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ON THE ARAKELOV THEORY OF ELLIPTIC CURVES

by Robin DE JONG

ABSTRACT. This paper is an introduction to the Arakelov intersection theory of
elliptic curves. We provide an alternative approach to several of the classical results.
The main new result is a formula for the “energy” of an isogeny between elliptic
curves. This formula provides an answer to a question posed by Szpiro.
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1. INTRODUCTION

The main goal of this paper is to give an introduction to the Arakelov
intersection theory of elliptic curves. Since the theory in this case can be made
completely explicit, the present paper may be of interest for people who are
interested in Arakelov theory and who want to become familiar with some
explicit examples.

The classical results on the Arakelov theory of elliptic curves can be
found in the works of Faltings [7] and Szpiro [12] on this subject. We will
obtain these results again in this paper, but our approach is different. Our
discussion is based on a projection formula for Arakelov’s Green function
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which is not contained in [7] or [12]. Other results which seem new are a
projection formula for Arakelov intersections (Proposition 6.2) and a formula
for the so-called “energy” of an isogeny (Proposition 4.7). The latter formula
answers a question posed by Szpiro in [12]. To conclude our paper, we give
an elementary proof of a recent result due to Autissier [2] on the average
Faltings height of the quotients of an elliptic curve by its cyclic subgroups of
a fixed order.

2. ANALYTIC INVARIANTS

The purpose of Arakelov intersection theory is to study curves over a
number field from two perspectives, which are placed on an equal footing:
on the one hand one considers the p-adic aspects of the curve, on the other
hand its complex analytic aspects. Both aspects are “unified” by the product
formula for number fields. We start our discussion by recalling from [1] and
[7] the main ingredients of the complex analytic part of Arakelov theory.

Let X be a compact and connected Riemann surface of genus g > 0. The
space of holomorphic differentials H°(X, ) carries then a natural hermitian
inner product (w,n) — % [,wAT7. Let {wi,...,w,} be an orthonormal basis
with respect to this inner product. We have then a fundamental (1,1)-form g
on X given by p = —2-% S0, we AWy It is verified immediately that the form
p does not depend on the choice of orthonormal basis, and hence the form
i is canonical. Using this form, one defines the Arakelov-Green function on
X. This function gives the local intersections “at infirity” of two divisors in
Arakelov theory (cf. Section 5 below).

DEFINITION 2.1. The Arakelov-Green function G is the unique function
X x X — R>¢ such that the following properties hold:
(i) for all P € X the function log G(P, Q) is C> for Q # P;
(ii) for all P € X we can write log G(P, Q) = log |zp(Q)| +f(Q) locally about
P, where zp is a local coordinate about P and where f is C° about P;
(iii) for all P € X we have 8Q5Q log G(P, Q)* = 2mip(Q) for Q # P;
(iv) for all P € X we have [, log G(P,Q)u(Q) =0.
The existence of G is proved in [1]. Properties (i)—(iii) determine G up to a
multiplicative constant, which is then fixed by the normalisation condition (iv).

By an application of Stokes’ theorem we obtain from (i)—(iv) the symmetry
G(P, Q) = G(Q, P) of the function G.
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Importantly, the Arakelov-Green function gives rise to certain canonical
metrics on the line bundles Ox(D), where D is a divisor on X. It suffices
to consider the case of a point P € X, for the general case follows then by
taking tensor products. Let s be the canonical generating section of the line
bundle Ox(P). We then define a smooth hermitian metric || -||o,») on Ox(P)
by putting ||s|lox ) (Q) = G(P,Q) for any Q € X. By property (iii) of the
Arakelov-Green function, the curvature form of Ox(P) is equal to s, and in
general, the curvature form of Ox(D) is deg(D)- u, with deg(D) the degree
of D.

DEFINITION 2.2. A smooth hermitian metric ||-|| on a line bundle L on X
is called admissible if its curvature form is a multiple of .

PROPOSITION 2.3. Let || -|| and || -||' be admissible metrics on a line
bundle L. Then the quotient | -||/|| - ||" is a constant function on X.

Proof. The logarithm of the quotient is a smooth harmonic function on X,
and hence it is constant.  []

DEFINITION 2.4.  The canonical metric ||-|[s, on the holomorphic cotangent
bundle Q} is the unique metric that makes the adjunction isomorphism
Oxxx(—Ax)|a, — QL an isometry. Here the line bundle Oyxyx(Ax) carries
the hermitian metric defined by ||s||(P, Q) = G(P,Q), with s the canonical
generating section of the line bundle Oy, x(Ay).

It was proved by Arakelov [1] that [ -||a, is an admissible metric on Q).

PROPOSITION 2.5 (Adjunction formula). Let P be a point on X, and let
z be a local coordinate about P. Then for the norm ||dz||ar of dz in Q) the
formula ||dz||ar(P) = limg_,p |2(P) — 2(Q)|/G(P, Q) holds.

Proof. From the definition of the canonical metric on Q) it fol-
lows that dz/z has unit length in Q}(P). However, this line bundle
is isometric to Q} ® Ox(P), with dz/z corresponding to dr ® z7ls
where s is the canonical generating section of Ox(P). One computes that
lz=Ls||(P) = limg_,p G(P, Q)/|2(P) — Z(Q)| and the proposition follows.  []

From now on, we will focus on the case g = 1, and our first goal will
be to make the analytic theory from this section explicit.
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3. COMPLEX PROJECTION FORMULA

We start by studying the behavior of the fundamental (1,1)-form g with
respect to isogenies. Let X and X' be Riemann surfaces of genus 1, and
suppose that f: X — X' is a non-constant holomorphic map, say of degree N.
Let py and py be the fundamental (1,1)-forms of X and X', respectively.

PROPOSITION 3.1. We have

(i) fTux =N-px;
(ii) the canonical isomorphism f*: HOX', QL) = HO%X,Ql) given by
inclusion has norm /N.

Proof We identify X with a complex torus C/A, and obtain X' as the
quotient of C/A by a finite subgroup A’/A. Hence we may identify X’
with C/A’. A computation shows that the differentials w = dz/ V/vol(A) and
w' = dz/+/Vol(N) are orthonormal bases of H°(X,Q}) and H°(X',Q}),
respectively. We obtain (ii) by observing that N = vol(A)/vol(A"). Finally we
have py = (i/2) - (dz A dz)/vol(A) and px = (i/2) - (az A dz)/vol(A') and (i)
also follows. [

Proposition 3.1 gives rise to a projection formula for the Arakelov-Green
function. When D is a divisor on a compact and conriected Riemann surface
X, we use the notation G(D, Q) as an abbreviation for ] rep OGP, 0), where
the points in D are counted with their multiplicities.

PROPOSITION 3.2 (Complex projection formula). Let X and X' be
Riemann surfaces of genus 1 and let Gx and Gx: be the Arakelov-
Green functions of X and X', respectively. Suppose we have a non-constant
holomorphic map f: X — X'. Let D be a divisor on X'. Then the canonical
isomorphism of line bundles

[*Ox:/(D) — Ox(f*D)

is an isometry. In particular, we have a projection fcrmula: for any P € X
the formula

Gx(f*D, P) = Gx/(D,f(P))
holds.

Proof. Let N be the degree of f. By Propositior 3.1 we have
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curv f*Ox/(D) = f*(curv Ox/(D)) = f*((deg D) - pix')
=N - (degD) - ux = deg(Ox(f*D)) - px,

which means that f*Ox/(D) is an admissible line bundle on X. Hence
by Proposition 2.3 we have | f*(sp) 0@ = € - ||Spp|log(sp) for some
constant ¢ where sp and spp are the canonical sections of Ox/(D) and
Ox(f*D), respectively. But since

1
/ log || f* (D) 00 - fx = — - / log |L£*(sp)
X X

N Fropm) I hx

:/ log [|splloym) - pxr =0,
X/

this constant is equal to 1. [

4. EXPLICIT ANALYTIC INVARIANTS

In this section we give explicit formulas for the Arakelov-Green function
and the canonical norm on the holomorphic cotangent bundle. The formulas
that we obtain are already in [7], but we consider our approach to be
more direct. In fact, we proceed from the complex projection formula of
the previous section, while in [7] the discussion is based on a consideration
of the eigenvalues and eigenfunctions of the laplacian. As an application of
our results we give a formula for the so-called “energy” of an isogeny (this
terminology is adapted from [12]). We conclude this section by calculating
the value of the Arakelov-Green function on a pair of 2-torsion points.

DEFINITION 4.1. Let X be a 1-dimensional complex torus. Let w be a
holomorphic differential of norm 1 in H°(X,Q}). Then we put A(X) = ||w||ar
for the norm of w in QL. This is an invariant of X.

PROPOSITION 4.2 (Energy of an isogeny). Let X and X' be 1-dimensional
complex tori related by an isogeny f: X — X' of degree N. Then the formula

VN -AX)

II cop= G

PeKerf, P#£0

holds.
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Proof. let v be the norm of the isomorphism of line bundles
f*Qk, =5 Q) given by inclusion. We will compute v in two ways. First of all,
consider an ' € H(X', QL) of norm 1, so that w’ has norm A(X') in Ql,.
Then by Proposition 3.1 we have that f*(w') has norm /N in H°(X,Qy),
hence it has norm /N - A(X) in Q}(. This gives

U_\/N'A(X)
AKX

On the other hand, by Proposition 3.2, the canonical isomorphism
f*(0x/(0)) — Ox(Kerf)

is an isometry. Tensoring with the isomorphism f*Q} —— Q) gives an
isomorphism

£ Q4 (0)) = Qx(0) ® @ pexers, po Ox(P)

of norm v given in local coordinates by
. 4dz dz
f (—‘) = —Qs,
< Z

where s is the canonical section of @pcye s pro Ox(P). The dz/z have
norm 1, so we find

v= [ ©c©,P.

PeKerf, P#£0

Together with the earlier formula for v this implies the proposition. []

The following corollary seems to be well-known, see for instance [13],
Lemme 6.2.

COROLLARY 4.3. Let X be a 1-dimensional complex torus. Denote by
X[N] the kernel of the multiplication-by-N map X —+ X. Then the formula

Il cop=n

PEX[N],P#£0

holds.

Proof. This is immediate from Proposition 4.2 once we observe that
#X[N]=N?. [
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DEFINITION 4.4 (Cf. [7]). Let 7 be an element of the complex upper
half plane, and write g = exp(2mit). Then we have the eta-function
n(r) = ¢ T2 ,(1 — ¢*) and the modular discriminant A(T) = n(r)* =
g 1o (1 — g*)*. The latter is the unique normalised cusp form of weight 12
on SL(2,Z). Now suppose that we have a 1-dimensional complex torus X.
Then we put [[n||(X) = Im7)'* . |n(r)| and |A(X) = [In]|X)* =
(Im7)® - |A(T)| if X is isomorphic to C/Z + 7Z. These definitions do not
depend on the choice of 7, and hence they define invariants of X. Next, the
normalised theta function ||| associated to 7 is defined to be the function

19l(z; ) = (Im )/* exp(—m(Im ) ~'y?)|9(z; 7)|
on C where y = Imz and where ¥(z;7) is the theta function

Nz, 1) = Z exp(7rin27' + 2minz)
neZ

on C. For a fixed 7, the function |[9||(z;7) depends only on the class of z
modulo Z + 7Z.

We have the identities
(exp(riT /4) - 9(0; TYH(1/2; TYH(T/2; T))8 =28 . A(T)

and 8 .
l+7 _ 8
S (5im)) =emt-am,

both of which can be proved by the fact that the left hand sides are cusp
forms on SL(2,Z) of weight 12.

(CXP(ﬂ'iT /4) -

PROPOSITION 4.5 (Faltings [7]). Let X be the complex torus C/Z + TZ
with T in the complex upper half plane. For the Arakelov-Green function G
on X the formula
19|z + (1 +7)/2;7)

G(0,7) =
©9 Tl

holds.

Proof. It is known that ||9||(z 4+ (1 4+ 7)/2) vanishes only at z = O,
and that log||Y||(z + (1 + 7)/2) = log|z|]+ a C° -function about z = O.
A small computation shows that that 9,0, log||9||(z + (1 + 7)/2)* = 2miux
for z # 0. By what we have said in Section 2, we have from this that
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G(0,2) = ¢ ||9][(z+ (1 + 7)/2;7) where ¢ is some constant. It remains to
compute this constant. If we apply Corollary 4.3 with N =2 we obtain

2 = G(0,1/2)G(0, 7/2)G(O, (1 +7)/2) = & - [9]/0; M||9]|(1/2: D19 (7 /2: 7).
On the other hand we have the formula

(exprit /4) - 9(0; Y1 /2 1)0(r /2 7))® = 28 - A(r)
mentioned above. Combining we obtain ¢ = ||p||(X)~'. [I

PROPOSITION 4.6 (Faltings [7]). Let X be a 1-dimersional complex torus.
For the invariant A(X), the formula

1

AX) =
X) = oo e

holds.

Proof. We follow the argument from [7]: writing X = C/Z+ 7Z we can
take w = dz/vIm 7 as an orthonormal basis of H°(X,QJ,). By Proposition 2.5
we have ||dz/vIm7|la = (VIm7)™' - lim,_|z|/G(0,2). We obtain the
required formula by using the explicit formula for G(0,z) in Proposition 4.5
and the formula

)

(experir/4)- 2= ( L+r

2

a . 8 _ 8
o ,T)> — 2m)E - A(T)

mentioned above. L]

We immediately obtain from Propositions 4.2 and 4.6 the following explicit
formula for the “energy” of an isogeny.

PROPOSITION 4.7 (Energy of an isogeny). Let X and X' be 1-dimensional
complex tori related by an isogeny f: X — X'. Then we have

VN - |[n][(X')?

G0, P) = :
I 6on=""r55%

PeKerf, P#£0

where N is the degree of f.

Proposition 4.7 anwers a question posed by Szpiro. In [12], Théoreme 1,
Szpiro proves that if E and E’ are elliptic curves over a number field K,
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related by an isogeny f: E — E’' of degree N, the formula

> > logG(O,P(,):[K

o P, eKerf,
Ps#0

Il y?
logN -+ 3 _log 1 ik

holds, the sum running over the complex embeddings of K. He asks whether
the obvious stronger statement holds for a single 1-dimensional complex torus.
Our proposition gives a positive answer to that question.

We conclude this section with an expression for the value of the Arakelov-
Green function on a pair of 2-torsion points. We use the following classical
result.

LEMMA 4.8. Let X be a 1-dimensional complex torus and suppose
that y* = 4x — px — q = f(x) is a Weierstrass equation for X. Write
fx) = 4(x — a)(x — a)(x — a3). Let (wi|wy) be the period matrix of the
holomorphic differential dx/y on the canonical symplectic basis of H\(X,Z)
given by the ordering o, o, a3 of the roots of f (cf. [9], Chapter Illa, §5),
and put T = wy/w;. Then we have the formulas

wivar — az =1 -9(0;7),
wivoap — oy =1 - 19(1/2;7')2,
wivan — oz = m - exp(mit/2) - K7 /25 7)>

for appropriate choices of the square roots. Further, let
D = 16(c; — a)’ (a1 — a3 (e — 3)* = p* = 27¢°
be the discriminant of f. Then the formula
D=(0m"?% w ' Alr)
holds.

Proof. The first set of formulas follows by an application of Thomae’s
formula, cf. [9], Chapter IlIa, §5. The last formula follows from the first set
and from the formula

(exp(rrir /4) - 9(0; TYO(1/2; )7 /2 7))° = 2% - A(r)

mentioned above. L]
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PROPOSITION 4.9. Let X be a 1-dimensional complex torus and suppose
that y* = 4x3 — px — q = f(x) is a Weierstrass equation for X. Write
fx) = 4x — ap)x — ap)(x — a3). Let Py = (a1,0), P, = (a3,0) and
P3 = (a3,0). Then the formulas

16 - IOé] = 06212

G(PlaP2)]2 = 3
lar — as| - | — a3
by — 16—
’ [oq—ozz]-|oz3—a2| ’
Gy, poy2 = 16102 — sl

s —ai] - |as — ai

hold. In particular, when the coefficients of the Weierstrass equation are
algebraic, then so are the special values of G on pairs of 2-torsion points.

Proof. This follows directly from Lemma 4.8 and the explicit formula
for G(0,z) in Proposition 4.5. [

We remark that Proposition 4.9 has been obtained by Szpiro [12], using a
different method, in the special case that X is the complex torus associated
to a Frey curve y?> = x(x + a)(x — b), where a,b are non-zero integers with
2*a and b= —1 mod 4.

5. ARAKELOV INTERSECTION THEORY

In this section we recall from [1] and [7] the basic notions of Arakelov
intersection theory on arithmetic surfaces.

DEFINITION 5.1. An arithmetic surface is a proper flat morphism p: £ — B
of schemes with £ regular and with B the spectrum of the ring of integers of
a number field K, such that the generic fiber £ is a geometrically connected
curve. If the generic fiber has genus 1, and a section O: B — &£ of p is
given, then we call p: £ — B an elliptic arithmetic surface.

The fibers of an arithmetic surface are connected, and have constant
arithmetic genus. Moreover, all geometric fibers, except finitely many, are
non-singular.
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DEFINITION 5.2.  An arithmetic surface p: £ — B with generic fiber of
positive genus is called minimal if every proper birational B-morphism £ — &’
with p’: £ — B an arithmetic surface, is an isomorphism.

If £ is a geometrically connected, non-singular proper curve of positive
genus over a number field K, then there exists a minimal arithmetic surface
p: £ — B whose generic fiber is isomorphic to E over K. Such an arithmetic
surface will be called a minimal regular model of E over K. The possible
fibers of a minimal elliptic arithmetic surface have been classified, and there
exists an algorithm due to Tate [14] which computes the fibers of a minimal
arithmetic surface associated to an elliptic curve over a number field given in
Weierstrass form.

DEFINITION 5.3.  An Arakelov divisor on an arithmetic surface p: £ — B
is a finite formal integral linear combination of irreducible closed subschemes
of £ (i.e., a Weil divisor), plus a contribution Y o Qo - E, running over the
complex embeddings of K. Here the a, are real numbers and the E, are
formal symbols, corresponding to the Riemann surfaces Xs = (£ ®,5 C)(C).
We denote the set of Arakelov divisors on £ by D1V(<€' ). This set carries an
obvious group structure.

Given an Arakelov divisor D, we write D = Dg, + Diy¢ with Dy, its
finite part, i.e., the underlying Weil divisor, and with Dy = ZU a, - E, its
infinite part. To a non-zero rational function f on £ we associate an Arakelov
divisor (f) = (f)in + (f )int With (f)gn the usual divisor of f on &, and

with (f)inf = Zo’ Ua(f) : Ea where Ua'(f) = - fxg log |f|0' " Mo Here Ho is
the fundamental (1,1)-form on X, , as in Section 2.

DEFINITION 5.4.  We say that two Arakelov divisors D and D' are linearly
equivalent if their difference is an Arakelov divisor (f) for some non-zero
rational function f. We denote the group of Arakelov divisors on £ modulo
linear equivalence by CI(E).

The following proposition is then the main result of [1].

PROPOSITION 5.5 (Arakelov [1]) There exists a natural bilinear symmetric
intersection pairing D1v(5 ) X D1V(8 ) — R. This pazrmg factors through linear
equivalence, giving an intersection pairing Cl(é') X Cl(é’) — R.
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We will refer to this pairing as the Arakelov intersection product on &,
and denote it by round brackets (-,-). We will not spell out the complete
details of the definition, which can be found in [1] or [7], but mention
here only the case of the intersection of (the images in & of) two sections
P,Q: B — & of p. In this case, the intersection (P,Q) is defined as
(P,Q) = (P,Qfin + (P, Qing With (P, Qi = D_ (P, Q);log#k(s), a sum
running over the closed points s of B, where (P,(Q), is the usual local
intersection of P and Q above s (cf. [8], Section 9.1) and where k(s)
is the residue field of s, and with (P,Q)int = — > ,logG(P,,0s), a
sum running over the complex embeddings of K, where G(P,,Q,) is the
Arakelov-Green function on X, evaluated on the restrictions P,,Q, of P,Q
to X, .

We can connect the notion of Arakelov divisor on £ with the notion of
an admissible line bundle on £.

DEFINITION 5.6. An admissible line bundle L on & is the datum of a
line bundle L on &, together with admissible smooth hermitian metrics on
the restrictions of L to the X, . The group of isometry classes of admissible
line bundles on £ is denoted by lgi\c(c‘f ).

The relation with the previously defined CI(€) is as expected.

PROPOSITION 5.7 (Arakelov [1]). There is a canonical isomorphism of
groups CI(E) — Pic(£).

By abuse of notation, for an admissible line burdle L on & we will
write (P,L) to mean an Arakelov intersection (P,D), with D an Arakelov
divisor corresponding to L under the above isomorphisra. The next proposition
follows by spelling out the definitions.

PROPOSITION 5.8. Let L be an admissible line bundle on &, let P: B — &
be a section of p, and let s be a non-zero rational section of L. Then we
have

(P,L) = log #(P*L/P*s - Ox) — > _log Is[|(P) ,

with ||s||(P), denoting the norm of s at P, in the restriction of L to X,.
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There is a canonical admissible line bundle wg /8 on &, whose underlying
line bundle is the relative dualising sheaf of p: €& = B (cf. [8], Section 6.4).
The metrics at infinity are given by the canonical Arakelov norm (cf. Defini-
tion 2.4 above). By combining the classical adjunction formula on arithmetic
surfaces (cf. [8], Theorem 9.1.37) with its analytic counterpart Proposition 2.5
we obtain an adjunction formula for Arakelov intersections.

PROPOSITION 5.9 (Adjunction formula). Let P: B — £ be a section of p.
Then the formula (P,P) = —(P,wsg /B) holds.

6. ARAKELOV PROJECTION FORMULA

Based on the complex projection formula from Proposition 3.2, we prove
in this section a projection formula for Arakelov intersections on an elliptic
arithmetic surface. First we need to introduce pullbacks and pushforwards of
Arakelov divisors.

DEFINITION 6.1. Let p: £ — B and p’: £ — B be arithmetic surfaces,
and suppose we have a B-morphism f: £ — £’. Let D be an Arakelov divisor
on &£, and write D = Dgn+)" oy -E,. The pushforward f.D of D is defined
to be the Arakelov divisor f,D = f.Dis + N-Y__a, - E. on £ where f,Dgy
is the usual pushforward of the Weil divisor Dy, and where N is the degree
of f. Next let D' = Dy, + > _al - E. be an Arakelov divisor on &’. The
pullback f*D" of D' is the Arakelov divisor f*D' = f*Di + o/, - E,
on & where f*Dy, is the pullback of the Weil divisor D} on &', defined in
the usual way using Cartier divisors.

PROPOSITION 6.2 (Arakelov projection formula). Let E and E' be elliptic
curves over a number field K, related by an isogeny f: E — E'. Let p: £ — B
and p': &' — B be arithmetic surfaces over the ring of integers of K with
generic fibers isomorphic to E and E', respectively, and suppose that f
extends to a B-morphism f: & — E£'. Then for any Arakelov divisor D on &
and any Arakelov divisor D' on &', the equality of intersection products
(f*D',D) = (D', f.D) holds.
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Proof. 'We may restrict our attention to the case where both D and D' are
Arakelov divisors with trivial infinite part. By the moving lemma on &’ (cf. [8],
Corollary 9.1.10) we can find a function g € K(E') such that D" = D' 4+ (g)fn
and f.D have no components in common. Obviously D" + (g)int is Arakelov
linearly equivalent to D', and hence by a computation as in Proposition 3.2 the
Arakelov divisor £*D" + (f*g)int is Arakelov linearly equivalent to f*D'. It is
therefore sufficient to prove that (f*D” + (f*@)ins, D) = (D" + (@)int, [<D).
It is clear that ((f*@)inf,D) = ((9)int,feD), so it remains to prove that
(f*D",D) = (D", f.D).

By the classical projection formula (cf. [8], Theorem 9.2.12 and Remark
9.2.13) we have (f*D”,D)s, = (D", f.D)sn. For the contributions at infinity
we can reduce to the case where D and D” are sections of £ — B
and £ — B, respectively. Let o be a complex embedding of K. Let D,
and D!’ be the points corresponding to D and D” on E, and E! . Then
for the local intersection at o we have (f*D",D), = (D",f.D), by the
complex projection formula from Proposition 3.2. This proves the projection
formula. [

REMARK 6.3. If &£ is a minimal arithmetic surface, then it con-
tains the Néron model (cf. [8], Section 10.2.2) of E' over K as a
dense open subscheme. By the universal property of the Néron model,
any isogeny f: E — E' extends over a dense open subscheme U of £
(smooth over B) to give a B-morphism U — &' and hence a ratio-
nal map f: £ --» &'. By [8], Theorem 9.2.7 there exists a proper bira-
tional morphism 7: € — & made up of a finite sequence of blowings-
up of singular points on the fibers, and a morphism f: €& — & such
that f =f .

COROLLARY 6.4 (Szpiro [12]). Take the assumptions of Proposition 6.2.
Let Dy,D, be Arakelov divisors on £ and let N be the degree of f. Then
the formula

(f*Dy,f*Dy) = N - (Dy,D»)
holds.

Proof. Tt follows from [8], Theorem 7.2.18 and Proposition 9.2.11 that
fof *D2 = N - D,. Proposition 6.2 then gives (f*Dy,f*D2) = (D1, fif " D7) =
(D,N -D;)=N-(Dy,Dy). L[]
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7. SELF-INTERSECTION OF A POINT

In this section we compute the Arakelov self-intersection of a rational
point on an elliptic curve. Since this is independent of the choice of rational
point, we obtain a canonical invariant of the elliptic curve. It is interesting to
have this invariant explicitly. We restrict our attention to semi-stable elliptic
curves.

DEFINITION 7.1. Let p: £ — B be an elliptic arithmetic surface. We call
p semi-stable if a fiber of p is either non-singular, or an n-gon of projective
lines. We call an elliptic curve E over a number field K semi-stable if there
exists a semi-stable elliptic arithmetic surface over the ring of integers of K
whose generic fiber is isomorphic to E.

A semi-stable elliptic arithmetic surface is always minimal. Moreover,
given an arbitrary elliptic curve E over a number field K, there is a finite
field extension L of K such that E becomes semi-stable over I, (cf. [8],
Section 10.4).

PROPOSITION 7.2 (Szpiro [12]). Let E be a semi-stable elliptic curve over
a number field K, and let p: &€ — B be its regular minimal model over the
ring of integers of K. Let P: B — & be a section of p, and denote by A(E/K)
the minimal discriminant ideal of E over K. Then the Sformula

1
(P,P) = — 1 102 |Nk/Q(AE/K)|

holds.

Before we give the proof, we recall two geometric lemmas.

LEMMA 7.3. Let p: £ — B be a minimal arithmetic surface with generic
fiber of genus 1 and with relative dualising sheaf wg,p. The canonical
homomorphism p*p.w¢ /B —> We/p IS an isomorphism.

Proof.  See [8], Corollary 9.3.27. [

We will freely use the language of moduli stacks of stable curves as in
[7]. For more details we refer to [4].
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LEMMA 7.4. Let p: U; — M, be the universal stable elliptic curve
with relative dualising sheaf w. Then there is a canonical isomorphism
(p.w)®12 =5 O(A) of line bundles on M, where A is the boundary of M.
Let A be the canonical section of (p.w)®'? given by this isomorphism. Then
for a complex torus X = C/Z + 7Z we can write A == (27r)12A(7')(dz)®12 in
local coordinates.

Proof. This follows from the theory of the Tate elliptic curve, see for
example [5]. [

Proof of Proposition 7.2. By the adjunction formula Proposition 5.9 we are
done if we can prove that 12(P,wg/p) = log |Nk/Q(A(E/K))|. By Lemma 7.3
we have a canonical isomorphism p.we/p = P*ruwg /g, and what we will
do is apply Proposition 5.8 to the image of the section Ag/p, given by
Lemma 7.4, in (P*wg/p)®'%. As is clear from the isomorphism in Lemma
7.4, the finite places yield a contribution log [Nk /q(A(E/K))|. As to the infinite
places, recall that by Proposition 4.6 we have ||dz|[ar = VImT/(27)|n||(X)?)
for a complex torus X = C/Z + 7Z. Together with the formula in Lemma
7.4 we obtain that ||A,||ar = 1 for each complex embedding o, and hence
the infinite contributions vanish. This gives the proposition. [

The proof of Proposition 7.2 given in [12] is more involved, and is based
on a study of the distribution of the torsion points on the singular fibers. Our
proof answers a question raised in [12] on the norm [|Al[ar of A in (P*w)®12.

8. AVERAGE HEIGHT OF QUOTIENTS

In this final section we study the average Faltings height of the quotients
of a semi-stable elliptic curve by its cyclic subgroups of fixed order. The
Faltings height of an elliptic curve over a number field is in some sense a
measure for the arithmetic complexity of the elliptic curve. It is defined as
follows.

DEFINITION 8.1 (Cf. [6]). Let E be a semi-stable elliptic curve over a
number field K, and let p: £ — B be its regular minimal model over the ring
of integers of K. Let wg/p be the relative dualising sheaf of p: £ — B and
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let w be a non-zero rational section of the line bundle P+wg/p on B. Then
we put

1
hp(E) =
UK
where o runs over the complex embeddings of K and where the norm lwle
of w in H°X,,Q') is taken with respect to the inner product defined in
Section 2.

(log#(pwea/wr- 06 = 3 og o)

The Faltings height hrz(E) of a semi-stable elliptic curve E over a number
field K does not change under field extensions of K. An explicit formula for
the Faltings height follows readily from what we have said in Section 7.

PROPOSITION 8.2 (Cf. [11], Proposition 1.1). Let E be a semi-stable elliptic
curve over a number field K. Let A(E/K) be the minimal discriminant ideal
of E over K. Then the formula

1
K : Q]

holds. Here the sum runs over the complex embeddings of K.

1 1
hp(E) = — log [Ng/(AE/K))| — — ) log((2m)"?||A]|(X,))
12 12 -

Also, it is known how the Faltings height changes under isogenies.

PROPOSITION 8.3 (Faltings [7], Raynaud [10]). Ler E and E' be semi-
stable elliptic curves over a number field K, and suppose we have an isogeny
f1E— E', say of degree N. Then we have

1 1
he(E') — hp(E) = 5 logN — ——— log#Qg .. /B>
as well as the estimate
1
IhF(E’) — hp(E)| < > logN.

Moreover, any prime number that divides #£211<er /B also divides N.

In order to state the result of this section we fix some notation. Throughout
we let N be a positive integer. We denote by ey the number of cyclic subgroups
of order N on an elliptic curve over C, i.e.

eN:NH(l—}—})),

pIN
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where the product is over the primes dividing N. Further we put

pr—1
Av = Zmlog%
pIN

PN

where the notation p’||N means that p"|N and p"*' { N. We fix a semi-stable
elliptic curve E over a number field K. For a finite subgroup C of E we
denote by E’ the quotient of E by C.

The following result is proved in [2] (cf. Théoreme 3.2).

PROPOSITION 8.4 (Autissier [2]). We have the formula
1 1
— he(E") — hp(E)) = = logN — Ay,
on zc:( F(E") — hp(E)) 5 1og N
where the sum runs over the cyclic subgroups of E of order N.

The proof in [2] is based, among other things, on a non-trivial result due
to Kiihn on the height of the modular curve X(1). It is our purpose to show
that in fact Proposition 8.4 admits a completely elementary proof, based only
on results we have deduced in this paper. Our approach will be close in spirit
to [13], where the change of height is considered, under more assumptions,
for a single cyclic isogeny. However, again we consider our method to be
less involved. For example, we do not need a study of the distribution of the
torsion points on the singular fibers as carried out in [13]. A generalisation
of Proposition 8.4 to higher dimensions would be interzsting, and perhaps our
arguments indicate how to obtain such a generalisation.

Let p: & — B be the regular minimal model cf E over the ring of
integers of K, let O: B — £ be the zero section of p and let w be the
relative dualising sheaf of p. We assume that K is so large that all N-torsion
points of E are K-rational. This implies that for all subgroups C of E of
order N, the quotient elliptic curve E’ can be given over K.

All we need to do is prove the following three lemmas. Together with
Proposition 4.2 they give Proposition 8.4 by just combining.

LEMMA 8.5. The formula

(0,w) 1

T — hp(E) — 0] glogHAH(XU)

holds, where o runs over the complex embeddings of K.
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When C is a cyclic subgroup of E of order N, we denote by p': & - B
the regular minimal model of E’ over B, by O’ the zero section of p', and
by w' the relative dualising sheaf of p’.

LEMMA 8.6. The formula

> _(0,w) = (0, u)) =0

C

holds, the sum running over the cyclic subgroups of E of order N.

The last lemma deals purely with the complex analytic side, and explains
in a sense the emergence of the constant \y.

LEMMA 8.7. Let X be a 1-dimensional complex torus and denote by G
the Arakelov-Green function on X. Then we have the Jormula

% D> log GO, P) = Ay

C pecC
P+£0
where the first sum runs over the cyclic subgroups of X of order N, and the
second sum runs over the non-zero points in C.

Lemma 8.7 is an improvement of Proposition 6.5 in [13], which deals only
with a sum running over the complex embeddings of a number field.

Proof of Lemma 8.5. 1t follows from the geometric Lemma 7.3 that there
is a canonical isomorphism p,w —= O*w. The lemma follows by observing
that this isomorphism multiplies the norm at the complex embedding o by a
factor ||A||(X,). O

The proofs of Lemmas 8.6 and 8.7 are based on the following easy
combinatorial lemma.

LEMMA 8.8. Let M be a positive integer with M|N. Let X be an elliptic
curve over an algebraically closed field of characteristic zero. Then each cyclic
subgroup of X of order M is contained in exactly ey/ey cyclic subgroups
of order N.

Proof of Lemma 8.6. Extend the N-torsion points on E over the regular
minimal model £ of E over K. For a positive integer M|N denote by E[M]
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the set of sections corresponding to M -torsion points on E, and by E[M] the
set of sections corresponding to M -torsion points on E which are of exact
order M. It follows from the Arakelov projection formula that

Z (P,0)=0.

PcEM]
P£0

Although we may need to go to a cover E — £ to be able to apply the
projection formula (cf. Remark 6.3), this is harmless since this introduces
only exceptional curves for singular points on the fibers, and such curves do
not intersect sections of & — B. By a Mébius inversion argument we find

> (P,00=0.
PEE[M]
We then calculate

> (0w = 0,w) = 3 ((0,0)-(0',0") (by the adjunction formula)
C C

— Z Z (P, 0) (by the projection formula)
C PEC,P#0

= E . E (P,0) (by Lemma 8.8)
e =
M|N.M>1 " PeE[M]

and this vanishes by our observation above. [

Proof of Lemma 8.7. For a positive integer M IN denote by X[M] the set
of M-torsion points on X, and by X[M] the set of M -torsion points on X
which are of exact order M. By Corollary 4.3 we have

E log G(0, P) = logM .
PEX[M]
P£0

By a Mobius inversion argument we find from this

> logG(O,P) =

{log p if M = p” for some prime number p,
PEX[M]

0 else.

By Lemma 8.8 we have

iZngG(O,P) = -el; > = > 1og GO, P)

éN 7Y
C PeC M|N PeX[M]

P#0 M>1
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and hence
1
——ZZlogG(O P) = Z( T )10gp
C PeC pIN €p pr
P30 PN
which is just the constant \y. []

REMARK 8.9. A combination of Proposition 4.7 and Lemma 8.7 gives the
interesting identity

1 1
o 3 (3o 14100 = 5 e ) = Frogv -,

for a 1-d1rnen81onal complex torus X, where the sum runs over the cyclic
subgroups of X of order N, and where X’ stands for the quotient of X by a
cyclic subgroup C. Alternatively, this identity can be proved by using certain
modular forms identities, see for example [3], Proposition VII.3.5(b) for the
case that N is a prime, or [2], Lemme 2.2 and Lemme 2.3 for the general
case.

We finish with two corollaries from the results above. The first corollary
gives another interpretation of the constant )y .

COROLLARY 8.10. Extend the N -torsion points of E over the regular
minimal model of E over K. Then one has

[KIQ]e D P, 0 =y,

C PeC
P#0

where the first sum runs over the cyclic subgroups of E of order N, and the
second sum runs over the non-zero points in C.

Proof. We have

[K Q] (9 ZZZIOgG(Paao) )\N

C PeC o
P#£0

by Lemma 8.7, the third sum running over the complex embeddings of K,

and
d Y wo=0

C pPeC’
P#0

by the proof of Lemma 8.6. The result follows from this by noting that
(P,0) = (P, O)in + (P, O)ing with (P, O)ipt = — " log G(P,,0). [
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Corollary 8.10 is purely arithmetical in nature. It should be possible to give
a direct proof, but this probably requires a more ad hoc approach, making for
instance a case distinction between the supersingular and the ordinary primes
for E over K.

The next corollary is certainly well-known, but it is amusing to see how
it can be proved using Arakelov theory.

COROLLARY 8.11. Suppose that N = p is a prime number. Extend the
p-torsion points of E over the regular minimal model of E over K. Then
the p-torsion points restrict injectively to a fiber at a prime of characteristic
different from p.

Proof. By symmetry considerations, it suffices to prove that for any
p-torsion point P, the sections P and O do not intersect at a fiber above a
prime of characteristic different from p. But if we take N = p in the formula
from Corollary 8.10, the right hand side is a rational multiple of logp, hence
so is the left hand side. As the local intersections involved in (P, O)g, are
always non-negative, they are in fact zero at primes of characteristic different
from p. This proves the corollary. [

ACKNOWLEDGEMENTS. The author wishes to thank Gerard van der Geer
for his encouragement and helpful remarks. Also he thanks Professor Qing
Liu and the referee for their comments on an earlier version of this paper.

REFERENCES

[1]  ARAKELOV, S.Y. An intersection theory for divisors on an arithmetic surface.
Math. USSR Izvestija 8 (1974), 1167-1180.

[2]  AUTISSIER, P. Hauteur des correspondances de Hecke. Bull. Soc. Math. France
131 (2003), 421-433.

[3] Cassou-NoGuks, PH. and M.J. TAYLOR. Elliptic Functions and Rings of
Integers. Progr. Math. 66. Birkhauser Verlag, 1987.

[4] DELIGNE, P. and D. MUMFORD. The irreducibility of the space of curves of
given genus. Inst. Hautes Etudes Sci. Publ. Math. 36 (1969), 75-109.

[5] DELIGNE, P. et M. RAPOPORT. Les schémas de modules de courbes ellip-
tiques. In: Modular Functions of One Variable, II. Lectures Notes in
Mathematics 349. Springer Verlag, 1973.

[6] FALTINGS, G. Endlichkeitssitze fiir abelsche Varietiten Uber Zahlkorpern.
Invent. Math. 73 (1983), 349-366.

[71 - — Calculus on arithmetic surfaces. Ann. of Math. (2) 119 (1984), 387-424.



[8]
(9]

(10]
[11]

[12]

[13]

[14]

ON THE ARAKELOV THEORY OF ELLIPTIC CURVES 201

Liu, Q. Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in
Mathematics, 6. Oxford Science Publications, 2002.

MUMFORD, D. Tata Lectures on Theta I, II. Progr. in Math. 28, 43. Birkhiuser
Verlag, 1984.

RAYNAUD, M. Hauteurs et isogénies. Astérisque 127 (1985), 199-234,

SILVERMAN, J. Heights and elliptic curves. In: Arithmetic Geometry. G. Cornell
and J. Silverman (eds.). Springer Verlag, 1986.

SzPIRO, L. Sur les propriétés numériques du dualisant relatif d’une surface
arithmétique. In: The Grothendieck Festschrift, Vol. Ill, 229-246. Progr.
Math. 88. Birkhduser Verlag, 1990.

SZPIRO, L. and E. ULLMO. Variation de la hauteur de Faltings dans une classe
de Q-isogénie de courbe elliptique. Duke Math. J. 97 (1999), 8§1-97.

TATE, J. Algorithm for determining the type of a singular fiber in an elliptic
pencil. In: Modular Functions of One Variable, IV. Lecture Notes in
Mathematics 476. Springer Verlag, 1975.

(Regu le 6 septembre 2004)

R. de Jong

Mathematical Institute

University of Leiden

PO Box 9512

2300 RA Leiden

The Netherlands

e-mail : rdejong @math.leidenuniv.nl



Leere Seite
Blank page
Page vide



	On the Arakelov theory of elliptic curves
	...


