Q>x, gives an

isomorphism

/*(Q^/ (0)) > Ox(0) (g) ®FGKer/, F/0 Ox(P)

of norm v given in local coordinates by

dz dz ^f (—) ^ ® s,
z z

where s is the canonical section of ®peKer/, f/o &x(P) • The dz/z have

norm 1, so we find

n g(O,
FGKer/, F^O

Together with the earlier formula for v this implies the proposition.

The following corollary seems to be well-known, see for instance [13],

Lemme 6.2.

COROLLARY 4.3. Let X be a 1 -dimensional complex torus. Denote by

X[/V] the kernel of the multiplication-by-N map X -y X. Then the formula

G(0, P) — N
FGY[V],F/0

holds.

Proof This is immediate from Proposition 4.2 once we observe that

#X[N] N2.
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Definition 4.4 (Cf. [7]). Let r be an element of the complex upper
half plane, and write q exp(27r/r). Then we have the eta-function

tj(t) — </) and the modular discriminant À(r) ?Kr)24

^n^id —qk)24- The latter is the unique normalised cusp form of weight 12

on SL(2,Z). Now suppose that we have a 1-dimensional complex torus X.
Then we put )M|(X) (Imr)1/4 • |?y(r)| and ||A||(X) ||r?||(X)24

(Imr)6 • |A(r)| if X is isomorphic to C/Z + tZ. These definitions do not

depend on the choice of r, and hence they define invariants of X. Next, the

normalised theta function ||$|j associated to r is defined to be the function

\\d\\(z;t) (Imr)1/4 exp(-7r(Imr)_1y2)|^(z; r)|

on C where y Imz and where $(z; r) is the theta function

#(z; r) - exp(7rm2r + Ininz)
n£Z

on C. For a fixed r, the function (|#||(z;r) depends only on the class of z

modulo Z + rZ.

We have the identities

(exp(7r/r/4) • $(0; r)#(l/2; r)#(r/2; r))8 28 • À(r)

and
/ 1 —I- T \ 8

o

(exp(7rir/4) • — —; r) J (27r) • A(r),

both of which can be proved by the fact that the left hand sides are cusp
forms on SL(2, Z) of weight 12.

Proposition 4.5 (Faltings [7]). Let X be the complex torus C/Tj + tTj
with t in the complex upper half plane. For the Arakelov-Green function G

on X the formula

rm-ïII^IKz + C1
G((U) ii®n

holds.

Proof. It is known that ||$||(z + (1 + r)/2) vanishes only at z 0,
and that log ||tf||(z + (1 + r)/2) log|z|+ a C°°-function about z 0.

A small computation shows that that dzdz log ||'$||(z + (1 +r)/2)2 liripx
for z / 0. By what we have said in Section 2, we have from this that
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G(0,z) c • ||tf||(z + (1 + t)/2;t) where c is some constant. It remains to

compute this constant. If we apply Corollary 4.3 with N 2 we obtain

2 G(0,1/2)G(0, r/2)G(0, (1 + r)/2) - c3 • ||tf||(0; r)||i?||(l/2; r)p[|(r/2; r).

On the other hand we have the formula

(exp(7r/r/4) • $(0;t)$(1/2;t)$(t/2;t))8 28 • A(r)

mentioned above. Combining we obtain c ||?7||(X)-1.

Proposition 4.6 (Faltings [7]). Let X be a I -dimensional complex torus.
For the invariant A(X), the formula

(2?r) •

holds.

Proof. We follow the argument from [7] : writing X C/Z + rZ we can
take üü dzjyjYmr as an orthonormal basis of H°(X, Oi). By Proposition 2.5

we have ||dz/v/ïmr||Ar (Vimr
1

- \imz^o\z\/G(0,z)- We obtain the

required formula by using the explicit formula for G(0, z) in Proposition 4.5

and the formula

^exp(7nr/4) ^ LfZ ; r) j — Qirf A(r)

mentioned above.

We immediately obtain from Propositions 4.2 and 4.6 the following explicit
formula for the "energy" of an isogeny.

Proposition 4.7 (Energy of an isogeny). Let X and X' be 1 -dimensional
complex tori related by an isogeny f: X —> X '. Then we have

TT C(QP)11 ' }
IMIGO2 '

PGKer/,/V0
11 /I|V 7

where N is the degree off.

Proposition 4.7 anwers a question posed by Szpiro. In [12], Théorème 1,

Szpiro proves that if E and E' are elliptic curves over a number field K,
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related by an isogeny f:E-+E' of degree N, the formula

Pa/0

holds, the sum running over the complex embeddings of K. He asks whether

the obvious stronger statement holds for a single 1 -dimensional complex torus.

Our proposition gives a positive answer to that question.

We conclude this section with an expression for the value of the Arakelov-
Green function on a pair of 2-torsion points. We use the following classical

result.

Lemma 4.8. Let X be a \-dimensional complex torus and suppose
that y2 4x3 — px — q — f(x) is a Weierstrass equation for X. Write

fix) — 4(x — <yi)(x — ot2)(x — af). Let (uj\\uj2) be the period matrix of the

holomorphic differential dx/y on the canonical symplectic basis of H\{X,7j)
given by the ordering a\, c*2, «3 of the roots off (cf [9], Chapter Ilia, §5),
and put t UJ2/CJ1. Then we have the formulas

Viy/oti — «3 7T • $(0; T)2

LU\\/ai — 0L2 — 7r • #(1 /2; r)2

w\\Jol2 — CX3 — TT • exp(7r/r/2) • i?(r/2;r)2

for appropriate choices of the square roots. Further, let

D 16(ai — <Y2)2(«i — «3)2(a2 — c^)2 p3 — 21q2

be the discriminant of f. Then the formula

D — (27f)12 • cuf12 - A(T)

holds.

Proof. The first set of formulas follows by an application of Thomae's

formula, cf. [9], Chapter Ilia, §5. The last formula follows from the first set

and from the formula

(exp(7r/r/4) • $(0; r)#(l/2; r)^(r/2; r))8 28 • A(r)

mentioned above.
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PROPOSITION 4.9. Let X be a 1 -dimensional complex torus and suppose
that y1 4x3 — px — q f(x) is a Weierstrass equation for X. Write

fix) 4(x — a\)(x — a2)(x — af). Let P\ (ai,0), P2 (<T2,0) and
P3 (03,0). Then the formulas

G(P„P,)l2~
\OL\ — af\ - \ot2 — a3\

G(PUP-})12 —
16

\a\ — O2I • I03 — 021

gcp2,P3)1z -12 16 • I CK2 — G3I2

[of2 — Ol I • |a3 — a\I

/zo/J. In particular, when the coefficients of the Weierstrass equation are
algebraic, then so are the special values of G on pairs of 2-torsion points.

Proof This follows directly from Lemma 4.8 and the explicit formula
for G(0,z) in Proposition 4.5.

We remark that Proposition 4.9 has been obtained by Szpiro [12], using a

different method, in the special case that X is the complex torus associated

to a Frey curve y2 x(x + a)(x — b), where a,b are non-zero integers with
24| a and b — \ mod 4.

5. Arakelov intersection theory

In this section we recall from [1] and [7] the basic: notions of Arakelov
intersection theory on arithmetic surfaces.

Definition 5.1. An arithmetic surface is a proper flat morphism p: £ —ï B
of schemes with £ regular and with B the spectrum of the ring of integers of
a number field K, such that the generic fiber 6k is a geometrically connected

curve. If the generic fiber has genus 1, and a section O : B -y £ of p is

given, then we call p: £ -A B an elliptic arithmetic surface.

The fibers of an arithmetic surface are connected, and have constant
arithmetic genus. Moreover, all geometric fibers, except finitely many, are

non-singular.
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Definition 5.2. An arithmetic surface p: S -» B with generic fiber of
positive genus is called minimal if every proper birational 2?-morphism £ -» £'
with p' : £' -a B an arithmetic surface, is an isomorphism.

If E is a geometrically connected, non-singular proper curve of positive
genus over a number field K, then there exists a minimal arithmetic surface

p: £ -A B whose generic fiber is isomorphic to E over K. Such an arithmetic
surface will be called a minimal regular model of E over K. The possible
fibers of a minimal elliptic arithmetic surface have been classified, and there
exists an algorithm due to Tate [14] which computes the fibers of a minimal
arithmetic surface associated to an elliptic curve over a number field given in
Weierstrass form.

Definition 5.3. An Arakelov divisor on an arithmetic surface p: 8 -a B
is a finite formal integral linear combination of irreducible closed subschemes
of £ (i.e., a Weil divisor), plus a contribution aa • Ea running over the
complex embeddings of K. Here the aa are real numbers and the Ea are
formal symbols, corresponding to the Riemann surfaces Xa {£ C)(C).
We denote the set of Arakelov divisors on £ by Div(£). This set carries an
obvious group structure.

Given an Arakelov divisor D, we write D Dfin + Anf with Am its
finite part, i.e., the underlying Weil divisor, and with Anf Ea a<r ' A its
infinite part. To a non-zero rational function / on £ we associate an Arakelov
divisor (/) (/)fin + (J)m with (/)fin the usual divisor of / on £, and
with (/)inf Va(f) • Ea where va(f) - log \f\a • pa. Here is
the fundamental (l,l)-form on Xa, as in Section 2.

Definition 5.4. We say that two Arakelov divisors D and D' are linearly
equivalent if their difference is an Arakelov divisor (/) for some non-zero
rational function /. We^ denote the group of Arakelov divisors on £ modulo
linear equivalence by C\(£).

The following proposition is then the main result of [1].

PROPOSITION 5.5 (Arakelov^fl]). There exists a natural bilinear symmetric
intersection pairing Div(£) x Div(£) ->> R. This pairing factors through linear
equivalence, giving an intersection pairing CI{£) x Cl(£) —>> R.
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We will refer to this pairing as the Arakelov intersection product on £,
and denote it by round brackets (•, We will not spell out the complete

details of the definition, which can be found in [1] or [7], but mention

here only the case of the intersection of (the images m £ of) two sections

P, <2: B -> £ of p. In this case, the intersection (P,Q) is defined as

(P,ß) (P, ß)fin + (P, Ô)inf with (P,Q)fin £Ä(P, ß), iogW, a sum

running over the closed points s of B, where (P, Q)s is the usual local

intersection of P and Q above s (cf. [8], Section 9.1) and where k(s)

is the residue field of s, and with (P, Q)inf ~ ^a log G(Pa,Qa), a

sum running over the complex embeddings of K, where G(PaiQa) is the

Arakelov-Green function on Xa evaluated on the restrictions Pa,Qa of P, Q

to Xa.

We can connect the notion of Arakelov divisor on £ with the notion of

an admissible line bundle on £.

Definition 5.6. An admissible line bundle L on £ is the datum of a

line bundle L on P, together with admissible smooth hermitian metrics on

the restrictions of L to the Xa. The group of isometry classes of admissible

line bundles on £ is denoted by Pic(P).

The relation with the previously defined Cl(£) is as expected.

Proposition 5.7 (Arakelov [1]). There is a canonical isomorphism of
groups C\(£) Pic(P).

By abuse of notation, for an admissible line bundle L on £ we will
write (P,L) to mean an Arakelov intersection (P, D), with D an Arakelov

divisor corresponding to L under the above isomorphism. The next proposition

follows by spelling out the definitions.

PROPOSITION 5.8. Let L be an admissible line bundle on £, let P: B —» £

be a section of p, and let s be a non-zero rational section of L. Then we

have

(P,L)log #(P*L/P*s Ok) - y^log
a

with ||s||CP)cr denoting the norm of s at Pa in the restriction of
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There is a canonical admissible line bundle on whose underlying
line bundle is the relative dualising sheaf of -* (cf. [8], Section 6.4).
The metrics at infinity are given by the canonical Arakelov norm (cf. Definition

2.4 above). By combining the classical adjunction formula on arithmetic
surfaces (cf. [8], Theorem 9.1.37) with its analytic counterpart Proposition 2.5
we obtain an adjunction formula for Arakelov intersections.

Proposition 5.9 (Adjunction formula). -a section of
Then the formula (P, P) -(P,u>£/B)holds.

6. Arakelov projection formula

Based on the complex projection formula from Proposition 3.2, we prove
in this section a projection formula for Arakelov intersections on an elliptic
arithmetic surface. First we need to introduce pullbacks and pushforwards of
Arakelov divisors.

Definition 6.1. Let p: £—>• Band// : H be arithmetic surfaces,
and suppose we have a B-morphism f:Let be an Arakelov divisor
on £, and write D Dfin + ECT aa-Ea.The pushforward /',/) of I) is defined
to be the Arakelov divisor ftD /,Dfin -f • Ya

• on where ftDtin
is the usual pushforward of the Weil divisor D(m and where is the degree
of /. Next let D' - I)\m + 'C • E'abean Arakelov divisor on The
pullback f*D'ofD' is the Arakelov divisor f*D' f*D'ûn + Y.a a'a ' E<r

on £ where f*D'ün is the pullback of the Weil divisor D'ûn on defined in
the usual way using Cartier divisors.

Proposition 6.2 (Arakelov projection formula). Let E and E' be elliptic
curves over a number field K, related by an isogeny : -¥ -f
and p': £'—» Bbearithmetic surfaces over the ring of integers of K with
generic fibers isomorphic to E and respectively, and suppose that fextends to a B-morphism f:£->£'.Thenfor any Arakelov divisor D on £
and any Arakelov divisor D' on £', the equality of intersection products
(f*D',D) (D',f*D) holds.
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Proof. We may restrict our attention to the case where both D and D' are

Arakelov divisors with trivial infinite part. By the moving lemma on £' (cf. [8],

Corollary 9.1.10) we can find a function g G K(E') such that D" D' + (#)fin

and /*£> have no components in common. Obviously D" + (g)M is Arakelov

linearly equivalent to D', and hence by a computation as in Proposition 3.2 the

Arakelov divisor /*£>" + (J*g)mf is Arakelov linearly equivalent to /*£>'. It is

therefore sufficient to prove that (f*D" + (f*g)mf,D) — {D" + (g)mf,f*D)-

It is clear that ((/*^)inf,D) ((#)inf,/*£>), so it remains to prove that

(f*D",D) (D"J*D).
By the classical projection formula (cf. [8], Theorem 9.2.12 and Remark

9.2.13) we have (/*£>", D)fin (D"J*D)ün. For the contributions at infinity

we can reduce to the case where D and D" are sections of £ -» B

and £' -A B, respectively. Let a be a complex embedding of K. Let Da

and D"a be the points corresponding to D and D" on Ea and E'a. Then

for the local intersection at o we have (D//,/*D)cr by the

complex projection formula from Proposition 3.2. This proves the projection

formula. P

Remark 6.3. If £' is a minimal arithmetic surface, then it
contains the Néron model (cf. [8], Section 10.2.2) of E' over ^ as a

dense open subscheme. By the universal property of the Néron model,

any isogeny f'E —> E' extends over a dense open subscheme U of E

(smooth over B) to give a 5-morphism U —> £ and hence a rational

map /: S —> £'. By [81, Theorem 9.2.7 there exists a proper bira-

tional morphism tt : £ —> £ made up of a finite sequence of blowings-

up of singular points on the fibers, and a morphism /: £ -A £' such

that /=/.tt.
COROLLARY 6.4 (Szpiro [12]). Take the assumptions of Proposition 6.2.

Let DuD2 be Arakelov divisors on £' and let N be the degree of f. Then

the formula

(J*Duf*D2) N.(DuDà

holds.

Proof. It follows from [8], Theorem 7.2.18 and Proposition 9.2.11 that

f*f*D2 N D2. Proposition 6.2 then gives (f*Duf*D2) (Duf*f*D2) -
cDUN'D2) N(DUD2).
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7. Self-intersection of a point

In this section we compute the Arakelov self-intersection of a rational
point on an elliptic curve. Since this is independent of the choice of rational
point, we obtain a canonical invariant of the elliptic curve. It is interesting to
have this invariant explicitly. We restrict our attention to semi-stable elliptic
curves.

Definition 7.1. Let p:£-*Bbean elliptic arithmetic surface. We call
p semi-stable if a fiber of p is either non-singular, or an n -gon of projective
lines. We call an elliptic curve E over a number field K semi-stable if there
exists a semi-stable elliptic arithmetic surface over the ring of integers of K
whose generic fiber is isomorphic to E.

A semi-stable elliptic arithmetic surface is always minimal. Moreover,
given an arbitrary elliptic curve E over a number field there is a finite
field extension LofKsuchthat E becomes semi-stable over L (cf. [8],
Section 10.4).

Proposition 7.2 (Szpiro [12]). Let semi-stable elliptic curve over
a number field K, and let p: 8 -A B be its regular minimal model over the
ring of integers of K. Let P: B S be a section of p, and denote by A(E/K)
the minimal discriminant ideal of E over K. Then the formula

(pip) ~ !°g \Nk/q(A(E/K))\

holds.

Before we give the proof, we recall two geometric lemmas.

Lemma 7.3. Let p: E -a B be a minimal arithmetic surface with generic
fiber of genus 1 and with relative dualising sheaf ui£/B. The canonical
homomorphism p*p*uj£/B —y lü£/b is an isomorphism.

Proof. See [8], Corollary 9.3.27.

We will freely use the language of moduli stacks of stable curves as in
[7]. For more details we refer to [4].
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LEMMA 7.4. Let p\lA\ -A M\ be the universal stable elliptic curve

with relative dualising sheaf u. Then there is a canonical isomorphism

(p*üü)®12 —> 0(A) of line bundles on Mi, where A is the boundary of Mi.
Let A be the canonical section of (p*uj)®n given by this isomorphism. Then

for a complex torus X C/Z + rZ we can write A -- (27t)1 A(r){dz)® m

local coordinates.

Proof This follows from the theory of the Tate elliptic curve, see for

example [5].

Proof of Proposition 7.2. By the adjunction formula Proposition 5.9 we are

done if we can prove that 12(P, wg/B) — log \Nk/q(A(E/K))\ By Lemma 7.3

we have a canonical isomorphism p^s/B —> P*ug/B, and what we will

do is apply Proposition 5.8 to the image of the section Ag/B, given by

Lemma 7.4, in (P*ug/B)®12. As is clear from the isomorphism in Lemma

7.4, the finite places yield a contribution log \Nk/q(A(E/K)) \ As to the infinite

places, recall that by Proposition 4.6 we have ||&||at =: \/lmr/((27r)||ry||(X)2)

for a complex torus X C/Z + rZ. Together with the formula in Lemma

7.4 we obtain that ||Act||at 1 for each complex embedding er, and hence

the infinite contributions vanish. This gives the proposition.

The proof of Proposition 7.2 given in [12] is more involved, and is based

on a study of the distribution of the torsion points on the singular fibers. Our

proof answers a question raised in [12] on the norm ||A||at of A in (P*uj)'/jV1.

8. Average height of quotients

In this final section we study the average Faltings height of the quotients

of a semi-stable elliptic curve by its cyclic subgroups of fixed order. The

Faltings height of an elliptic curve over a number field is in some sense a

measure for the arithmetic complexity of the elliptic curve. It is defined as

follows.

DEFINITION 8.1 (Cf. [6]). Let A be a semi-stable elliptic curve over a

number field K,andlet p:£-»Bbeits regular minimal model over the ring

of integers of K. Let w£/B be the relative dualising sheaf of ->• and
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let w be a non-zero rational section of the line bundle on B. Then
we put

ht-(E)
[K Q]

(lQg #(p*u£/B/u0K) ^ log llwll«,)
CT

where a runs over the complex embeddings of K and where the norm
of u) in H°(Xa,Q.1) is taken with respect to the inner product defined in
Section 2.

The Faltings height hp(E) of a semi-stable elliptic curve E over a number
field K does not change under field extensions of K. An explicit formula for
the Faltings height follows readily from what we have said in Section 7.

Proposition 8.2 (Cf. [11], Proposition 1.1). Let E be a semi-stable elliptic
curve over a number field K. Let À(E/K) be the minimal discriminant ideal
of E over K. Then the formula

hp{E)jxfoï (.Tïl0g\Nk/q(A(E/.'/s0)|- L^ log((27T )1211AI [

a
holds. Here the sum runs over the complex embeddings of K.

Also, it is known how the Faltings height changes under isogenies.

Proposition 8.3 (Faltings [7], Raynaud [10]). Let E and E' be semi-
stable elliptic curves over a number field K, and suppose we have an isogeny

f : E —»• E', say of degree N. Then we have

hF{E') - hp(E)i logiv - [^-Q] log >

as well as the estimate

\hF(E')-hP(E)\<i logAf.

Moreover, any prime number that divides also divides N.

In order to state the result of this section we fix some notation. Throughout
we let A be a positive integer. We denote by eN the number of cyclic subgroups
of order N on an elliptic curve over C, i.e.

«=«n('+;)>
p\N y
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where the product is over the primes dividing N. Further we put

v- f -1

^ EP,-,(P3 V8"-
p\NF

/IIJV

where the notation pr\\N means that pr\N and pr+l \N. Wc fix a semi-stable

elliptic curve E over a number field K. For a finite subgroup C of E we

denote by E'thequotient of £ by C.

The following result is proved in [2] (cf. Théorème 3.2).

Proposition 8.4 (Autissier [2]). Whave

— y (hF(E')- hF(E))log A -
e»c 2

where the sum runs over the cyclic subgroups of E of order A.

The proof in [2] is based, among other things, on a non-trivial result due

to Kühn on the height of the modular curve X(l). It is our purpose to show

that in fact Proposition 8.4 admits a completely elementary proof, based only

on results we have deduced in this paper. Our approach will be close in spirit

to [13], where the change of height is considered, under more assumptions,

for a single cyclic isogeny. However, again we consider our method to be

less involved. For example, we do not need a study ol the distribution of the

torsion points on the singular fibers as carried out in [13]. A generalisation

of Proposition 8.4 to higher dimensions would be interesting, and perhaps our

arguments indicate how to obtain such a generalisation.

Let p: E -ï B be the regular minimal model of E over the ring of

integers of K, let O : B -> £ be the zero section of p and let co be the

relative dualising sheaf of p. We assume that K is so large that all A-torsion

points of E are K -rational. This implies that for all subgroups C of E of

order A, the quotient elliptic curve E' can be given over K.
All we need to do is prove the following three lemmas. Together with

Proposition 4.2 they give Proposition 8.4 by just combining.

Lemma 8.5. The formula

holds, where o runs over the complex embeddings of K.
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When C is a cyclic subgroup of E of order N, we denote by -s-
the regular minimal model of E' over by O' the zero section of and
by ui'therelative dualising sheaf of p'

Lemma 8.6. The formula

c

holds, the sum running over the cyclic subgroups of E of order N.

The last lemma deals purely with the complex analytic side, and explains
in a sense the emergence of the constant XN.

Lemma 8.7. Let X be a 1 -dimensional complex torus and denote by G
the Arakelov-Green function on X. Then we have the formula

^^l°gG(0,f) Al¥
N c pec

o

where the first sum runs over the cyclic subgroups of X of order N, and the
second sum runs over the non-zero points in C.

Lemma 8.7 is an improvement of Proposition 6.5 in [13], which deals only
with a sum running over the complex embeddings of a number field.

Proof of Lemma 8.5. It follows from the geometric Lemma 7.3 that there
is a canonical isomorphism ptui—y0*u. The lemma follows by observing
that this isomorphism multiplies the norm at the complex embedding by a
factor IIAHCU.

The proofs of Lemmas 8.6 and 8.7 are based on the following easy
combinatorial lemma.

Lemma 8.8. Let M be a positive integer with Let X be an elliptic
curve over an algebraically closed field of characteristic zero. Then each cyclic
subgroup of X of order M is contained in exactly eN/eM cyclic subgroups
of order N.

Proof of Lemma 8.6. Extend the iV-torsion points on E over the regular
minimal model £of EoverK.Fora positive integer denote by E[M\
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the set of sections corresponding to M-torsion points on E, and by E[M] the

set of sections corresponding to M-torsion points on E which are of exact

order M. It follows from the Arakelov projection formula that

^ (P,0) 0.
peE[M]
p^o

Although we may need to go to a cover £ —> £ to be able to apply the

projection formula (cf. Remark 6.3), this is harmless since this introduces

only exceptional curves for singular points on the fibers, and such curves do

not intersect sections of £ -» B. By a Möbius inversion argument we find

^ (P,0) 0.
PéË[M]

We then calculate

y^((0',u/) - (0,w)) J2((0,0) - (O',0')) (by the adjunction formula)

c c

a J2 y; (El O) (by the projection formula)

c pec, p^o

^2 — y (B, O) (by Lemma 8.8)

m\n,m>i
6m

PeE\M]

and this vanishes by our observation above.

Proof of Lemma 8.7. For a positive integer M\N denote by X[M] the set

of M-torsion points on X, and by X[M] the set of M-torsion points on X

which are of exact order M. By Corollary 4.3 we have

y log G(0, P) log M.
pex[M]

p^o

By a Möbius inversion argument we find from this

„ f logp if M pr for some; prime number p,£ logG(0,P)=|0
P£X[M] K

By Lemma 8.8 we have

iy:y:iog«o.i>) ^ES £ «««».«
N c pec m\n pex[M]

P^o M> 1
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and hence

i££'oscM WJ- + - + f)1°s."
c pec P\M v p p '

P^° pr\\N

which is just the constant \N.

Remark 8.9. A combination of Proposition 4.7 and Lemma 8.7 gives the
interesting identity

~E(j2 l0S HAIK*> - J2108 l|A||(X'}) \ l°gN - Xn

for a 1-dimensional complex torus X, where the sum runs over the cyclic
subgroups of X of order N, and where X' stands for the quotient of by a
cyclic subgroup C. Alternatively, this identity can be proved by using certain
modular forms identities, see for example [3], Proposition VII.3.5(b) for the
case that A is a prime, or [2], Lemme 2.2 and Lemme 2.3 for the general
case.

We finish with two corollaries from the results above. The first corollary
gives another interpretation of the constant XN.

COROLLARY 8.10. Extend the N-torsion points of E over the regular
minimal model of E over K. Then one has

[K : Q] ^ S ^(P' °)fin Xn '
NdJ JX c pec

P^O
where the first sum runs over the cyclic subgroups of E of order Ny and the
second sum runs over the non-zero points in C.

Proof We have

xu yv c peC a
/Vo

by Lemma 8.7, the third sum running over the complex embeddings of K,
and

£y>,o)=o
c pec

p^o
by the proof of Lemma 8.6. The result follows from this by noting that
(P, O) (P, O)fin + (P, 0)M with (P, 6>)inf -^ log G(Pa, 0).
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Corollary 8.10 is purely arithmetical in nature. It should be possible to give

a direct proof, but this probably requires a more ad hoc approach, making for

instance a case distinction between the supersingular and the ordinary primes

for E over K.
The next corollary is certainly well-known, but it is amusing to see how

it can be proved using Arakelov theory.

Corollary 8.11. Suppose that N p is a prime number. Extend the

p-torsion points of E over the regular minimal model of E over K. Then

the p-torsion points restrict injectively to a fiber at a prime of characteristic

different from p.

Proof By symmetry considerations, it suffices to prove that for any

p-torsion point P, the sections P and O do not intersect at a fiber above a

prime of characteristic different from p. But if we take N — p in the formula

from Corollary 8.10, the right hand side is a rational multiple of log/?, hence

so is the left hand side. As the local intersections involved in (P, <9)fin are

always non-negative, they are in fact zero at primes of characteristic different

from p. This proves the corollary.
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