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GRADIENT FLOW OF THE NORM SQUARED OF A MOMENT MAP

by Eugene LERMAN™)

ABSTRACT. We present a proof due to Duistermaat that the gradient flow of the
norm squared of the moment map defines a deformation retract of the appropriate
piece of the manifold onto the zero level set of the moment map. Duistermaat’s proof
is an adaptation of Lojasiewicz’s argument for analytic functions to functions which
are locally analytic.

1. INTRODUCTION

Recall that a 2-form o on a manifold M is symplectic if it is closed and
nondegenerate. Recall also that if a Lie group G acts on a manifold M then
for any element X in the Lie algebra g of G we get a vector field X3 on
M defined by:

Xy(m) = fl— exptX - m
dt|,_,
for all m € M. Here exp: g — G denotes the exponential map and “-” the
action. Given an action of a Lie group G on a manifold M preserving a
symplectic form o there may exist a moment map p: M — g* associated
with this action. It takes its values in g* := Hom(g, R), in the dual of the
Lic algebra of G. The moment map is defined as follows: for any X € g,
(1, X) is a real-valued function on M ((-,-) denotes the canonical pairing
g* x g — R). We require that

d{p, X) = o (X, )

*) Supported in part by DMS-0204448.
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for any') X € g. Additionally one often requires that the moment map u is
equivariant, that is, that it intertwines the given action of G on M with the
coadjoint action of G on g*:

(g -m) = g - p(m)

for all g € G and m € M. An equivariant moment map is unique up to
an addition of a vector in (g*)¢, the G-fixed subspace of g*. For example
if G is a subgroup of the unitary group U(n), then its natural action on
the projective space CP"~! not only preserves the imzginary part o of the
Fubini-Study metric but is, in fact, Hamiltonian. The associated moment map
[ 1s given by

(u([v]), X) =

where [v] € CP"~! denotes the line through a vector v € C"~\.0, (-,-) denotes
the standard Hermitian inner product on C" and Xv denotes the image of v
under X € g C Hom(C",C") (see for instance (K, p. 24]). If VC CP* ! isa
G -invariant smooth subvariety, then the action of G on V also has a moment
map and it is simply the restriction uly.

Equivariant moment maps can be used to construct new symplectic
manifolds: Suppose that the Lie group G acts freely and properly on the
zero level set 1~ '(0) of an associated moment map j: M — g*. Then by a
theorem of Meyer [Me] and, independently, of Marsden and Weinstein [MW],

M//oG = =1 (0)/G

is a symplectic manifold, called the symplectic quotient at 0. If the action of
G on £~ '(0) is not free then M//yG is a stratified space with symplectic
strata [SL].

In many cases one knows the topology of M and one is interested in
understanding the topology of the symplectic quotient M//oG, which may
be much more complicated. For instance a projective toric manifold is a
symplectic quotient of a symplectic vector space by a theorem of Delzant.
Such a manifold has an interesting cohomology ring, while the vector space
one constructs it from is contractible.

A more interesting example is due to Atiyah and Bott [AB]. Consider the
space A of connections on a vector bundle E over a Riemann surface X. Then
A is an affine infinite dimensional space with a constant coefficients symplectic
form. Moreover the action of the gauge group G on .A is Hamiltonian and

") The opposite sign convention is also used by many authors: @{u,X) = —o(Xy, ).
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the associated moment map p assigns to a connection A its curvature Fjy.
Therefore the symplectic quotient A//¢G is (formally) the moduli space of
flat connections. Atiyah and Bott also pointed out that the norm squared || s
of the moment map behaves somewhat like a very nice Morse-Bott function.
While the connected components of the critical set of ||||* are not manifolds,
they do have indices. Moreover, for each critical component C the set Sc
given by

(1.1) Sc := {x € M | w-limit of the trajectory of — V||g|f* is in C}

is a manifold — the “stable manifold” of C. The manifolds Sc give rise
to a decomposition of A. This was later made rigorous by Donaldson [Do]
and Daskalopoulos [Da]. In the finite dimensional setting these ideas were
developed by Kirwan [K] and Ness [N] (independently of each other).

The work of Kirwan and Ness had an additional motivation that comes
from the Geometric Invariant Theory (GIT) of Mumford. Roughly speaking
given a complex projective variety M C P(V) and a complex reductive group
G€ ¢ PGL(V) one can form a new projective variety M//G¢, the GIT quotient
of M. It is obtained by taking a Zariski dense subset My, C M of “semi-stable
points” and dividing out by G*:

M//GS := My, /G .

It turns out that the action of the maximal compact subgroup G of G¢ on
M is Hamiltonian and that the two quotients are equal:

(1.2) M//GE = M//oG.

As far as credit for this observation goes, let me quote from a wonderful
paper by R. Bott [Bo, p. 112]

In fact, it is quite distressing to see how long it is taking us collectively to
truly sort out symplectic geometry. I became aware of this especially when one
fine afternoon in 1980, Michael Atiyah and I were trying to work in my office
at Harvard. I say trying, because the noise in the neighboring office made by
Sternberg and Guillemin made it difficult. So we went next door to arrange a
truce and in the process discovered that we were grosso modo doing the same
thing. Later Mumford joined us, and before the afternoon was over we saw
how Mumford’s “stability theory” fitted with Morse theory.

Both Guillemin and Sternberg in [GS1] and Ness in [N] credit Mumford for
(1.2).

As T mentioned earlier, it is of some interest in symplectic and algebraic
geometry to understand the topology of symplectic and GIT quotients. In
particular it is natural to ask whether the stable manifolds S¢ retract onto the
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corresponding critical sets C under the flow of —V/||x|[*. This is not entirely
obvious in light of the fact that there are functions f on R? whose gradient
flows have nontrivial w-limit sets. As the referee pointed out, an example can
be found on p.14 of [PdM]: The function f in question is given in polar
coordinates by

er—1, ifr<li;

fr,) =< 0, ifr=1;
i

e ?=isin(l/(r—1)—0), ifr>0.

The whole unit circle {r =1} is the w-limit set of a gradient trajectory of f.
For this function the gradient flow does not give rise to a map from S¢ to C,
let alone a retraction.

If the function f is analytic then the w-limit sets of the flow Vf are
single points, as was proved by Lojasiewicz [Lo2]. Pushing this idea a bit
further and using the results of Kempf and Ness [KN] Neeman proved that
in algebraic setting the flow of —V||u||” defines a retraction of the set of
semi-stable points M, onto the zero set of the moment map p~'(0) [Ne].
See also Schwarz [S] for a nice survey. Note that the moment map itself does
not appear explicitly in these two papers. The connection is explained in a
paper of Linda Ness [N] quoted earlier. In the setting of connections of vector
bundles over Riemann surfaces Daskalopoulos [Da] showed that the gradient
flow of the ||u||* defines a continuous deformation retract of the Atiyah-Bott
strata Sc onto the components of the critical set of ||u|f’.

This leaves us with the question: is it true that for an arbitrary moment
map 4 the stable manifolds Sc defined by (1.1) retract onto the critical sets
C under the flow of —V||z||* ? The answer, under reasonable assumptions
on u, is yes. It has been known to experts for some time. It was proved
by Duistermaat in the 1980’s. The existence of Duistermaat’s proof is even
footnoted in [MFK] on p. 166 (this was kindly pointed out by the referee). The
result has been used by a number of authors, but until Woodward wrote it up
in [W, Appendix B], there was no widely available proof. In this paper I do my
best to write out Duistermaat’s proof in detail. I do not claim any originality.
The proof closely follows ideas of Lojasiewicz [Lo2] on the properties of
gradient flows of analytic functions (see [KMP], p. 763 and p. 765 for a
nice summary). The norm squared of a moment map is not necessarily an
analytic function, but it is one locally. The latter is enough to prove that the
Lojasiewicz gradient inequality (see Lemma 2.2 below) holds for the norm
squared of the moment map and make the rest Lojasiewicz’s argument work.



GRADIENT FLOW OF THE NORM SQUARED OF A MOMENT MAP 121

Woodward proves the fojasiewicz inequality directly using the local normal
form theorem for moment maps. He gets more precise constants for the rate
of convergence of the gradient flow but his exposition is a bit terse.

We now recapitulate our notation and make things a bit more precise. Let
(M, o) be a connected symplectic manifold with a Hamiltonian action of a
compact Lie group K and an associated equivariant moment map p: M — €.
We assume throughout the rest of paper that the moment map is proper. We fix
an invariant inner product on € and a Riemannian metric on M compatible
with o. Let

f@) = lp@|

denote the norm squared of the moment map. It is a proper map. We denote
the flow of —Vf by ¢,. Thus, for any function 2 and any x € M we have

d
7 7(81(x) = =Vf(1) (§(x)) = —(Vf - VI) ($:(x)) .

Since f 1s proper, the flow exists of all # > 0. Kirwan proved [K, Theorem 4.16,
p. 56] that the set of the critical points of the function f is a disjoint union
of path connected closed subsets on each of which f takes constant value.
Moreover for each such component C the corresponding stable set S¢ defined

by
Sc = {x € M| w-limit ¢,(x) C C}

i1s a smooth manifold. The main result of the paper is

THEOREM 1.1 (Duistermaat). Let (M,0), f, C, ¢, and Sc be as above.
Then

1. for each x € M the w-limit set of the trajectory ¢,(x) is a single point,
which we denote by ¢oo(x);

2. for each connected component C of critical points of f the map
¢: [07 OO] X SC — C7 (t,X) = ¢t(x)

is a deformation retraction.

ACKNOWLEDGEMENTS. I am grateful to the referee and to Anton Alekseev
for helpful comments. I thank Amnon Neeman for reading an early version
of the manuscript. I am also very grateful to Hans Duistermaat for making
his 1980’s manuscript available to me back in 1988.
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2. PROOF OF DUISTERMAAT’S THEOREM

We prove Theorem 1.1 in a number of steps. We first argue that moment
maps for compact Lie groups are locally real analytic. This local analyticity
is a consequence of the local normal form theorem of Marle [Ma] and of
Guillemin-Sternberg [GS2] for moment maps and of the fact that compact Lie
groups are real analytic. To state the local normal form theorem we need to
set up some notation. Let x € M be a point, G, be its isotropy group with
Lie algebra g,, G, the isotropy group of o = u(x) with Lie algebra g, .
Since the action of G is proper, the isotropy group G, is compact. We can
then choose a G,-equivariant splitting

8" =gy X (ga /9" X (8/8a)"
and thereby the embeddings g; — g* and (g./g.)* < g*.

THEOREM 2.1 (Marle; Guillemin and Sternberg). There is a finite-
dimensional symplectic representation V of G,, the associated quadratic
homogeneous moment map py:V — g, a neighborhood U of the orbit
G -x C M, a neighborhood Uy of the zero section of the vector bundle
G Xg, ((ga/gx)* X V) — G/G, and a diffeomorphism ¢: Uy — U so that

po ¢lg,n,vD) = Ad'(g)(e + 1 + py(v))
Jor all [g,n,v] € Uy. Here Ad' denotes the co-adjoint action and [g,n,v]
denotes the orbit of (g,n,v) € G x ((ga/gx)* X V) in the associated bundle

G XGX ((goz/gx)* X V)

Now, since G is a compact Lie group, it is real analytic. A choice of a local
analytic section of G — G/G, gives coordinates on G Xg, ((ga /8x)* X V)
making s 0 ¢ into a real analytic map.

Next we recall the gradient inequality of f.ojasiewicz.

LEMMA 2.2 (Lojasiewicz gradient inequality). If f be a real analytic
Junction on an open set W C R" then for every critical point x of f there
are a neighborhood U, of x and constants ¢, > 0 and oy, 0 < o, < 1,
such that

(2.1) VDI = el ) — flx)

Jor all y € U,. Here ||-|| denotes the standard Euclidean norm.

Qx

Proof.  This is Proposition 1 on p. 92 of [Lo]. Alternatively see Proposi-
tion 6.8 in [BM].
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Since any Riemannian metric on a relatively compact subset of R" is
equivalent to the Euclidean metric, the inequality (2.1) holds for an arbitrary
Riemannian metric on R" with the same exponent «, and possibly different
constant cy.

Since the connected component C of the set of critical points of f is
compact, it can be covered by finitely many open sets U; on which the
inequality (2.1) holds (with the constants ¢; and «; depending on the U;).
Let &« = maxc; and b = f(C). Then for any y € U; with | f(y) — b| < 1 we
have

| fO) = b|™ > [ f() — b|".

Let ¢ =ming; and let U=JU;Nn{zeM | | f(z) — b| < 1}. Then for any
y € U we have ||[Vf(y)|| > c|f(») — b)|* or, equivalently,

(2.2) IV - [fO) = B)| " > c.

By definition of Sc¢,
lim_f(6,9) = b

for any y € S¢. Since f is proper, there is D > 0 so that
|f)—b|<D=yeUlU.

Hence for any y € S¢ there is 7 = 7(y) so that

t27(y)= ¢y eU.

Fix y € S¢. For t > 7(y)

d
— 5 (@0 — )~ = —(1 = ) (f(3() — ™ (=VF () ())

= (1 — @) (f($y) — B~ | V()|
> (1—a)c|[VAS

where the last inequality follows by (2.2). Hence for any # > 1y > 7(y)

h d
(f(dp ) — B)' ™% — (f(¢y, () — B)' ™ = — / (@0 - b)' ~ dt

J1

> (1 — e / IV dr

Ip

1

by the previous inequality. Setting ¢ = o

we get:
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LEMMA 2.3. There are constants ¢ > 0 and 0 <. « < 1 such that for
any ty < t; sufficiently large and any x € S¢

(2.3) d«ﬂ%mrwf”—uwmm—w“ﬂz/”mm@mmm.

Io

It is now easy to show that the w-limit of ¢,(y) as t — +oo is a single
point. Denote by d the distance on M defined by the Riemannian metric.
Then

t d
Q4 600,00 < [ ]G] d

:/wawwm
< ¢ ((f( b)) = b) % = (Fldn &) —b)' %)

As 1y, 1) — +oo the last expression converges to 0. Therefore, by the Cauchy
criterion, lim,_, ;. ¢;(y) does exist, i.e., the map

Poo:Sc = C,  Poc(y):i= lim ¢,y)
t—+oo

is a well-defined map.
We argue that ¢ : S¢ — C is continuous. Given x € S¢ and £ > 0 we
want to find 0 such that

d(x,y) < 6 = d(Poo(X), Poo(¥)) <

for any y € S¢. If we take the limit of both sides of (2.4) as #, — +o0o0 we
get

0

2.5) d($\), boo ) < ¢ (FHi3) — b)'

for all y € S¢ and all ¢ sufficiently large. Choose ¢ > 0 so that
(2.6) (f(@() —b)' ™" < 2/4.

Then

(2.7) d($1(x), Poo(x)) < €/4.

With ¢ fixed as above, choose d > 0 so that y € S¢ and d(x,y) < § imply
two inequalities :

(2.8) d(p(x), ¢(y)) < /4,

and
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(2.9) ! |(f( @) = b)' ™ = (f(d(») — b)' | < ¢/4.

This can be done because both maps z — ¢,(z) and z — (f(¢(2)) — b)! @
are continuous. Equations (2.6) and (2.9) imply that

(2.10) d(f(e(y) —b)' > < e/2,
and so, by (2.5),
(2.11) d(Poc (), D)) < €/2.

Putting (2.7), (2.8) and (2.10) together, we get that for y € S¢, d(x,y) < ¢
implies

(oo (X), Poo (1) < d(¢oo (%), §1(X)) + d(Di(x), P(y)) + d(PY), Do (V)
<el/d+e/d+e/2=¢.

This proves that ¢, : S¢ — C is continuous.

Finally it follows from the argument above that for any yy € S¢ and any
e >0 there are 6 >0 and 7 > 0 so that

t> 71 and d(y,y0) < § = d(P(y), o)) < €
for all y € S¢. Consequently
¢: [07OO] X SC — SC7 (tay) = ¢t(y)

is continuous. That is, S¢c deformation retracts onto C. This concludes the
proof of Theorem 1.1. []
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