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LOW-DIMENSIONAL STRONGLY PERFECT LATTICES
I: THE 12-DIMENSIONAL CASE

by Gabriele NEBE and Boris VENKOV *)

ABSTRACT. It is shown that the Coxeter-Todd lattice is the unique strongly perfect
lattice in dimension 12.

1. INTRODUCTION

The notion of perfect lattices appeared about 100 years ago in papers by
Korkine and Zolotarev and especially Voronoi [18] during the study of dense
lattice sphere packings. If the centres of the spheres in a packing form a
lattice A in Euclidean space (R”,(, )) then the density of the sphere packing
is proportional to the Hermite function of the lattice

min(A)
det(A)!/n”’
where min(A) := min{(\, A) | 0 ## XA € A} denotes the square of the minimal
distance between distinct lattice points and det(A) is the square of the covolume

of A in R". In any dimension n the Hermite function ~ has a global maximum
on the set of n-dimensional lattices

Y(A) =

Yo = max{y(A) | A C R" lattice},

the so-called Hermite constant -,. Exact values for ~, are known only for
dimensions n < 8 and, due to recent work by Cohn and Kumar [5], in
dimension 24.

*) The work of Boris Venkov has been partially supported by the Swiss National Science
Foundation. The work was completed during a visit to the Graduiertenkolleg at the RWTH Aachen
in January 2005. The authors thank the RWTH Aachen for the invitation. They also thank Claude
Pache for his careful reading of an early version of this paper.
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New upper bounds for «, are given in the article [4] by Cohn and Elkies
(see Theorem 3.2 for n = 12). The strategy due to Voronoi for finding ~, and
the densest lattices in R” is to determine all the finitely many local maxima
of v on the set of similarity classes of n-dimensional lattices. To be a local
maximum for -y, the lattice A has to be perfect and eutactic, two conditions
on the geometry of the minimal vectors of A. For more information the reader
is referred to Martinet’s book [12]. Voronoi developed a remarkable algorithm
which permits one in principle to enumerate all (finitely many similarity
classes of) perfect lattices in a given dimension. But since the number of
perfect lattices increases quite rapidly with the dimension, this seems to be
unpracticable in dimensions > 8.

In [17], the second author introduced the notior of strongly perfect
lattices, which are those lattices for which the minimal vectors form a
4-design (see Definition 2.2). They are perfect and eutactic and hence local
maxima of the Hermite function. Up to rescaling they are rational, that
i1s the mutual scalar products of lattice vectors lie in Q (this property is
shared by all perfect lattices). Also most of the famous lattices such as
the Eg-lattice, the Leech lattice and the Barnes-Wall lattices are strongly
perfect.

There are two general approaches to study and construct strongly perfect
lattices : by modular forms and by the invariant theory of finite groups. The
relation with modular forms arises because the condition that the minimal
vectors of A form a 4-design means that certain coefficients vanish in a theta-
series of A with harmonic coefficients. In this way one can prove the strong
perfectness of many extremal lattices of small level (see [16] for the even
unimodular and [2] for the modular case). Incidentally this is the only known
way of proving the strong perfectness of an even unimodular 32-dimensional
lattice without roots. By [9], there are more than 10° of them and an explicit
classification is not known.

If a rational lattice A has a big automorphism group G := Aut(A)
which has no invariant harmonic polynomials of degres 2 or 4, a condition
easily expressed in terms of the character of G < O(n), then A is strongly
perfect. There are many interesting lattices such as the Barnes-Wall lattices,
the 248-dimensional Thompson-Smith lattice and others which are strongly
perfect for this reason (see for example [10]).

The point of view of lattices is also useful for the study of general
4-designs. For example [3] treats an infinite number of new cases for the
classification of tight spherical designs by considering the lattice generated by
a given design.
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The aim of this project, which is a continuation of [17] and [13], is to
classify all strongly perfect lattices in a given small dimension. For n < 24,
one expects that there are only few n-dimensional strongly perfect lattices
(see [17, Tables 19.1, 19.2, pp. 82,83]), which might allow a classification.
For n < 11 this was done in [17] and [13], here we deal with dimension 12.
Our main theorem is

THEOREM (see Theorem 3.1). The strongly perfect lattices in dimension 12
are similar to the Coxeter-Todd lattice CT.

We prove this theorem by eliminating fairly easily all possibilities for the
kissing number 2s = |Apnn| of a strongly perfect lattice in dimension 12,
except for s = 252 and s = 378. Eliminating s = 252 is more difficult and
involves the construction of higher-dimensional lattices up to dimension 18.
In the last case, s = 378, the lattice A has the same kissing number as
the Coxeter-Todd lattice. One special property of the Coxeter-Todd lattice is
that it is 3-modular and has a natural complex structure as a unimodular
hermitian lattice over Z[Hzﬂ]. Its shortest vectors form the root system of
the complex reflection group number 34 (=2 6.U4(3).2) in the Shephard-Todd
classification [15]. During the identification of the putative strongly perfect
lattice A with s = 378 we construct step by step parts of this rich structure,
which finally allows us to show that A is indeed similar to the Coxeter-Todd
lattice.

2. SOME GENERAL EQUATIONS

2.1 GENERAL NOTATION

For a lattice A in n-dimensional Euclidean space we denote by A* its
dual lattice and by

Ao={AeA| (N =a}

the set of vectors of square length a. In particular, A, is the set of minimal
vectors in A ; its cardinality is known as the kissing number of the lattice A.
There are general bounds on the cardinality of an antipodal spherical code
and hence on the kissing number of an n-dimensional lattice. For n = 12 the
bound is |Amin| < 2-614 (see [1, Table 1}).
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2.2 DESIGNS AND STRONGLY PERFECT LATTICES

Let (R",(, )) be the Euclidean space of dimension #. For m € R, m > 0,
denote by

§"'m) :={y e R" | (y,y) = m}
the (n — 1)-dimensional sphere of radius /m.

DEFINITION 2.1. A finite nonempty set X C §"~!(m) is called a spherical
t-design, if
1 :
] 0= | soduca

x€X §'=Hm)

for all polynomials f € Rlxj,...,x,] of degree < ¢, where p is the
O(n)-invariant measure on the sphere, normalised such that f $1=1(m) ldu(x) =1.

Since the condition is trivially satisfied for constant polynomials f, and
the harmonic polynomials generate the orthogonal complement (1) with
respect to the O(n)-invariant scalar product (f,g) := fsn,,(m) J()g(x)dpu(x) on
R[x,...,x,], it is equivalent to ask that

D fx =0

xeX

for all non constant harmonic polynomials f of degree < f.

DEFINITION 2.2. A lattice A C R” is called strongly perfect if its minimal
vectors Apin form a spherical 4-design.

The most important property of strongly perfect lattices is that they provide
interesting examples for local maxima of the Hermite function (see [17]).

Let A be a strongly perfect lattice of dimension n, m := min(A) and
choose X C A,, such that XU—-X = A, and XN—X = &. Put 5 := |X|. By
[17] the condition that ) _\ f(x) = 0 for all harmonic polynomials of degree
2 or 4 may be reformulated to the condition that for all o € R”

) 4 3sm? 2
(D4) (a): xezxu, o = @)

Applying the Laplace operator > O to (D4)(«) one obtains

i=1 daz

. 2_Sm
(D2) (@) > @ay=—(aaq).

xeX
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Note that it is enough to assume that there are constants ¢, (f = 1,2)
such that
Z(x, a)? = ca,a) for all o € R".
xeX
These constants ¢, are then uniquely determined, as one sees by applying ¢
times the Laplace operator with respect to «. For later use, we also remark
that the condition (D2) is equivalent to the 2-design property of X U —X.
Substituting « := & a; + &ap in (D2) and comparing coefficients, one
finds

(D11) (g, ap): E (x, ap)x, ) = —Sm(al,ozz) for all ay,a, € R".
n
xeX

Writing « as a linear combination of 4 vectors, (D4) implies that for all
Oé],...,Oé4ERn,

(D111 )y, o, 3, 14)

D @ )@, ), a3)(x, o)

xeX
sz
TR ((ar, a2)(s, ) + (a1, a3)(an, o) + (a1, as)(an, a3)) -

In particular
3 2

(D13)(ar, ) : x;(x, a)(x, )’ = n(:ﬁ 3y, 2),
)

(D22)(ar, o) XGZX@, a1 (x, an)? = n(;"i 52, ) + (o, o), a2))

and ((D13) — (Dll))(%a) reads as

S 0 (@ af — 1) = ()22 (a,0)— 1) for all a,y € R
— n n+2

Note that for o« € A* and x € A, the product (x, a)((x,)* — 1) is divisible
by 6 and hence ¢((D13) — (D11))(v, ) € Z yields that

sm_ 3m
(ﬂ(%@ -HeZ

1
=N A ) = 1) = (@, ) (-

x€X
for all a,7 € A*. On putting o = ~ in (D13) — (D11), we obtain
L((D4) - (D2))() € Z, whence
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11A2 Z(x, a) ((x, ) — 1) = (a a)( (a a)—1)eZ forall a € A*
x€X

since (x, a)*((x,a)®> — 1) is divisible by 12 if (x,«) € ‘L.

NOTATION. For a set X as above (usually clear from the context), i € Ry,
j€R and a € R”, we let
Ni(a) ={x € XU X | (a,x) = i} .
No(a) ={x € X | (or,x) =0},
and n(0) = [Nj(@) .

LEMMA 2.3 (see [13, Lemma 2.1]). Let XU —X C R" be a 4-design

and let o € R" be such that (x, 0/) € {O +1,4+2} for ¢ll x € X. Put
c:= fﬁ (a a)—1).

Then ny(ov) = c(a, 0)/2 and

E X =Ccx.

xEN ()

Lemma 2.3 will be often applied to a € A*. Rescale A in such a
manner that min(A) = m = 1 and let r := min(A*). As Y(A)y(A*) =
min(A) min(A*) < 7,%, we get r < ’y,% and for o € A7 we have (a, x> <'r
for all x € A;. Hence if r <9 then (a,x) € {0,£1,£2} for all x € X and
Lemma 2.3 may be applied.

The next lemma yields good bounds on n(c).

LEMMA 2.4. Let A be a strongly perfect lattice. Let m := min(A) and

choose o€ N If rm < 8, then
rm

n(a) < :
—rm

Proof. Since (x,x)(a,r) < 8 for all x € A,. the scalar product
|(x,a)| < 3. Hence « satisfies the conditions of Lemma 2.3. Let Ny(o) =

{x1,...,x} and ¢ = % be the constant from Lemma 2.3. Then (x;,x;) = m
and (x;,x;)) < 5 forall i #je {lI,...,k} because the x; are minimal vectors
in A. Hence

4k : mk—1)  mk+1)

— = (x1,c0) = (xuxl)'f-Z(thi) <m+
i=2

22

which yields k& = |Ny(«a)| < []

8 rm’
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LEMMA 2.5 ([17, Théoreme 10.4]). Let L be a strongly perfect lattice
of dimension n. Then

DALY = min(Dymin(L) > "2

A strongly perfect lattice L where equality holds is called of minimal type.
As an application this lemma allows us to show that |Ny(c)| # 1.

LEMMA 2.6. Let A be a strongly perfect lattice and choose o € A that
satisfies the conditions of Lemma 2.3. If n > 11 then m(a) # 1.

Proof. Let m := min(A) and assume that Ny(«) = {x}. Then ca = x
for some constant c¢. Taking scalar products with x yields ¢ =% and hence

2
(o, ) = %. Therefore

n—+2

< min(A) min(A*) < 4,

which implies that n < 10.  []

The last lemma is quite useful in the investigation of lattices of minimal
type:

LEMMA 2.7. Let X U —X C " Y(m) be a spherical 4-design and let
a € R" be such that (x,a) € {0,£1} for all x € X. Let M := Ni(«) and let
7. R" = (a)t be the orthogonal projection onto the orthogonal complement
of o. Then m(M)U —m(M) C S""2(m') is a spherical 2-design.

Proof. Let v € (a)t, ie. (v,a)=0. Then by (D22)(«a,v) we find that
Y @t = > %0 =c,v)
XEM xEm(M)

for some constant ¢ not depending on v. Therefore 7(M)U —mw(M) is a
2-design. [

2.3 SOME GENERAL FACTS ON LATTICES

The next two lemmas about indices of sublattices are used quite often
in the argumentation below. Since we are dealing with norms modulo some
prime number p, we may pass to the localization Z, := (Z —-pL)"'7ZC Q
of Z at p.



136 G. NEBE AND B. VENKOV

LEMMA 28. Let T' be a Zgyy-lattice such that (vy,7v) € Zq) for all
yeT. Let T :={a € T | (o, ) € 2Z»y}. If T© is a sublattice of T, then
[T:T¥] € {1,2,4}.

Proof. Clearly 2I" C I, and hence I'/T'® is a vector space over F,.
Moreover (a, 3) € %Z(z) for all o, 3 € T" since the norms in T" are integers.
Let o, 3,7 € T —TI'“. Then

(+ B, + B) = (a, ) + (B, B) + 2, B) € 2(, B) + 2Z)

since both (a,a) and (3,5) are odd. In particular, if («,3) € Zg),
then o+ 3 € I'“. Since one of (a,7), (3,7) or (o + 3,7) is integral,
the three classes a + T'9, 3 + 9 ~ + T are F,-linearly dependent and
dimp,(T/T¥)<2. [

LEMMA 2.9. Let T" be a Zgy-lattice such that (vy,~v) € Zg) for all v € T,
Let TW := {a € T'| (o, ) € 3Z3)}. Assume that

(o, B)* — (@, )(3,8) € 323 for all a,3€T.
Then T is a sublattice of T and [T : T\"] € {1,3}.

Proof. By our assumption, («, 3) € 3Z3) for all a, 8 € T with o € TV,
Therefore T is a sublattice of T'. Clearly 3I' € T hence I'/T® is a
vector space over F3. Let a,8 € T' — I'”. Then («,a)B,3) = (o, 3)?
(mod 3) implies that (o, ) = (3,3) (mod 3) and one of o+ 3 € I'”?. Hence
[[:TW] <3, L]

We will also meet families of vectors E := {vj,..., v} of equal norm,
say (v;,v;) =1 and non positive scalar products, i.e. (v;,v;) <0 for all i # j
with Zle v; = 0. Such a system is called decomposcble if E = E U E"

such that
ZU: Z v=20.

veEE’' veE"

It is classical (and easy) that for any indecomposable svstem E, the relation
> wer ¥ =0 is the only relation between the vectors in E. In particular

k=|E|=dim(E) + 1 for any indecomposable E .

. % . -1
An arbitrary system E can be written as an orthogonal union E =U,_, E;
with E; L E;, E; indecomposable.
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LEMMA 2.10.  If t is the number of indecomposable components of E
then |E|=dim(E) +t.

Proof. For t =1 this is clear by the argumentation above. For general E,
all three functions |E|, dim (E), #(E) are additive for orthogonal union. [

Components of dimension 1 are just pairs {x,—x}. Components of
dimension 2 are of the form {x;,x;,x3} with x; +x;+x3 =0 and (x;,x) =1,
(xi, x5) = —% for all i # j. They generate a root system A,. For more

information see [7].

3. DIMENSION 12
In this section we prove our main theorem :

THEOREM 3.1. Let A be a strongly perfect lattice of dimension 12. Then
A = CT is similar to the Coxeter-Todd lattice.

The lattice CT, usually denoted by K, is an extremal 3-modular lattice
in the sense of [14], which means that CT is similar to its dual lattice.
Rescaled to minimum 4, the determinant of CT is 3°. The kissing number is
|CT4| =2-378 = 756. The Coxeter-Todd lattice is the densest known lattice
in dimension 12.

The article [4] gives a good upper bound on the Hermite constants. In
particular:

THEOREM 3.2 ([4]). 2 <2.522.

REMARK 3.3. No proper overlattice of C7 has minimum 4.

Proof. Let I' > CT be a proper overlattice of CT with min(I") = 4.
Then det(I") = det(CT) - [T": CT]~? < 3°2-2. Hence the Hermite function

() = >2.59> 72

4
Vdet(I') —

by Theorem 3.2, which is a contradiction. L]

Therefore it is enough to show that any strongly perfect lattice of
dimension 12 that is generated by its minimal vectors, is similar to CT.
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3.1 KISSING NUMBERS

Let A be a strongly perfect lattice in dimension 12, rescaled such that
min(A) = 1. Then by Lemma 2.5 and Theorem 3.2 we find

14
= < r:=min(A*) < v, < 6.37.

Hence o € A satisfies the hypothesis of Lemma 2.3, and Lemma 2.4 yields

na(o) < —— < M 3884
? T8-r T 8- T .

If d:=det(A*) = detl( N denotes the determinant of A* then

d < 13 < 66212.7

since the minimum of A is 1.
Let s := |X| where X U —X = A; be half the kissing number of A. Then

1213
2
where the lower bound follows from the fact that X is a 4-design, and hence
{x"x | x € X} spans the space of all symmetric matrices, and the upper bound
is the bound on the kissing number of a 12-dimensional lattice as given in [1].
Moreover r is a rational solution of

=78 <s<6l4,

Sr
- 314
m(@) = 5 a3 14

by Lemma 2.3. Going through all possibilities by a ccmputer we find:

PROPOSITION 3.4.  With the above notation, one of the following holds :
(a) s=168=2%-3.7 and r =6.
(b) s =252=122-32.7 and r = 6.
(¢) s=378=2-3-7 and r =1¢.

(d) r= ‘3—4 and A is of minimal type.

3.2 THE CASE s =168, r =6

PROPOSITION 3.5. There is no strongly perfect latiice satisfying Proposi-
tion 3.4 (a).

Proof. Let A be such a strongly perfect lattice with min(A*) =r = 6
and s(A) = s = 168. Then for all o € A*



12-DIMENSIONAL STRONGLY PERFECT LATTICES 139

D @) = 14(a,0) € Z,

xeX

Z(x, a)t = 3a,0) €Z.

xeX

Hence all norms in A are integers. The equalities ¢((D13) — (D11)) and
L£((D2) — (D4)) yield that

1

g(ahaz)@(az, a)—14) e Z,
1
E(al,al)@(al,m) —14) e Z

for all ay,n € A*. Therefore A* is an even lattice with 3 | («y, ) for all
ay,ar € A* and hence T := %A* is an even lattice with min(I") = 2 and
min(I"™) = 3, which is a contradiction.  []

3.3 LATTICES OF MINIMAL TYPE

In this section we prove the following

THEOREM 3.6. Let A be a strongly perfect lattice of dimension 12 and
of minimal type, i.e. min(A) min(A*) = ’%52 =1 gnd let 5= %|Amin]. Then

3
s =378 or s =252.

Rescale A such that min(A) = 1. Then min(A*) = %. Applying (D2) to
@ € (A")143 yilelds:
l4s s
23 18 °
The bound given in [1] yields s < 614. Hence

7.

s = 18s; <614 for some s; € N, 51 <34.

LEMMA 3.7. 7 divides s; .

Proof. Assume that 7 does not divide s; and choose o« € A*. Then

(o, ) = £ for some coprime integers p,q. Since
3251 p?
(D) () = ﬁ?

is integral, this implies that p = 7p; is divisible by 7 and ¢* divides 3°s;.
Moreover ((D4) — (D2)) (o) 1s divisible by 12, which yields that
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S
*) 217 PGP~ 20 € L.

If g is even then p; is odd and 2° = 64 | 2%¢* | 51, which contradicts the
fact that s; < 34. Since ¢* divides 3%s;, the only possibilities for ¢ are

g=1,3,5,3%3-5.

o First assume that there is a € A* with (¢, @) = 22 for some a € N not
divisible by 5.
Then s; = 5° is odd and hence by (*) the norms of the elements in A*
lie in 12Z. Let
15
=14/ —=A".
14

Then all norms in T are integers. For the scalar products we apply (D22) to
a,3 €T to find that

7
(%) 32, )" + (@, )3, 8) € Z.
Therefore I' is an integral lattice. Let

' :={yerl|(y,y) €22},
I :={yeT|(y,7) €32},
I :=TONTY:={yeT|(y,7) € 6Z}.

Then T® is the even sublattice of T of index 2. Morcover ((D4)—(D2))(c)

yields that 1—72—(&, a)((a,a) —5) € Z for all o € T'. In particular the norms in

I are divisible by 4 and hence %T("’) is still even. By (*#*) and Lemma 2.9,

I'® is a sublattice of index < 3 in T'. In particular [I": "] < 6 and
1
A= —T

V6

is even. Since min(I™)det(I)!/'2 < 7, < 2.522 we get

15
det(I') < (2.522 —12)12 < 151530.4
and therefore
151530
det(A) < < ¢ 62 det(l) < —— —e% < 0.026,

which is a contradiction since A is integral.
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e Now assume that there is o € A* with (o, ) = 7—{}’
Then s; = 3¢ for some ¢ € {1,2,3} and hence by (*) the norms of the
elements in A* lie in 'Z. Let

I:= \/EA*.
14

Then min(I") = 3, min(I'™) = 19—4 and all norms in T are integers. For the
scalar products we apply (D22) to «,3 € T to find that

(D22)(av, B): %C(Z(a, BY + (a,)(B,0)) €Z forall a,B€T.

In the new scaling the equation ((D4) — (D2))(c) yields that

7
Ec(a, a)(a,a)—3)e Z forall acl.

Assume first that ¢ is odd. Then I'" is an integral lattice. Let
M :={yerl|(y,y) €2Z}

be the even sublattice of I'. Then the norms in I are divisible by 4 and
hence %F@ is an integral lattice. Therefore

det(T®)

1024 =2'0 < = det(I') < (2.522 %)12 <330,

which is a contradiction.
Now assume that ¢ = 2. Then ((D13) — (D11))(c, 3) yields that

—;-(()57/8)((04,0[) —3)eZ forall a,0€T.

In particular (o, 3) € Z for all o, 3 € T" with (o, «) € 2Z, and
9 :={yeT|(y,y) €22}

is a sublattice of I" of index 2 or 4 in I' by Lemma 2.8. Moreover (D22)(«, (3)
yields that

I :={yeT|(y,7) €32}
is a sublattice of I' of index 1 or 3 by Lemma 2.9. Put

I:=T"nNrv.
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Then I" is an even lattice of index < 12 in A for which %F’ is still even.

Hence 0 )
3 det(IT)

36900 < — <

— 42 = 122

which is a contradiction.

9
= det(T") < (2.522 ﬁ)12 < 330,

e The remaining case is that all norms of elements in A* lie in %Z.

Let T":= \/gA*. Then min(I") = 2, min(I™) = % > 2 and all norms in
I" are integers. But I' is not an integral lattice since min(I') < min(I™). In
particular, there is « € I' with (o, ) € 1 4+ 2Z.

In the new scaling the equations

% ((D4) — (D2))(a) and %((DIS) — (D1D)(«, B)

yield that
7Sl
27(04, a)(a,a)—2)eZ forall ael,
Ts ,
2—%(@,[3}((&,@) —2)eZ forall a,f€eT.

In particular
2% | sy € {16,32} and 3 divides (o, B) (o, ) —2) forall o,3€T .
As above we find that
I :={yeT|(y,7) €32}

is a sublattice of " of index 3 such that \/gl"(’) is even. Therefore

310 det(T") 3 15
14< 5 < =5 — = det(l) < (252233 <26,
which is a contradiction. []

We therefore have s = 2-3%-7 -5, with s, € {1,2,3,4}. To obtain the
theorem it remains to show that s, =3 or s, = 2. We keep the scaling such
that min(A) = 1.

LEMMA 3.8. Assume that s, # 3. Then

F:={ye A [(v,y) € Z}

is an even sublattice of N* of index [A* : T\W] = 3.



12-DIMENSIONAL STRONGLY PERFECT LATTICES 143

Proof. For oo € A* we write (o, o) = £ with coprime integers p,g. Then
) ,a) =14 p gers p,q

L((D4) — (D2))(a) € Z reads as
5
%) JiaPCp = 14 € 2.

Since 2* does not divide s;, we find that p is even and ¢ € {1,3}.
Moreover ((D13) — (D11))(e, 3) yields that

(%2) %sz(a,ﬂ)ﬁ(a, o)—14)eZ forall a,8€A".

Hence if s, # 3, then («,3) € Z for all a € A* for which (o, ) € Z,
therefore
M= {ye A |(v,7) €Z}

is an even sublattice of A*. The index of Y in A* is 3 since, for
a,f € A —T, (D22)(«e, 3) implies that

3s
%(2«1, BY + (a, a)(3,8) € Z.

Upon rescaling the bilinear form by 3, we see that we can apply Lemma 2.9
to obtain [A* : TW]=3. []

LEMMA 3.9. s # 1.

Proof. Assume that s, = 1. The norms of the elements of the even
lattice T in Lemma 3.8 satisfy (%) with ¢ = 1 and s, = 1. Moreover
min(T¥) > Y. Since p = 6 does not satisfy (xx) we find min(I'”) > 8.
Since d := det(A*) < 417 < 66212.7 we get

() >

8
> > 2.64
9d)!/12 = (9-66212.7)!/12 — ’

contradicting that ~j, < 2.522. ]

LEMMA 3.10. s, # 4.

Proof. Assume that s, = 4. Then T'® is an even lattice of minimum
> %4. Hence min(I'”) > 6. If we show that T” does not contain any vector
of square length 6, then we obtain a contradiction as in Lemma 3.9. So, let
v € T® be an element of norm (v,7) = 6. Then, for all x € X, we have
(x,7) € {0,+1,+2} and hence, by Lemma 2.3, ny(vy) = 6 > 8%‘6 = 3, which
contradicts the bound of Lemma 2.4. ]
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34 To suMm up

Let us summarise what we have shown:

THEOREM 3.11. Let A be a strongly perfect lattice of dimension 12 and
s = 3|Amin| be half the kissing number of A. Then either s = 252 and
min(A) min(A*) € {6, %'}, or s =378 and min(A)min(A*) € {1¢, 14}

The next two sections treat the two possibilities s = 252 and s = 378
separately.

3.5 THE CASE s = 252

In this section we show

THEOREM 3.12. There is no strongly perfect lattice in dimension 12 with
s = 252.

Let A be such a strongly perfect lattice with s(A) = s = 252 scaled such

that min(A) = 2 and put I' := A*. Then min(I") is one of 3 or % and, for all

o € I', equation (D4) yields erx(x, a)* = 18(a, a)*. Hence (o, ) € %Z.
The equalities 3 ((D13) — (D11)), -5 ((D4) — (D2)), and (D22) yield that

(Oé, ﬂ)(3(0&, Oé) - 7) € Za
%(a, a)3(a, ) =7) € Z,
6(2(ax, B) + (a, )3, 8)) € Z

for all o, 3 € T'". In particular, if (o, «) € 2Z then (a,3) € Z for all 8 € I'*.
Put

A={ael| (o) €2Z}.

Then A is an even sublattice of index ¢ :=[": A] in T'.

LEMMA 3.13. ¢ :=|T'/A| is a divisor of 12. If v # 2,6 then the quadratic
group (I'/A, —(,)) is isometric to R*/R for the following root lattice R :

L 3 4 12
R A Dy Ay L Dy
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If t=2 or . =06 then
' :={a el | () cZ}

is an odd integral sublattice of T of index 1/2 such that A is the even
sublattice of T. For 1 = 6 the quadratic group T /T is isometric to

(A3 /A2, —(, ).

Proof. By Lemmas 2.8 and 2.9 the index of A in I is a divisor of 12.
Let us treat the primes 2 and 3 separately. Assume that 3 divides ¢. Then
there is a € I with (o, a) € %Z — Z.. Equation %((D4) — (D2)) yields that
3(a,a) — 7 € 3Z hence (a,q) € % + Z.. Hence the 3-Sylow subgroup of the
quadratic group I'/A is isometric to (A} /A2, —(, )). For the 2-Sylow subgroup
note that the norms in " are 2-integral. Moreover a« + A = 3+ A # A if
and only if (a,0) = (3,8) = 1 (mod 2Z,5)) and («,3) € Z. Hence if
IT/A| =4 or 12, then the 2-Sylow subgroup of the quadratic group T'/A is
isometric to D} /D4. Also if |[T'//A| =2 or 6, then T is already 2-integral. []

Since min(I'™*) = 2 we find the bound
det(T) < 16.17, det(A) < 16.17.%.

Since ¢ < 12 this implies that min(A) = 4.
The strategy is to construct an even overlattice A of A, such that A =TNA

and hence o
F/A=T+A)/A=-R"/R.

Denote the last isomorphism by . Then the subdirect product
M= +A) xR = {(v,1) € C+A) LR | v =p)}

is an even lattice of dimension 12 + dim(R) and determinant det(M) =
det(A)/ det(R).

LEMMA 3.14. Let v € Ay. Then Ny(y) = {x1,...,X5,¥1,...,y¥s} with
vy =X +Yyi, &x,y) =0 and (x;,y;) = (x;,x;) =1 for all i #je {1,...,5}.
The lattice generated by N>(y) is isometric to the root lattice Dg.

Proof. By Lemma 2.3 |N,(y)| = 10. Moreover if x € N>(7y), then also
v —x € Ny(y). This gives us the partition Ny(vy) = {x1,...,%5,¥1,-.-,V5}
with x; + y; = . Taking scalar products with x; we get
2 =(x1,7) = (x1,x) + (x1,Y)) -

Since (x1,x) <1 for all x € Na(7y), x # x1, we get (x1,x;) = (x1,y;) = 1 for
all j > 2 as claimed. [
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PROPOSITION 3.15. Fix some v € Ay and put
Z = <A7 N2(7)> .

Then [Z:A]ZS.IfL:fS or v = 12 then [Z:A]zS and Z/A is not
cyclic.

Proof. First we note that A is an even lattice, I'NA=A and T+A < A*.
Therefore ¢ divides the determinant of A.

We keep the notation of Lemma 3.14 and denote by x +— X the
natural projection A — A/A. Let J = {i € {l1,...,5} | 2% # 0} and
[:={1,...,5} —J. Since min(A) =4 > 2, we have X # 0 # x; — x; for
i # j. Hence {0,xy,...,Xs} are 6 distinct elements of Z/A Moreover, if
X; = —X; then x; +x; — v = x; —y; € A is an element of norm 2 for j # i.

Therefore X; = —X; if and only if i = j € I. This implies that ‘Z/Al > 6+4|J].

If lZ/A = 6 then J = & and Z/A is an elementary abelian 2-group,

which is a contradiction. If |Z/A‘ =7 or 9, then K/A has no elements

of order 2; hence I = @, which implies that ‘Z/A > 11, contradiction.
Therefore

Z/A;:S or ’Z/A‘ZlO.
Now assume that ¢ € {3,12} and let R be the root lattice from

Lemma 3.13. f |A/A| > 10 then det(®) < %58 < 23.31/12. Since det(d)

is divisible by ¢, we get det(A) = . and

A" =A+T.

Taking the subdirect product M := (F+Z) * R* as described above, constructs
an even unimodular lattice in dimension 14 or 18, which is a contradiction. [ ]

PROPOSITION 3.16. ¢ =[I": Al #2 or 6.

Proof. Fix some ~ € Ay and put
T = (T N>(y).

As in the proof of Proposition 3.15 we see that [[': T[] > 8.

Assume that + = 2. Then I' = I'” is an integral laitice of determinant <
16.17. Hence det(f) < 81—2 16.17 < 1, which is a contradiction.

If . =6, then /T = —A%/A,. Taking the subdirect product I' x A} we
obtain a 14-dimensional integral lattice of determinant < % 16.17 < 1, which
is a contradiction. [
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DEFINITION 3.17. Let

M:=T+A)*R ={(v,0) € T+A) LR |v;=p)}.

REMARK 3.18. M is an even lattice of dimension 12 4 dim(R) and
determinant

det(A) _ _det®) _dex(l)

detM) = e = Fdet®) L 64

<0.253¢.

In particular ¢ > 4 and hence ¢ # 3. Moreover
R-={meM| (mr)=0 forall rc R} =A

contains a sublattice R' = (Na(7)) = De.

LEMMA 3.19. The lattice R is either a component of the root sublattice
(A7) or R' C E; C (Ay) is contained in a component isometric to E;.

Proof. Let R be the component of (A,) containing R'. We have
v=x1+n ER CRCACA.

Since N>(vy) C R', there are no x € R,—R’ satisfying (v, x) = 2. Going through
all possible root lattices, we see that only the two possibilities R = R’ = Dy
or R = E; arise. L]

We treat the remaining two cases + = 4 and ¢ = 12 separately.

LEMMA 3.20. (# 4.

Proof. 1f + = 4 then M is a 16-dimensional even unimodular lattice.
Hence M = Eg | Eg or M = D and A= Dj is the orthogonal complement
of a root system D4 in M and therefore has root system Eg | D4 respectively
Dy, contradicting Lemma 3.19. [

LEMMA 3.21. ¢ # 12.

Proof. 1f + = 12, then M is an even 18-dimensional lattice of deter-
minant < 3. Since there are no even unimodular 18-dimensional lattices
and also no even lattices of determinant 2 and dimension 18, we have
det(M) = 3, det(Z) = 36 and det(A) = 8%-3-12 = 2304. There is one genus of
18-dimensional even lattices of determinant 3, it contains 6 isometry-classes,
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representatives M, ..., Mg of which have root sublattices
E7 J_Dl(), Eg J_EgLAg, AzJ_Dm A17, E6J_E6J_E(,, andD7 .J_All.

By Lemma 3.19, the only possibility is M = M; with root system E; L Dy.
Since all reflections along norm 2 vectors are automorphisms of M, there are
up to isometries 3 embeddings of R = A, 1 D4 into M :

(1) Ay LDy CDyw, (2) Ay CDy, DsyCE;, (3) DsC Dy, Ay C Ey

(see for instance [9, Table 4]). The root systems of the orthogonal complements
of R are

(1) As LE;, (2) A} LDy, (3) As L Dg.

By Lemma 3.19 possibility (2) is ruled out. For the other two lattices we
calculate all sublattices of index 8, such that the factor group is not cyclic to
get a list of candidates for A. None of these lattices has minimum 4.  []

This concludes the proof of Theorem 3.12.

3.6 THE CASE s = 378

This section completes the proof of Theorem 3.1 by showing the following

THEOREM 3.22. If A is a strongly perfect lattice of dimension 12 with
kissing number 2 -378 then A is similar to the Coxeter-Todd lattice CT.

Let s = 2-3%.7 = 378 and rescale the strongly perfect 12-dimensional
lattice A in such a way that min(A) = %‘-. Because of Remark 3.3 we may
and will assume that A is generated by. its minimal vectors. Let " := A*.
Then min(I') =4 or min(I') = % and for all o, €T’

(D2): 2-3-TNa,a) €Z,
(D4): 22 3(a, ) € Z,
1271((D4) — (D2)) : —;—(a, a)2(a,a) —7) €L,
6~'((D13) — (D11)): (o, e, ) —7) € Z.

From (D2) and (D4) we find that (o, ) € %Z forall a e T'. If (o, ) € Z,
then ¢((D13)— (D11)) implies that (a, 3) € Z for all 8 € I'. In particular
Qa,B) =2a,p) € Z for all a,3 €T, Let

' :={aecl|(a,0) € Z}.
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Then T'® is an integral sublattice of T" and . := [[ : 9] < 2 since
(a,B8) € %Z for all o, 3 € T and therefore T® is the kernel of the linear
mapping I' = Z/2Z, o+ 2(«a, ).

Equality 55 ((D4) — (D2)) yields that (a, ) is even whenever a € T,
hence T'? is an even lattice. Moreover the norms of the elements o € I'—I'©
satisfy 2(a, ) — 7 € 4Z., hence

3
(a,a)eé——i-ZZ forall o e T —T@ .

Moreover

1
(I, T CZ, TC—TYT-T9) ¢ §+Z,

where the latter follows since a + 3 € T'® for all a,3 € ' — I'9. Let
d := det(l') and dp := det(T"¥) = 2d for . = [[": T1®] € {1,2}. Then

12, 4
min(A) Vd = 3 Vdo/L < y1p < 2.522,

which yields dy < 2097:%. On the other hand min(I"¥) > 4 yields that
do > 254. If min(T®) > 6 then dy > 32875, which is a contradiction.
Therefore there is some v € I'¥ with (v,7) = 4.

Hence we have shown

LEMMA 3.23. T :={a €T |(a,a) € Z} is an even sublattice of T of
index 1 < 2 and minimum 4. We have det(I') < 2097 and det(T'?9) < 2097.2.

The strategy of the proof of Theorem 3.22 is to construct an integral
overlattice M of I'® (respectively glue I with A} to obtain an even overlattice
of T @ A, in dimension 13 and then to find some overlattice M) of small
determinant. Then we go through all possibilities for M and calculate T®
as a sublattice of M. To prove the existence of such an integral overlattice
M, we find vectors of even norm and integral scalar products as linear
combinations of the vectors in X by analysing the possibilities for N>(7y) for
v € T satisfying the conditions of Lemma 2.3. The design properties of X
allow us to obtain very precise information about the sets N>(7y), if v has
norm 4 (see Propositions 3.26 and 3.28). Therefore we want to show that
Iy spans a space of dimension at least 8. This allows us to construct an
overlattice M (see Corollary 3.35). To use the theorem by Minkowski on the
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successive minima of T" we need to bound the number of vectors of norm

% in I". Proposition 3.32 shows that there are at most two such vectors and
Proposition 3.24 shows that no vector in I" has norm 2—1

11

PROPOSITION 3.24. There is no v € I' with (y,7) = 5.

Proof. Let v € T with (y,7) = 4. Then by Lemma 23 Ny(7) =
{x1,...,xn} with 31 x5 = 4y, Since (v, Y1 x) = 4(x;,7) = 8 and
(x;,x;) < 2 for all i % j we get that (x;,x) = (8 —3) = 3 for all i and

L:= {x;,...,x1) = \/gAH. We now enlarge T'® to an integral overlattice

I c T C (I Ny(y))

by joining preimages of a maximal isotropic subspace of L/(L* NL) ® F3.
We find such a subspace of dimension 5 which allows us to construct an
integral overlattice of I'® of index 3°, thus contradicting the fact that
det(T'9) < 4.2097 < (3°)*. In detail let

Vi = X3+ X4+ X5,
Y2 1= Xe + X7 + X3,
Y3 1= Xg + X190 + X1,
V4 = X3 — X4 + X7 — X3 + X9 — X171,
Y5 = X1+ X7 — Xg +X10 — X11 -
Then the subspace (y|,...,ys) < L is an integral sublattice of L and the

linear functionals x — (x,y;) € %L* (i=1,...,5) are linearly independent
modulo L*. Therefore

= (T y1, 0, ys)
is an integral overlattice of T of index divisible by 3°. On the other hand

4-2097
310

s 1
det(T) < 310 det(I'?) < <0.15< 1

yields a contradiction.  []

The next aim is to investigate the vectors of norm 4 in I'. From Lemma 2.3
and the equalities (D2) and (D4) we find

LEMMA 3.25. Let v € T with (v,7) = 4. Then No(y) = {x1,x} with
(x1,x) = % and v = x| + x. Moreover |Ni(y)| = 160 and |No(vy)| = 216.
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PROPOSITION 3.26. Let v € T9 with (v,7) = 4 and fix x; € Na(7y) =

{x1,x2}. Then

1 2 4
X 0,£—-, =, £~
(‘xl? )C{ 9 37 37 3}

with
INo(x1)| = 135, |Ny/3(x)| = 160, |Nay3(x1)| = 82, [Najsxn)| = 1.

Choose X such that (x,~) >0 for all x € X and (x,x1) > 0 for all x € No(7)
and define

Mij(’erI) = {X eX | (X, ’7) = i? (X,.X]) :J/3} :

Then Moa(vy,x1) = {x1 —x2}, Map(y,x1) = {xa}, Maa(y,x1) = {x1} and the
my; = |M(y,x1)| are given in the following table :

my | j=0 | j=1 | j=2 | j=4
i=0 135 80 1 0
i=1 0 80 80 0
i=2 0 0 1 1

Proof. Choose X such that (x,y) >0 for all x € X. Then
X=XyU X UX; .

where X; = {x € X | (x,7) =i} and X = {x;,x2} by Lemma 3.25. We also
choose the elements in Xy, such that (x,x;) > 0 for all x € Xy. Then the
equation (D11) with a; =~ yields that for all « € R!?

> 0) + 2001, @) + 2x,0) =23 7(7, Q).
xX€X,
Since v = x; + x» this gives
> () =2"-5(y,0).
x€X1
Similarly equality (D22) yields
S 0 =27, 00" = 220, @) — 2202, @) +24(a, )
XEX|
and (D13) gives

> ) = 223(y, )@, @) = 200, 0)° — 2(xn,0)".
x€X|
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Let x € Xj. Then 1 = (x,7) = (x,x1) + (x,x). Since (x,x;) < %, this
implies that (x,x) > 1. For i € R let m; := |{x € X | (x,x;) = i}|. Then

the above equalities yield
Zm,‘ = |X1| = 255
i

Zim,- = 245,

Pm; =243 252

i

Zﬁm,- — 24315

i

Hence . 3 5
Z(i — )G~ dmi = Zij(—iz +i= g =0.
Since 1 < i< 2 this yields that (x,x1) € 1, 21 for all x € X, . Moreover
3 3 ¥ 373
we find

mi :80, m1’2:80.
Now equalities (D2) and (D4) yield the following equations for n; := {x € X |

()C],X) - l} :
> ni=|Xo| =23,

Y itn=223717,

i*n; =25373.
By our assumption, (x,x;) > 0 for all x € X;. Moreover for x € X, we have
(x,7) = (x,x1+x2) = 0 hence (x,x) = —(x,x;). Since (x;,x,) = 2/3 we get
(X1 —x2,x1 —x2) = 4/3, and hence (x,x; —x;) = 2(x,x;) < 2/3 for all x € X,
with x # x; — x,. Therefore ny;3 =1 and n; # 0 only for i € [0, %]U {2/3}.

Thus we get
D =Xl -1=2%3 -1,
i€[0,4]

D Py =237,

i€[0,1]

Zln,—24 ,

16[0,3]
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from which we obtain {

PDRAGE )i =0.

i€f0,11
Therefore n; = 0 for i ¢ {0,+%,£2} and we can use the three equalities
above to compute

l’l0:135, I’l1/3:80, I’l2/3:1,

from which the proposition follows.  []

COROLLARY 3.27. In the situation of Proposition 3.26 we have 3x; € I’
and 3x, € T'. Hence also v :=x1 —2xp = v —3x, € T with (v',7') =4 and
(v, ¥)=-2.

This allows us to define an equivalence relation on the set of norm 4
vectors C := Iy in T'. Note that C consists of the minimal vectors in the
integral sublattice I of I'. In particular C is not empty by Lemma 3.23
and |(y1,72)| < 2 for distinct elements v; € C. We call 1,7, € C equivalent
if v1 — v, € 3A. Let K denote the set of equivalence classes. Then K forms
a root system over Z[(3]. More precisely we have:

PROPOSITION 3.28. (i) For all K € K we have |K|=3.

(ii) If K = {u,v,w} then u+v+w =0 and (u,v) = (u,w) = (v,w) = —2.
Moreover Ny(u) = {%(u — ), %(u —w) = %(2u +v)}.

(iii) If Ki # £K, € K then either (ki,ky) = 0 for all k; € K; (in this
case the classes are called orthogonal, (K, K) :=0) or there is € € {£1}
and a mapping ¢ : Ky — K, with (ki, p(k))) = 2¢ and (ki,ky) = —e€ for all
ki € Ki,ky € Ky — {p(k1)}. In this situation we will say that (K, K>) 1= €.

(v) If (K;,Ky) = —1, then K5 := K| + K, := {k1 + (ky) I k€ Kl} e K.

Proof. (i+ii) Let u € K € K. Then N>(u) = {x,,y,} and {u,u — 3x,,
u—3y,} C K. On the other hand let u # v € K. Then x := J(u —v) is a
non-zero vector in A and hence has square length > %. This implies that
(u,v) = —2 and x € Nr(u).

(iii) Since the differences of the elements in K; lie in 3A = 3I'*, the
scalar products (ki,k;) = (ki,k%) (mod 3) are congruent modulo 3 for all
ki, k. € K;, i = 1,2. Now these scalar products are integers of absolute
value < 2 with Z,Qe Kz(kl,kz) = 0 for all k; € K; which only leaves the
possibilities described in the proposition.

(iv) Clearly K3 is again an equivalence class of norm 4 vectors in I". []
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A closer analysis of the proof of Proposition 3.26 allows one to define a
normal subgroup of the automorphism group of A. For A = CT this is the
representation of a subgroup of index 2 in Aut(CT) as complex reflection
group.

PROPOSITION 3.29.  For all K € K define an orthogonal mapping sx by
(x| = —id|, and (sg)|r = id| ., where L = (K)R is the vector space
generated by K. If A is generated by its minimal vectors, then sg(A) = A
and hence sg € Aut(A). Moreover

() s% =id.

(ii) (sx,8K,)* = id for all K\,K» € K, (K;,K3) = 0.

(iii) (s, sx,)° = id for all K|,K, € K, (K\,K>) #0.

(iv) The subgroup (sx | K € K) < Aut(A) is a normal subgroup of the
automorphism group of A.

Proof. Let Y := XU —X = Api,. We only need to show that sg(Y) =Y.
The remaining properties of the sk follow from direct calculations. In particular
for all g € Aut(A) the conjugate si = syx). Since Aut(A) = Aut(I') permutes
the elements of K, the sx generate a normal subgroup of Aut(A). Let
v € K € K and let No(y) = {)C[,Xz}. Then

(K)r = (x1,22)R = (7, X1)R -

First let y € Y with (y,7) = 0. If (y,x;) = O then y € K+ and
k() =y € Y. If (x) = 4 then (yxp) = —%, y— 1 —x) € K*,
and sg(y) = y — (x; —xp) € Y. Similarly, if (y,x;) = —% then sx(y) =
y+ (1 —x) €Y. If (y,x;) =% then y=x —x, € K by Proposition 3.26.
Therefore sx(y) = —y € Y. If (y,7) = £2 then y € £N,(y) C (K), and
hence sx(y) = —y €Y.

It remains to consider the case that (y,vy) = 1. Without loss of generality
let (y,v) = 1. Then by Proposition 3.26 (y,x;) is one of % or % In the first
case, the projection of y onto (K)g is %xz and hence sg(y) = y—x, € Y.
In the second case, the projection of y onto (K)g is 1x; and hence

2
sk =y—-x €Y. L[]

PROPOSITION 3.30. Let K denote the set of equivalerce classes introduced
in Proposition 3.28. If there are two classes Ki,K, € K with (K|,K;) = —1
then I" 22 CT is the Coxeter-Todd lattice.

Proof. Let K; := {u;,v;, —(u; +v;)} (i =1,2) such that the Gram matrix
of (uy,v1,u,v2) is
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4 -2 =2 1
-2 4 1 -2
-2 1 4 =2
1 -2 =2 4

Then Ny(u;) = {x; := %(u, V), Vi 3(2u, +ov)} (i=1,2)and t:=u —v;
is a vector of norm 6 in T'.

We now want to investigate N,(f). The elements y;,x; — y2, and x1 + x2
have scalar product 2 with 7 and satisfy y; +x —y2 + x;1 + x, = t. With
Lemma 2.3 we find No(t) = {21, ... ,212,213 = V1,214 := X2—Y2, 215 = X1 +X2 }
with Zl]il z; = 5t. Since t = u; — vy, we get

2 =(z,0) = (g, 1) — (zi,v) =1 —(=1) forall i€ {l,...,12}.

Hence {z1,...,212} € Ni(u1) N N_1(v2). Since |(z,z)| < 3 for all i # and
(213, 20) + (214, 2) + (215, 2) = (t,z;) = 2 for all i < 12, we ﬁnd that (z;,z;) = 3
for all i € {1,...,12}, j€ {13,14,15}. For i=1,...,12 let ; :== z; — %t
Then

@i, m) = Zi,v2) = (Z,2) =0 forall 1 <i<12, j=13,14,15.

Hence {Zi,...,Z12} € (u1,v1,uz,v2)" lie in an 8-dimensional space. Moreover
2|1=2 i=j
= = 3
ZiryZj) = \Zi, %) — 5
(i, Zj) = (2, 7)) 3{§0 it
By Lemma 2.10 there is a partition {1,...,12} =L U... U into disjoint

sets I; such that dim((f;)) > |I;| — 1 for all j=1,...,k. Clearly || > 1.1If
;| =2, then 3t = z;+z for some i # [ and hence 2t = 3(z;+2z) € 3A. Since
t € A this implies that r = 3r — 2r € 3A, hence % € A is a vector of norm %,
contradicting the fact that min(A) = %. Therefore |[;| >3 forall j=1,... k.
Since k > 4 and the I; are disjoint, this implies that k = 4 and |[;| = 3
for all j. Rearranging the z;, we may assume that [; = {2j —1,2/,8 +j} for

j=1,...,4. Put
aj ‘= (22j-1,22))
b] - (22j-]728+j)7
¢j = (Z2j,284)) -

Then a; + b; = a; + ¢; = b; + ¢; = ==, which implies that a; = b; = ¢; = )

3
for all j. Hence A contains a sub]attlce L:= {uy,t,xp—y2,X1 +X2,21,...,28)
where the Gram matrix of L is



156 G. NEBE AND B. VENKOV

2 9 0 3 3 3 3 3 3 2 3 3

9 18 6 6 6 6 6 6 6 6 6 6

0 6 4 1 2 2 2 2 2 2 2 2

3 6 1 4 2 2 2 2 2 2 2 2

3 6 2 2 41 2 2 2 2 2 2

Fo— 113 6 2 2 1 4 2 2 2 2 2 2
313 6 2 2 2 2 41 2 2 2 2
3 6 2 2 2 2 1 4 2 2 2 2

3 6 2 2 2 2 2 2 41 2 2

3 6 2 2 2 2 2 2 1 4 2 2

3 6 2 2 2 2 2 2 2 2 4 1

36 2 2 2 2 2 2 2 2 1 4

Therefore I' is a sublattice of the dual lattice M := L* with min(T") = 4. In
particular T’ = T'¥, since M is already an even lattice. The determinant of
M is det(M) = 81, hence

/2
M:11< %SS.L

Computations with MAGMA yield that Aut(M) has 6 orbits on the
sublattices M@ of index 2 in M, none of which satisfies min(M®*) > 3.
Aut(M) has 32 orbits on the sublattices M® of index 3 in M, only one of
which satisfies min(M®*) > 2. This lattice M® is isometric to the Coxeter-
Todd lattice CT.

Aut(M) has 253 orbits on the sublattices M® of index 5 in M. For none
of these sublattices M has the dual M®* minimum > . O

The strategy is now to give a lower bound on the rank of the sublattice of T’
spanned by the norm 4-vectors using Minkowski’s theorem on the successive
minima of lattices. To this aim, we want to bound the number of vectors of
norm % in T,

Let A:={aeT|(a,0) = %} =14, and C:=T} as above.

LEMMA 3.31.  Let vy € C and denote Nr(v) := {x.,,y,}.
() For all o € A we have (a,7) = (o, %) = (v, y4) = 0.
(i) For ay # tap € A we have (o, ;) = i%.

Proof. (i) Since the scalar products (I',T(¢)) are integral, we have the

possibilities (a,y) € {0, £1,£2}. If (o,7) = 1 then o € '}y, is a vector

of norm % in T, which is impossible by Proposition 3.24. If («, ) = 2 then

(a, xy) = (a,y4) = 1 (since both scalar products are < 1) and y—3x, € C has
scalar product —1 with «a, contradicting Proposition 3.24. Therefore (o, ) =0

for all « € A, v € C. Since v = x, +y,, either both (a,x,) = (o,y,) =0
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or one of them is 1. As above the latter allows one to construct a vector of
norm 121 in I

(i) The possible scalar products are (ay, @) € {3, £3}. If (a1, ) = 3,
then v := « — ap € C satisfies (v, a;) = 2, contradicting (i). [

PROPOSITION 3.32.  |Ty7,5| < 1.

Proof. Assume that there are o # oy € I';/,. Then by Lemma 3.31 we
have (o, ;) = i%. Assume that (ap, ) = ——;- and put f:=a;+ap € I5%.
With Lemma 2.3 we find Ny(t) = {yi,...,y15} with 3.7 y; = 5. For
j = 1,2 we calculate 15 = 5(oy,1) = Z}il(q,-,y,-), hence (aj,y;) = 1
for all i. For i = 1,...,15 let y; := y; — 1t. Then («;,y,) = 0 for all
i€{l,...,15}, j=1,2 and the ¥, lie in the 10-dimensional space {c;, ).

2

Moreover (3;,,) = (yl-,yj)—% {: 8 l ;] By Lemma 2.10 there is a partition
= S

{1,...,15} = [U.. .Ul into disjoint sets I; such that dim({Z;)) > |[;| —1 for
all j=1,...,k. As in the proof of Proposition 3.30 we find k =5 and |[;| =3
for all j. Rearranging the y;, we may assume that [; = {2j— 1,2/, 10 +} for
j=1,...,5. Put

a;j = (Vpj_15¥2) 5

bj = (V3j—1, Y104 »

G = @2]7?10+j)~
Then aj+b;=a;+c;=bj+¢; = _72 , which implies that a; = b; = ¢; = _Tl

for all j. Hence A is an overlattice of the lattice L := (y,...,yi0,%,201)
where the Gram matrix of L is

4 1 2 2 2 2 2 2 2 2 6 6

1 4 2 2 2 2 2 2 2 2 6 6

2 2 4 1 2 2 2 2 2 2 6 6

2 21 4 2 2 2 2 2 2 6 6

2 22 2 41 2 2 2 2 6 6

Foe 112 2 2 2 1 4 2 2 2 2 6 6
312 2 2 2 2 2 41 2 2 6 6
2 2 2 2 2 2 1 4 2 2 6 6

2 22 2 2 2 2 2 41 6 6

2 2 2 2 2 2 2 2 1 4 6 6

6 6 6 6 6 6 6 6 6 6 18 18

6 6 6 6 6 6 6 6 6 6 18 42

satifying min(A) = 3 and min(A*) = 1. In particular I'® is an even integral
sublattice of L* of minimum 4 and is therefore contained in the unique
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maximal integral sublattice M, of L*. If B* denotes the dual basis of the
basis of L above, then M, is generated by (b}, ..., b}, 2bT, +2b},, bT, +3b7,)
and has index 4 in L* and determinant 3*. M, is an overlattice of index 3
of the root lattice AS. The lattice I" is a sublattice of M := My + Za; of
index < ,/4-2097/81 < 10.2.

Computations with MAGMA yield that Aut(M) has 23 orbits on the
sublattices M@ of index 2 in M, only 4 of which satisfy min(M?®*) > 3.
These sublattices have minimum 2,2,2, and 3/2, hence are no candidates
for T'. All sublattices M® of these 4 sublattices M? of index 2 satisfy
min(M®*) < 3. Hence [M :T] = [M,:To] is not a power of 2.

Assume that 3 divides [M : T']. Aut(M) has 109 orbits on the sublattices
M® of index 3 in M, only one of which satisfies min(M®*) > %. Since
min(M®) = 3, the lattice T is a proper sublattice of M®. There are no
sublattices M® of index 3 of M® such that M®* has minimum > %.
A unique sublattice M® of index 2 in M? satisfies 14©* = 5. This lattice
is the Coxeter-Todd lattice and has min(My) = 4 > %

Assume that 5 divides [M : I']. Aut(M) has 1771 orbits on the sublattices
M® of index 5 in M. For none of these sublattices M does the dual M®"
have minimum > ‘3—1.

There remains the case that [M : I'] = 7. Here the orbit computations are
too big to be performed with MAGMA. We therefore calculate all sublattices of
M of index 7 by going through the 11-dimensional subspaces of M/7TM = F12.
These are parametrised by matrices in F;lxu that are in Hermite normal
form. Building these matrices row by row, we only continue if the sublattice
generated by 7M and the first rows has minimum > Z. There are 31104
sublattices M7 of M of index 7 that have minimum > Z but none of these
lattices satisfies min(M(7*) > %. L]

ot

LEMMA 3.33. The rank of the sublattice of T" generated by the norm 4
vectors in 1" is at least 7.
Proof. 'We use Minkowski’s theorem on the successive minima
m; := min{\ € R | L has i linearly independent vectors of norm < \}
of an n-dimensional lattice L, which states that
my-my - ...omy < A det(LY/" forall 1 <r<n

(see for instance [12, Théoreme 11.6.8]).

Assume first that I" does not contain any vectors of norm

Proposition 3.24 there are no vectors of norm 121— in I'. Since

. By

NI~
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4%6° > 2.522'22097 > ~13 det(T")

we get that the rank of the sublattice of T" spanned by T} is at least 7.

Now assume that T;,, # &. Then by Proposition 3.32 the set I5 2=
{a, —a} has only 2 elements. Let = denote the orthogonal projection onto
{(a)* and let M := 7(N;(c)). Then by Lemma 2.7, the set m(M) U —r(M)
is a 2-design in {(a)’. In particular (7(M)) = (a)* and hence M spans a
subspace of dimension > 11 of R!2.

Choose x € M and let G(x) :== {y € T | (v,x) = 0}. Then G(x) is an
11-dimensional lattice of determinant

det(G(x)) = %det(l") < 2796.

Since (a,x) = £1, the minimum of G(x) is > 4 and G(x) contains no vectors

of norm 1! by Proposition 3.24. Now iy < 2.39 by [4] and

#6% > 2.39'12796

which implies that the rank of the sublattice spanned by the norm 4-vectors
in G(x) is at least 6. This holds for any x € M. Since M spans a space of
dimension > 11, not all norm 4-vectors of I" can be orthogonal to all x € M.
Therefore there is some x € M for which the rank of the sublattice spanned
by the norm 4 vectors in T" is strictly bigger than the rank of the sublattice
spanned by the norm 4 vectors in G(x), hence dim(Iy) >7. [

ASSUMPTION. In view of Proposition 3.30 we will assume in the sequel
that all classes in K are pairwise orthogonal.

Then Lemma 3.33 and Proposition 3.28 directly imply

COROLLARY 3.34. T has a sublattice L= (A; @ Ay)*. The lattice ANRL
contains a sublattice L' which is isometric to (A| ® A;)4 (under the same
isometry).

COROLLARY 3.35. There is an even overlattice T containing T@ of
index 9.

Proof. Let L’ be the lattice of Corollary 3.34: L' = (x;,y; | 1 <i < 4)
with (x;,y:) = 2/3, (x;,x) = (yi,¥) = 4/3 for all i, and all other scalar
products are 0. Then L' contains an even sublattice (v; := x; + xp + x3,

Uy 1= X3 — X3 +{4> such that »; and v, are linearly independent modulo
(L')*. Therefore T := (I'® vy, v,) is the desired lattice. [
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Note that det(T’) < 4-2097/81 < 103.6, and if T =T then T is of
determinant < 25. If T" # I'® then we will take the subdirect product with
A} to obtain an even lattice of even determinant < 50 in dimension 13. We
therefore treat the two cases separately.

PROPOSITION 3.36. Assume that T =19, Then T = CT.

Proof. We may assume that A is generated by its minimal vectors.
Since these have norm %, the Sylow p-subgroup of the discriminant group
A/T is generated by isotropic classes for all primes p # 3. In particular,
if some prime p # 3 divides det(I'), then ' has an integral overlattice of
index p. In particular p? divides det(f’). By [6, Table 15.4, p. 387] there
are no even 12-dimensional lattices of determinant 1, 2, 3, or 6. Therefore
det(T') #£ p?,2p2,3p* or 6p* for all primes p # 3. Since det(I') < 25 one
gets det(f) — 9 or 16. In the first case T is in the genus of Ay 1 Ay | Ejg.
The genus contains 3 isometry classes, for only one of which the dual lattice
has minimum > 4/3. This class is Es L FE¢. The automorphism group of
E¢ 1 E¢ has 20 orbits on the sublattices of index 3, only one of which
consists of lattices whose dual has minimum > 4/3. Continuing with this
lattice, one finds 32 orbits of sublattices of index 3 under the automorphism
group for only one of which the dual has minimum 4/3. This lattice is the
Coxeter-Todd lattice CT.

In the second case, T has an even overlattice I which is in the genus of
Eg | Dy. The genus of Eg 1 D4 consists of 2 classes, the other is Di,. Both
lattices have vectors of norm 1 in their duals, so this case is impossible. []

Now assume that [I": I¥9] = 2. We then have the following situation:

(@

A=T"

ANT*

1"(8)

Let ¢ : T/T® — A} /A, be the unique isomorphism. Then we define
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M:=TxAl :={x+yel LA} |px) =y}

The overlattice M := I' + M contains M of index 9 and is an even
lattice in dimension 13 of even determinant < 50. Moreover M contains
a unique pair +v of vectors of norm 2, The orthogonal complement
= {y € M| (v,7) = 0} is the lattice T'”. The orthogonal complement
of v in M is a sublattice of A and hence has minimum > 4
We will show that this situation is impossible:

PROPOSITION 3.37. I'=1@,

Proof Assume that I" # ¥ and construct the lattice M as above. Then
det(]\/D L det(F) is an even integer < 50. Moreover the following condition
is sa‘usﬁed.

(MIN)  There is a vector v € My such that L, := {v € M* | (y,v) = 0}
is a lattice of minimum > g.

As in the proof of Proposition 3.36 we may assume that A is generated by
its minimal vectors. Since these have norm %, the orthogonal complement O
of T+A /T +A; in M*/M is generated by classes of norm 3. In particular
for all primes p # 3, the Sylow p- subgroup of O is generated by isotropic
classes. Hence if some prime p # 3 divides 1 det(M) then M has an integral
overlattice of index p. In particular p? d1V1des ldet(]W) By [6, Table 15.4,
p. 387] there are no even 13-dimensional lattices of determinant 2. Therefore
det(M) # 2p?* for all primes p # 3. Since det(M) < 50 one gets det(M) = 6,
16, 18, 24, 32 or 48.

det =6: In the first case M is in the genus of As L Eg. The genus
contains 3 isometry classes, two of which, say L; and L, (namely all
but As 1 Eg) satisfy condition (MIN). No sublattice of index 9 of L;
satisfies (MIN) and a unique sublattice of index 9, say L', satisfies the
condition (MIN). L' has root system A}, hence L' # M.

det=24: If det(l\7l) = 24, then M is a sublattice of index 2 of the
lattice L' constructed in the case that det(M) = 6. But no such sublattice
satisfies condition (MIN).

_ det= 16 : Assume now that det(A7[) = 16. Therl M has an even overlattice

M containing M of index 2. The determinant of M is 4. By [6, Table 15.4]
there is a unique genus of even 13-dimensional lattices of determinant 4 the
genus of Dj3. It contains 3 classes, none of which satisfies the condition (MIN).
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det = 18 : Now assume that detM = 18. Then M is a maximal integral
lattice (since there is no even lattice of determinant 2 in dimension 13).
In particular the discriminant group of M is not cyclic, and the 3-Sylow
subgroup of M /]\71 is isometric to the unique anisotropic quadratic space of
dimension 2 over F3. There is a unique genus of such lattices, namely that of
E¢ L E¢ 1 A;. This genus has class number 7. Only the lattice Eq | Eq L A
satisfies condition (MIN). Only one sublattice of index 9 of this lattice satisfies
condition (MIN) and this lattice is isometric to A; L CT.

det=32: If detM = 32, then M has an even overlattice M of
determinant 8. By [6, Table 15.4] there is a unique genus of even lattices
of determinant 8 in dimension 13, the one of A; L D, L Eg. This genus
contains 4 classes, none of which satisfies condition (MIN).

det =48 : Assume finally that det(]\7l) = 48. Then there is an even

overlattice M of M of determinant det(M) = 12. There is one genus of such
lattices of determinant 12, namely the one of Eq L D;. Its class number is 7
and none of the lattices satisfies condition (MIN).  [|

Together with Proposition 3.36 this concludes the proof of Theorem 3.22.
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