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COUNTING SOLUTIONS
OF PERTURBED HARMONIC MAP EQUATIONS

by Thomas KAPPELER and Janko LATSCHEV *)

ABSTRACT. In this paper we consider perturbed harmonic map equations for maps
between closed Riemannian manifolds. In the case where the target manifold has
negative sectional curvature we prove - among other results - that for a large class of
semilinear and quasilinear perturbations, the perturbed harmonic map equations have
solutions in any homotopy class of maps for which the Euler characteristic of the set
of harmonic maps does not vanish. Under an additional condition, similar results hold
in the case where the target manifold has nonpositive sectional curvature. The proofs
are presented in an abstract setup suitable for generalizations to other situations.

1. INTRODUCTION

In this work we study the solvability of a class of semilinear and quasilinear
perturbations of the harmonic map equation for maps u: M — M from a
closed n-dimensional Riemannian manifold M into a closed # -dimensional
Riemannian manifold M" with nonpositive sectional curvature. Denoting points
of M and M’ by x and y, respectively, we study the set of solutions for the
equations

(L.1) T(u)(x) + F(x,u(x)) = 0
and
(1.2) T(u)(x) + F(x, u(x)) + du(G(x, u(x))) =0

where 7(u)(x) denotes the tension field, F is an x-dependent vector field on
M’ and G is a y-dependent vector field on M. Recall that the harmonic map
equation 7(x) = 0 is the Euler-Lagrange equation of the energy functional

*) While writing this article, both authors were partially supported by the European
Commission under grant HPRN-CT-1999-00118.
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(1.3) E(u) = %/ \|du)|* dvol(x) .
M

Solutions of 7(u) =0 are therefore critical points of E(u). They are referred
to as harmonic maps. In local coordinates of M and M, the components
7%u)(x) of the tension field 7(u) are given by (1 < a <#')

Ou’ (x) Ou’ (x)
oxi  Ox

T (@) = M@+ Y gl D TE )

1<ij<n 1<B,y<n’

where Ay, is the Laplace-Beltrami operator on M, ¢7(»:) are the components
of the inverse of the metric tensor on M, and T”é’fw(y) denote the Christoffel
symbols corresponding to the Riemannian metric ¢ on M'.

We point out immediately that the perturbations considered are not
necessarily of variational type, meaning that for generic F' and G the equations
(1.1) and (1.2) are not the Euler-Lagrange equations of any perturbation of
the energy functional E(u). Our studies were motivated in part by work of
Kuksin [Ku] on perturbed Cauchy-Riemann equations.

To state our results, we need to introduce some notation. For any j > n/2
we denote by H? the Hilbert manifold of maps from M to M of Sobolev
class H/. By the Sobolev embedding theorem, the space H' compactly
embeds into C'(M,M’) for every 0 < i < j—n/2. The connected components
?{Ei) of the space H” correspond to the homotopy classes ¢ of maps from

M to M'. We now fix an integer k > 2+ ”—JE—”—/ and derote by F® the space
of x-dependent vector fields on M’ of class HX, and by G® the space of
y-dependent vector fields G on M of class H* satisfying

G|l :=  sup [|G(x,y)|| <c.
xeM,yeM’

We consider the set
MY = {(u,F) € HIHY x FO | (u, F) solves (1.1)}

of solutions (u,F) of (1.1) and, for any ¢ > 0, the set

Né’? = {(qua G) e /H(CkH) x FO 5 6N | (u, F,G) solves (1.2) }

of solutions (u, F, G) for equation (1.2).

Our goal here is to give a sufficient criterion for the solvability of equations
(1.1) and (1.2) for every perturbation F € F® (resp. (F,G) € F® x g
with ¢ > 0 small) and to provide a count for the number of solutions for
generic such perturbations.
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THEOREM 1.1. Let ( be a homotopy class of maps from the closed
Riemannian manifold M of dimension n to the closed Riemannian manifold
M’ of nonpositive sectional curvature and dimension n' . Then there exists an
integer D¢ € 1 such that for every k > 2 + # the following statements
hold :

1. If D¢ # 0, then equation (1.1) has at least one solution in ( for every
F € F® . Moreover, for any F contained in an open, dense subset
F& c F® equation (1.1) has at least |D¢| solutions in .

2. There exists ¢ > 0 such that if D # 0, then equation (1.2) has at least
one solution in ( for any (F,G) € F® x G®. Moreover, for any pair
(F,G) contained in an open, dense subset (F® x G0y, C F® x g®,
equation (1.2) has at least |D¢| solutions in (.

Furthermore, if the critical set of the restriction E|c of the energy functional

(1.3) to ’H(CHZ) is nondegenerate - as is for instance the case for any homotopy

class if M’ has negative sectional curvature -, then

(1.4) D¢ = x(Cril(E|¢)),

the Euler characteristic of the set of harmonic maps in the homotopy class (.

The nondegeneracy condition appearing in the last part of Theorem 1.1
is of Morse-Bott type and is discussed in detail in §2. We point out that
(1.4) is sharp, in the sense that there are examples of homotopy classes ¢
and perturbations F for which the number of solutions of equation (1.1) in ¢
equals |x(Crit(E|¢))].

The proof of Theorem 1.1 naturally splits into several parts. For the first
part, one starts by observing that the M(Ck) (resp. NV, ék()) are Hilbert manifolds
and that the projections ¢ : Mg‘) — F® (resp. mr et N (kg — FOxgh)
are Fredholm maps of index 0. The subset () C F® (resp. (F® x G0),p0)
in Theorem 1.1 is precisely the set of regular values of the map m ¢ (resp.
Trc.c). The integer D¢ in the statement of the theorem is nothing but the
degree of these maps. In § 3 we present a detailed derivation of the existence of
such a degree under suitable general conditions. We take a common approach
using determinant line bundles defined for a family of Fredholm operators
of some fixed index. For the convenience of the reader, we have given a
self-contained review of the determinant line bundle in Appendix A.

In the second part of the proof our goal is to compute the degree. This is
carried out in §4, where we use the nondegeneracy assumption for the critical
set to identify the degree D with the Euler characteristic of the set of critical
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points of the functional whose perturbation is studied. Here the basic idea
is to reduce the problem to an equivalent finite-dimensional one, where the
corresponding result is well-known.

Finally, in §5 we verify the assumptions of the general argument in the
previous two sections for the perturbed harmonic map ecuations (1.1) and (1.2)
and prove Theorem 1.1. Here the argument rests on the following compactness
result established in [KKS1, Ko]. Recall that a continuous map is said to be
proper if the inverse image of every compact set is compact.

THEOREM 1.2. Assume that M' has non-positive sectional curvature, (
is a homotopy class of maps from M to M and that k > 2+ (n+n')/2.
Then the following statements hold :

1. The natural projection onto the second factor my : M(Ck) — FO g
propetr.

2. There exists ¢ > 0 such that the natural projection
k :
Thce: Nio — FO x o

s proper.

Part (1) of Theorem 1.2 was established in [KKS1], along with part (2)
in the case when dimM < 3. In the recent paper [Ko], the case dimM > 3
of part (2) is treated. Note that in [KKS1, Ko], the results of Theorem 1.2
are stated and proved for C' maps with / > 2. The versions above can be
proven in essentially the same way. In [KKS2] it is shown that the constant
¢ > 0 in Theorem 1.2 (2) can be chosen independently of the homotopy class
¢ if M’ has strictly negative sectional curvature (see also [Ko]). In fact, it
is proved that ¢ can be chosen to depend only on the upper bound of the
sectional curvature and on the lower bound of the injectivity radius of M.
We point out that there are examples of large perturbations G such that the
set of solutions of equation (1.2) is no longer compact. Hence for sufficiently
large ¢, part (2) of Theorem 1.2 no longer holds.

In order to show that formula (1.4) of Theorem 1.1 holds in many situations,
we begin our exposition in §2 by explaining the nondegeneracy condition on
the energy functional and proving that it is in particular satisfied for the
following triples (M',M,():

e M’ has non-positive sectional curvature, M is arbitrary and ¢ is the trivial
homotopy class.

o M =R"/A is a flat torus and M and ¢ are arbitrary.

e M’ has negative sectional curvature and M and ¢ are arbitrary.
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(M} x M5,M,(; x () where both triples, (M],M, () and (M3, M, (),
satisfy the non-degeneracy condition.

illustrate our results, we next present some examples.

EXAMPLES.

. Taking M = M' = S' ~ R/Z, any map u: M — M’ can be lifted to a

map u: R — R with
(1.5) ux+ 1) =ukx)+d,

where the integer d € 7. determines the homotopy class ¢ = [u].
Crit(E|¢) is always diffeomorphic to S (see the proof of Proposition 2.7),
so that the Euler characteristic vanishes. Equation (1.1) for u with a
constant, non-zero vector field F reduces to

Uy+c=0 , ¢c#0

which has no solutions at all satisfying (1.5).

Taking M' = Fy, a surface of genus g > 1 with constant negative
curvature, M arbitrary and ( the trivial homotopy class, we find that
Crit(E|c) consists precisely of the constant maps and hence its Euler
characteristic equals 2 — 2g. Thus according to Theorem 1.1, there is
a nullhomotopic solution u: M — F, for equation (1.1) for every
perturbation, and for generic perturbations there are at least 2g — 2
of them.

Taking M’ negatively curved, and M such that there exists a homotopy
class ¢ of maps from M to M' for which the image of m(M) in m(M')
under the induced map is not trivial or infinite cyclic, we find that Crit(E|:)
consists of one point [Ha, SY]. It follows that equation (1.1) has a solution
in the class ( for every perturbation F'.

We conclude this introduction with a few historical comments. Results of

the type stated in Theorem 1.1 have their origin in the fundamental work

of

Smale [Sm], where he proved the infinite dimensional version of Sard’s

theorem for Fredholm maps and observed that the (unoriented) cobordism
class of the preimage of a regular value of a proper Fredholm map is an
invariant directly generalizing the ordinary mod 2 degree. These results have
been extended, applied and refined in many contexts. For example, Tromba
[Tr] defined an integer degree for proper Fredholm vector fields of index zero
(with respect to a connection) on a Banach manifold. We choose a somewhat
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different, though also quite common approach using determinant line bundles
which allows us to deal with a larger class of vector fields. Thus §3 is of
expository nature and included mostly for the conveniznce of the reader. In
§4 we present a short and self-contained proof of formula (1.4). We remark
that it is implied by the main theorem in a recent paper by Cieliebak, Mundet
1 Riera and Salamon [CMS], where a framework for results of this sort is
developed in a much more general (and complicated) situation. Using their
work we arrived at an improved version of our original approach.

ACKNOWLEDGEMENTS. It is a pleasure to thank Dietmar Salamon, Sergei
Kuksin and Dan Burghelea for generously sharing their insights, as well
as Viktor Bangert for valuable discussions and Jirgen Jost for pointing out
Sampson’s paper [Sam].

2. NONDEGENERACY OF THE ENERGY FUNCTIONAL

Throughout this section we fix two closed Riemannian manifolds M and
M’ of dimensions n and n’, respectively, and denote points in them by x
and y, respectively. As always we assume that the sectional curvature of M
is nonpositive. Denote by x the smallest integer satisfying x > 2 4 %ﬁ’ and
let ¢ be a homotopy class of maps from M to M . It is a standard result
(see e.g. [Pa]) that for any k > k the space H**+? of maps of Sobolev class
H*? from M to M is a Hilbert manifold. Its tangent space at a smooth
map u: M — M’ is given by the space H*"?(u*TM') of H**?-sections of
the pull-back u*TM’ of the tangent bundle of M’. We denote the connected
component of H**+? of maps in the homotopy class ¢ by ’H&Hz) .

Consider the energy functional |

E(u) = % /M ||du||* dvol(x) .

Under our assumption on the curvature of M, for any homotopy class (
of maps from M to M’ the critical set of the restricton of E to ( is the
nonempty, connected, compact set of minima [ES, Ha, SY], which by elliptic
regularity consists of smooth maps.

For k > k as above and u € H%*?, we consider the scale of Hilbert
spaces

T,H*? = HP2(0 TM') — H W TM') < L2 TM') .
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The above embeddings are dense, and we have d,FE = —7(u) € HY(uw*TM"),
where E is now considered as a functional on H**+? . Furthermore, the oper-
ator V7r(u): H2(w*TM') —s H*(u*TM’) is the restriction of an unbounded
selfadjoint elliptic operator on L*(u*TM’) with domain H>(u*TM') (for an
explicit formula, compare Lemma 2.1 below). In particular, it has discrete,
nonnegative spectrum.

The goal of this section is to describe sufficient conditions on the homotopy
class ¢ of maps from M to M’ which ensure that the restriction E|s of the
energy functional to H(CHZ) has a nondegenerate critical set for all k > &
meaning that Crit(E|;) C ’H(CHz) is a closed C?-submanifold such that for
any u € Crit(E|;) we have

T,Crit(E|;) = Ker V7(u) (= Coker VT(u)).

We start by computing the second variation of the energy functional. Given
a 2-parameter family of maps u;,: M — M’ in HEFD | we write

8”9 t Ut
hkac.; Y [ d =2 =,
Os ls=0 peoan ot =0 w
By the definition of the tension field 7 we have
aE(“s,t)

ot 1:0: - /]\/I<T(us’0)’ 77[)€> dVOl()C) .

Hence for the second variation we obtain

O2E(uy,) 9
T@f’t (s,H=(0,0) - /M a<7—(us,0)v ¢s>|s:0 dVOl(x)

_ / (V7 (t00) - 90, 10} + (7(t0.0), (V2k0) - o) dvol(x).
M

Note that if u = upp is harmonic, i.e. 7(u) = 0, the second summand in the
last equation vanishes. We will have occasion to use the following coordinate
description of the Hessian of the energy at a harmonic map.

LEMMA 2.1. Let u: M —s M be a harmonic map between closed
Riemannian manifolds. Given two sections @, € C®u*TM'), the Hessian
H,(p,v) is of the form thu(go,w)dvol(x), where in local coordinates
x!,...,xX" of M, the density h, is given by

Ou

) — 0
2.1) h(, %) = ¢"(Vx.p, V) — g"(R E’S"W’a_b'
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Here R' denotes the curvature tensor of M', X; = %, V denotes the
covariant derivative along u, and ¢” is the inverse of the metric tensor g on

M. Equivalently, the quadratic form H, can be represented as

H, (o, ) = —/ (Jup, ) dvol(x),

M
where for any v € HETD the operator J, = Vr(v) on LXW*TM') is
selfadjoint and elliptic and is given in local coordinates by

1 i o Ov ov
2.2 vP = ; v ‘ —¢'R’ EYWER LW
(2.2) Jop \/gvx,(\/gg Vx ) — ¢"R( 5 P 9

The proof of this lemma is a standard computation (see e.g. Theorem 8.6.1
in [Jo]). Recall that, due to elliptic regularity theory, for any u € Crit(E) one
has Null(J,) C C*(u*TM"). Lemma 2.1 then yields the following well-known
result.

COROLLARY 2.2. Assume that M’ has nonpositive sectional curvature.
Then given a harmonic map u: M — M', in normal coordinates x',... x"
at any given x € M, every section ¢ € Null(J,) satisfies

(2.3) Vxp=0
and

ou ou
24 /—4 g =
(2.4) (R (55 0P, 5! = 0
for 1<i<n.

Proof.  According to (2.1), in normal coordinates ar a given point x € M
and for ¢ = ¢ € Null(J,) we have

n

- Ou u
(2.5) 0= (Vi Vi) + ) ~(R(5, 0, pil

i=1 i=1

As M’ has nonpositive sectional curvature, each of the terms in (2.5) is non-
negative and thus all have to vanish individually. [

We next obtain a useful characterization of the homoropy classes for which
the restriction of the energy is nondegenerate in our sense.
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COROLLARY 2.3. Assume that M' has nonpositive sectional curvature.
Then the restriction E|: of the energy functional to ’H(CH‘H) is nondegenerate
if and only if the set of its critical points Crit(E|:) is a closed finite-dimensional
C? -submanifold of ’H,(C“H) and for any u € Crit(E|;) we have

(2.6) dim(Null(J,))) < dim Crit(E|¢) .

REMARK 2.4. Note that if Crit(E|;) C H"T? is a C?- submanifold, one
has

(2.7) Null(J,) 2 T,Crit(E|¢)
for any u € Crit(E|;). Thus inequality (2.6) implies equality in (2.7).

Proof of Corollary 2.3. Clearly, the two stated conditions are necessary for
E|; to be nondegenerate. To see that they are also sufficient, note that for any
u € Crit(E|;) the operator J, is self-adjoint and has discrete spectrum. Hence
Null(J,)* N C®w*TM’) is an invariant subspace for J,, where Null(J,)*
denotes the orthogonal complement with respect to the I? inner product
defined on the space of L?-sections of u*TM’ . It then follows that J, is
non-degenerate if Null(J,) = T,Crit(E|;). In view of the above remark, this
holds if dim Null(J,) < dimCrit(E|¢). [

REMARK 2.5. Using elliptic regularity theory and the selfadjointness of J,
one verifies that for any homotopy class ¢ and for any k > & the restriction
of the energy E to Hg‘H) is nondegenerate if and only if the restriction of

E to ’H(CHH) is nondegenerate.

We now apply the criterion of Corollary 2.3 to several families of homotopy
classes of maps.

PROPOSITION 2.6. Assume that M' has nonpositive sectional curvature
and that  is the trivial homotopy class of maps from M to M', where M
is any closed Riemannian manifold. Then the restriction E|- of E to H(C'Hz)
is nondegenerate.

Proof. According to Hartman [Ha], zero is the only critical value of
the restriction of the energy functional to the trivial homotopy class. The
corresponding critical set consists precisely of the constant maps, so that
Crit(E|;) is a C?-submanifold of 7—[({”) diffeomorphic to M'.
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Let u: M — M’ be any constant map. According to Corollary 2.3, it
remains to show that dim Null(J,) < dimM’. Corollary 2.2 implies that any
© € Null(J,) satisfies Vy,p =0 for all 1 <i < n. This means that ¢ is a
parallel section of u*TM' = M x T,M’', where y = u(M). As a parallel section
is determined by its value at one point, the inequality dim Null(J,) < dim M’
follows. [

PROPOSITION 2.7.  Assume that M’ is a flat torus R”'/ A, i.e. the quotient
of flat R"” by a lattice A C R" of maximal rank, and that M is any closed
Riemannian manifold. Then, for any homotopy class ¢ of maps from M to
M, the restriction E|; of the energy functional to H(CKH) is nondegenerate.

Proof. By the work of Schoen and Yau [SY], Crit(E|;) is a compact
connected manifold, possibly with (Lipschitz) boundary, whenever the target
space M’ has nonpositive sectional curvature, and this manifold is immersed
into M’ by the evaluation map at a point. As the isometry group of any
n' —dimensional flat torus contains the n’'-dimensional subgroup of translations,
we see that for any homotopy class ¢ any u € Crit(E|;) is an interior point
and we have dimT7,Crit(E|;) > n’. In particular, Crif(E|;) is a compact
manifold without boundary of dimension #/. On the other hand, Corollary
2.2 again implies that ¢ € Null(J,) satisfies Vx.o =0 for all 1 <i < n,
which means that ¢ is a parallel section of the trivial bundle #*7TM’. Hence,
as in the proof of Proposition 2.6, dim Null(J,) < n’, which together with
Corollary 2.3 proves the claim. [

PROPOSITION 2.8. Assume that M has negative sectional curvature. Then
Jfor any homotopy class ¢ of maps from any closed Riemannian manifold M
to M’ the restriction E|; of the energy functional to HETHH) is nondegenerate.

Proof. For dimM = 0 the result is trivial, so we may assume dimM > 1.
Furthermore, for any homotopy class ¢, Crit(E|;) is a closed C?-submanifold
of H(C'“LZ) by [Ha].

So fix a non-trivial homotopy class ( (the trivial homotopy class was
already covered in Proposition 2.6) and a harmonic map u € Crit(E|:).
According to equation (2.3) of Corollary 2.2, in normal coordinates at a given
point x € M, for any ¢ € Null(J,) and all 1 <i<n we have

0
%@0(16)7 () = 2(Vx,p(x), p(x)) = 0.

This shows that ||o(x)|| is a constant function on M. By equation (2.4) we
also know that
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., Ou ou,

for all 1 <i<n. We now consider two cases.

CASE 1. Suppose there exist a map uy € Crit(E|¢) and a point xo € M
with dimug.(T,,M) > 2. Since M’ has negative sectional curvature, we
conclude from equation (2.8) considered at the point xy and with u# = uy that
any ¢ € Null(J,,) satisfies ¢(xp) = 0. Hence, as ||¢(x)|| is a constant function
on M, we conclude that Null(J,,) = {0}. On the other hand, Hartman [Ha,
Cor. to Thm. H] showed that uy is the only harmonic map in this homotopy
class. Now Corollary 2.3 proves the claim in this first case.

CASE 2. Suppose that for all u € Crit(E|;) we have ranku, < 1
everywhere on M. By Proposition 2.9 below, u# can be written as u = yog,
where g: M — S' is smooth and ~: S' — M’ is a parametrization of
a closed geodesic proportional to arc length. Rotating the geodesic gives a
I-parameter family u,(x) = v(g(x) + s) of harmonic maps homotopic to u,
so that dim7,Crit(E|c) > 1. On the other hand, any ¢ € Null(J,) satisfies
||| = const, and equation (2.8) yields p(x) € u,(T.M) for the open dense
set of points x € M where ranku, = 1. Thus we find dim Null(J,)) < 1, so
that the conclusion of the proposition again follows from Corollary 2.3. [

To finish the proof of the last proposition, we need the following result
(cf. also assertion (I) in [Ha]).

PROPOSITION 2.9. Assume that u: M — M’ is a nonconstant harmonic
map with ranku, < 1 everywhere on M. Then there exist a closed geodesic
in M’ with parametrization ~y: S' — M’ proportional to arc length and a
smooth surjective map g: M — S' such that u=-~og.

Proof. Sampson [Sam, Theorem 3] proved that the image of u coincides
with the image of a closed geodesic. There is no problem in defining g when
this geodesic has no self-intersections. In the general case, we fix a degree
1 parametrization v: S' — M’ of the geodesic proportional to arc length.
Note that g can be continuously defined on

Mg = {x € M| rankd,u = 1},

because for points x € M, the value u(x) together with the tangent line
d.u(TM) C T,yM' uniquely determine the parameter s € S' with
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Y(s) = u(x)
§(s) € du(TM).

Clearly, g can also be continuously extended to those x € My, = M\ M,
which map to simple points of ~(S'), as there we only have one choice for
g(x). It remains to define g at points xyp € Mj;,, for which u(xg) is a crossing
point of the geodesic 7, i.e. there are distinct points si,...,s; in S', k> 2,
so that

Y N uxo) = {s1,...,s+ C S".

Choose disjoint open neighborhoods Vi,...,V; of the s; in S', and set
U; := (g|Mmg)‘1(Vl-). As M., 18 open and g, 1S continuous, the U; are
disjoint open sets in M, and if U is a small enough ball in M around x,, then
the U; cover UNM,,,. According to [Ya], the Hausdorff codimension of M,
satisfies codimp(M;;,4) > 2 for any non-constant harmonic map u, so that in
particular U N M,., is connected by standard dimension theory (cf. [HW]).
This implies that U N M,,, is contained in one of the U;, and so setting
g(xp) = s; makes g continuous at xy. Thus we can extend g continuously to
all of M, and as u =yog, u is smooth and v is a local diffeomorphism, it
follows that g is smooth as well.  []

As a final result in this section, we prove that the set of homotopy classes
for which the energy functional is nondegenerate is closed under products in
the following sense.

PROPOSITION 2.10. For i € {1,2}, let M| be manifolds with nonpositive

sectional curvature with dimensions n., and let (; be homotopy classes of
maps from M to M, such that the restrictions E\., of the energy to 7{2'_{#2)

are nondegenerate, where r; is the smallest integer satisfying r; > 2 + "j;"" i
Then for the homotopy class ( = ¢ x ¢ of maps from M to M| x M)
the restriction E|: of the energy functional to H?H) is also nondegenerate,

n+nj+n,
—

where kK is the smallest integer satisfying rk > 2 +

Proof. Maps u: M — M| x M} in Héfﬁz) are in one-to-one correspon-
dence with pairs (uy,u;) € ”H(C'T’“Lz) X %2§+2). A trivial calculation shows that
E(u) = E(u1) + E(up), from which it is clear that

Crit(E|c) = Crit(Ey¢,) x Crit(E|¢,) .
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As uw*T(M] x M5) = ui TM| ®u3TM),, any o € Null(J,) splits as ¢ = | + 2
with ¢; € Null(J,), and so the claim follows from Corollary 2.3 and
Remark 2.5. []

3. FREDHOLM ARGUMENT

There 1s a general setting for studying maps which satisfy some elliptic
systems of partial differential equations. The set of solutions to the equations
can often be expressed as the zero locus of some section in a Hilbert or
Banach bundle over a manifold of maps in a considered class. If this section
is transverse to the zero section of the bundle, the space of solutions is a
manifold. However, for many interesting problems, this section is not transverse
to the zero section, so that the solution set is not as well behaved. In these
cases one wishes to find suitable perturbations of the original elliptic system
for which the solution space still is a manifold of the expected dimension.
Then one is faced with the problem of proving that the essential properties of
the solution set of the generically perturbed equation, such as its cobordism
class, are as independent as possible of the choice of perturbation.

In this paper, our point of view is slightly different, as we are interested in
the solvability of the perturbed harmonic map equations, where the solution
set in the unperturbed case is rather well understood. Nevertheless the methods
outlined above apply. The purpose of this section is to give a self-contained
account of a fairly general argument, which is sufficient for our purposes but
at the same time general enough to be useful in other contexts. In §5 we
verify that the assumptions made here are satisfied in our setting.

Let H be a Hilbert manifold, possibly with boundary, and B a Banach
manifold without boundary, both of class C" with r > 1. We denote elements
of H and B by x and y, respectively. Let £ — H x B be a Hilbert space
bundle of class C", endowed with a connection V. We will use &, for the
fibre of the bundle £ above (x,y) € H x B, and Vs and VZs for the
restrictions of Vs to TH and T8, respectively, where s: H x B — £ is a
section.

Let s: H x B— £ be a C'-section with 1 <[ <r. We say that s has
property (R) if

(R) (VBs)x,y: T,B — &, has a right inverse for all (x,y) € s~H0).

Similarly, we say that the section s has the Fredholm property (%) if
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(Fi) (VHs)x,y: T H — &,y is Fredholm of index i for all (x,y) € H x B.

A section s with property (F;) is said to have property () if the determinant
line bundle

(0) Det(Vs) — H x B is a trivial line bundle.

A detailed discussion of the determinant line bundle of a Fredholm bundle map
appears in Appendix A. We record the first implications of these conditions
in

PROPOSITION 3.1. Let s: H x B — £ be a C'-section of the C"-Hilbert
space bundle £ with 1 <1 <r as above.

1. If s satisfies (R), then s~'(0) is a C'-Banach submanifold of H x B with
boundary s~ (0)N(OH x B), whose tangent space at a point (x,y) € s~(0)
is Tx,ys_l(()) = Ker (Vs)y,y.

2. If. in addition, s satisfies (F;), then the restriction w: s~ '(0) — B of
the projection of H X B to the second factor is a Fredholm map with
index m = index V*'s. Moreover, y € B is a regular value of © if and
only if (V*s),, is onto for all (x,y) € s~'(0).

3. Under the assumptions of (2), for any regular value y € B of © and
Tas—1(0), the set 7~ Yy) C s71(0) is a manifold of ciass C' with boundary
7 ') N Os~(0) and dimension dim7~'(y) = index V7is.

4. If, in addition to the assumptions in (2), the section s satisfies (O), then a
choice of trivialization of Det(Ns) over s~1(0) determines an orientation
of 7=Y(y) for every regular value y € B of .

Proof. (1) The existence of a right inverse for (V3 S)x,y Whenever
(x,y) € s~1(0) guarantees that (Vs)y,y, as well as its restriction to T ,(OH x B)
for points (x,y) € s7'(0) N (OH x B), have right inverses. The result now
follows from a standard application of the implicit function theorem (cf. [La]).

(2) We need to show that the differential of 7 at any point of s~!(0) is
Fredholm of the claimed index. So let (x,y) € s~'(0) be fixed. We first want
to describe Tx7),s”1(0) more explicitly. Denoting by R: £,, — T, B the right
inverse of V5s (here and below we suppress the base point (x,y) from the
notation for the maps involved), we split

TXH:HEBHJ_a

where H = Ker Vs, and
T,B=B®B,
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where B = R((Im V7ts)1), and B¢ denotes a closed complement of B. The
latter exists since B is finite dimensional. Now note that Tx’ys“l(O) = Ker Vs
consists of elements (n,§) € T,'H x T,B satisfying

(3.1 Vs - n+VBs.£=0.

We see that (3.1) has no solution if £ € B\ {0}. On the other hand, writing
n=n®n" and £ =¢& & ¢" according to the splittings above, any &’ € B¢
determines unique elements 7" € H+ and ¢’ € B by

VHS"I']” _ —POVBS'é-"

and
¢ = -RoP+oVPs.¢",

where P: &, — ImV*s and P+: £, — (ImV*s)1 are the orthogonal
projections. Hence given (), &) € H & B¢, the element

(o +n0"(E"), '€ +¢&") e TTH X T,B

solves (3.1). Moreover, one can identify B with a complement of H x {0}
in T,,s~'(0), so that

(3.2) Toys '(0)= H® B .

Using this identification one reads off the kernel and cokernel of the differential
dm: Tx,ys”'(O) — I,B=B® B as

Kerdm = H, Cokerdm = B.

By assumption (F;), both H = Ker Vs and B = R((Im Vts)1) are finite
dimensional. Since R: (Im V*s)t — B is in fact a linear isomorphism, we
find that B = Coker (V%s)x,y and so drm is a Fredholm operator of the same
index as V*s, which was to be proven. Clearly y € B is a regular value of
7 if and only if B = {0} for all (x,y) € 7~ !(y), which in turn is equivalent
to (V*s),, being surjective for all (x,y) € s1(0).

(3) That 7= !(y) is a manifold of class C! with boundary 7~'(y)Nds—'(0)
and tangent space Kerdr is again a standard corollary of the implicit function
theorem. Since we are at a regular value of m, the cokernel vanishes and thus
the dimension of the kernel equals the index of the differential dn, which
was computed in (2).

(4) In the proof of (2) we saw that, given any regular value y € B of
m, we have Ker(VHs)W = Kerdm,, and Coker(VHs)x,y = {0} for any
(x,y) € 7~ 1(y). It then follows from the definition of the determinant line
bundle that
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Det(V ) n-10y) = A" (Kerdm)r-1y = A (T~ (y)).

Thus a choice of trivialization of the determinant line bundle of V*s gives
rise to an orientation of the manifold 7—'(y). [J

In a first application of Proposition 3.1, we think of ‘H as the general space
of maps on which we study our system of equations and B as the space of
perturbations. The perturbed equation is then written as s = 0. In this context,
(R) says that we have chosen the perturbations sufficiently general and (F;)
just says that the perturbed systems have a Fredholm linearization. For the
third part of Proposition 3.1 to be useful, we need the additional assumption

(P) 7: s '(0) — B is proper.

It ensures in particular that the inverse image 7~!(y) of any y € B is compact.

Our next goal is to show that under the assumptions (R), (F), (O) and
(P) the oriented cobordism class of the manifold 7~ !(y) depends only on
the path component of 3 in which the regular value y lies. This means that,
given any two regular values yp and y; of 7 in the same path component,
we have to construct a compact oriented manifold of dimension i+ 1 whose
oriented boundary is given by the difference of the oriented manifolds 7 !(yy)
and 7~ !(y1). To this end, we will apply Proposition 3.1 in a slightly different
setting. Namely, let two regular values yy,y; € B of 7 be given. As 7 is
proper, the set of regular values is open, so that we can find open disks U
and U, containing yo and y; and consisting of regular values. We introduce
the product Hilbert manifold H=Hx [0, 1] and the Banach manifold without
boundary N

B:= {y € C'([0,1],B) | 7(0) € Uy,~(1) € U;}

where 1 </ <r as before. The property that the paths in B need not have
fixed endpoints will turn out to be convenient later. Note that if yy and y; are
in the same path component of B, then B is non-empty. There is a canonical
map

HxB — HxB

1,7 = (D).
We denote by £ — H xB the pull-back of & under this map, with
fiber &~ = Ev~nw at the point (x,7,v) € H x B. It is endowed with a
connection V induced from V. Let § be the pull-back of the section s, 1.e.
5(x,t,v) = s(x,v(f)), which is again of class C' by our choice of B. We
denote by V5 and V55 the restrictions of V5 to TH and TB respectively.
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Finally, we denote the restriction to §~'(0) of the projection of H x B to
B by 7. The following proposition shows that § inherits various properties
from s.

PROPOSITION 3.2. In the situation described above, properties (R),(F;)
and (O) for s imply properties (R), (Fir1) and (O) for 3, respectively.
Property (P) for w implies property (P) for 7.

Proof. Fix (x,1,7) € H x B and observe that for (,0) € T,H x T,[0, 1]
we have

(V8 (0,0) = Vs -1+ 0955 -4 € Exygy.-

In particular, (6715)%,,7 1s an extension of (V'Hs)x,w) in the sense of Lemma
A.1 and Corollary A.6, from which it follows that if the section s satisfies
(Fi) (resp. (F;) and (Q)), then § satisfies (F;1;) (resp. (Fiy1) and (O)).
Now we turn to the construction of a right inverse. Again fix (x,7,v) €
571(0). As s is assumed to have property (R), there exists a right inverse
Revy: Exniy — TyB of (VPs), ) and we are supposed to construct a

right inverse INQMN: Ex iy — Tvg for (65§)x7m. Notice that TWZFS’V consists
of C!-sections of the pull-back bundle v*TB'). As [0, 1] is contractible, we
may assume that a trivialization of the form

(3.3) Y(TB) = [0,1] x TyB
has been chosen. Using this trivialization, we identify
T,B = ([0, 11, Ty B)
and define Rr,w: Eutiy — Tvg as the constant section
(Rerr ((A) 7= Ry () for /' € [0, 1]
with respect to the trivialization. One easily checks that
(V)10 Ruay (1) = (V2 0 Runio (1) = 1.

SO ﬁxm is indeed the required inverse.
Finally, it remains to verify that property (P) for 7 implies property (P)
for 7. Given a compact subset K C B, the corresponding subset

K:={y@t)|veK,re[0,1]}CB

") This would not be true if B consisted of paths with fixed endpoints.
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is also compact. So, using the assumption that 7 is proper, we conclude that
7~ (K) C H x B and therefore also its projection K onto # are compact.
Hence

FUK)C K x[0,1] xK

is a closed subset of a compact set, which proves the claim.  []

REMARK 3.3. In the proof we have seen that V75 is an extension of
V™s. Hence, according to Corollary A.6, we need to fix a trivialization for
T10,1] in order to identify trivializations of Det(V's) and Det(\?ﬂi). We
choose it to be the standard one given by %

We are now ready to state the main result of this section:

THEOREM 3.4. Suppose H is a Hilbert manifold and B is a pathconnected
Banach manifold, both of class C" (r > 1) and without boundary, and suppose
that € — H x B is a C"-Hilbert space bundle. Assume that s: H xB — &€
is a Cl-section (1 <[ < r) such that assumptions (R),(F;) and (P) are
satisfied. Then the following statements are true :

1. The inverse image s~'(0) C H x B is a C'-Banacih submanifold without
boundary.

2. The inverse image 7w~ '(y) of any regular value y of the projection map
7: s 0) — B is a closed C'-manifold of dimension i = index V*s.

3. The cobordism class of 7~ '(y) is independent of the choice of the regular
value y € B.

4. Suppose in addition that s satisfies (O) and that some trivialization of
Det(VHs) over s71(0) has been fixed. Then the manifold 7= (y) is oriented
and its oriented cobordism class D is independent of the choice of the
regular value y € B.

Proof. Parts (1) and (2) of the statement were already proved in Proposition
3.1. To prove (3), let yg,y, € B be two regular values of 7, and choose open
disk neighborhoods U, and U, consisting of regular values as above. Our first
claim is that the preimages of any two points y,y in (J; are cobordant (and
similarly for U;). To see this, connect y and y' by a differentiable, embedded
path ~: [0,1] — Up. As Uy consists of regular values for 7 only, one can
see directly that 7~ !(~([0, 1])) is diffeomorphic to the product 7~ I(y)x [0, 1],
so statements (3) and (4) are true for all pairs of poinis v,y € Up.

Due to this observation it is sufficient to produce a cobordism between
the preimages under 7w of some points y € Uy and y' € U,. Here we use
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the construction of the manifold B as above and combine Proposition 3.2
with Proposition 3.1 to see that any common regular value ~y € B of # and
To5-10) gives rise to a compact oriented manifold 7~ (+) with boundary
7 1(v) N d5-'(0), of dimension i+ 1 and class C'. The existence of a
common regular value v of 7 and Tg;5-1() is guaranteed by property (P)
for ® (which by Proposition 3.2 follows from our assumption of property
(P) for m), since together with the Sard-Smale Theorem it implies that the
sets of regular values of 7 and 75-1() are open and dense. We claim that
7~ 1(v) is a cobordism between 7 '(7(0)) and 7 '(y(1)).

To prove this claim, recall first that Proposition 3.1 shows that the boundary
of 771(v) is given by

07 (7)) =7\ (7) N (OH x B).

As H has no boundary, OH = H x 9]0, 1] is given as a disjoint union
of H x {0} and H x {1}. Observe also that the canonical map identifies
H x {1} x {7} C H x B with H x {y(n} C H x B. Putting things together,
we see that the boundary of 7~ '(v) is canonically identified as

# N x B =500 (1 x {0} x (v x {1} x {1})
= 0N (Hx O} # > 1))
= ' (yO) | |7 (1))

Finally, to prove (4), we need to consider orientations. Proposition 3.1(4)
asserts that the trivialization of Det(V7'is) gives rise to an orientation of
7~ '(y) for any regular value y € B. Now consider the path ~ between
regular values y € U and y' € U; constructed in the proof of (3) above. We
claim that under the additional assumption in (4), 7~ '() is in fact an oriented
cobordism between the oriented manifolds 7~!(y) and 7 !(y’). Recall that
by Proposition 3.2 the bundle Det(%”ﬁ) over §7'(0) inherits a trivialization
from those of Det(V7's) and T[0, 1], which in turn gives rise to an orientation
of # (). The latter induces an orientation on 97 '(7) in the usual way,
meaning that a positively oriented basis for the boundary is one which by
adding an outward normal vector in the last slot turns into a positively oriented
basis according to the given orientation.
Notice that the projection of

71y = {67 | (@) € s71(0)}

to [0,1] is a submersion near t = 0 and ¢ = 1, as v maps neighborhoods
of the boundary of [0, 1] into the open sets U and U; consisting of regular
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values for m. It follows that we can identify the normal direction to the
boundary of 7 !(y) with the g—direction via this projection. Now at the
right end, r = 1, % is an outward pointing normal, so by Remark 3.3
the orientation for 7~'(y') as a boundary piece of 7'(y) agrees with its
orientation coming from the trivialization of Det(V's). Conversely, at the left
end, t = 0, % is an inward pointing normal, so the orientation for w*‘(y)
as a boundary piece of 7~!(v) is opposite to its orientation coming from the

trivialization of Det(VHs). In other words, we see that, as oriented manifolds,
7 =70 -7,

which was to be proven.  []

COROLLARY 3.5. If under the assumptions of Theorem 3.4 the cobordism
class D is nontrivial, then n='(y) # @ for all y € B.

Proof. The assertion is true for the dense set of regular values of 7.
If y € B is arbitrary, let y; — y be a sequence of regular values and
m; € 7~ '(y;) a sequence of preimages. As {y;} U{y} is compact and 7 is
proper, a subsequence of the m; converges to some m € 7~ !(y). [

The following example serves to illustrate the results of this section in a
very simple case.

EXAMPLE 3.6. Let H be a finite-dimensional, closed, not necessarily
orientable Riemannian manifold, and let B be the space of vector fields on
H (of some prescribed Sobolev class which is inessential here). We denote
the pull back of TH over H x B by £. The bundle £ admits the tautological
section o: H x B — &£ given by

o(x, V)= V(x) € &y = T.H.

It is easy to see that o satisfies all the assumptions of Theorem 3.4. The
map (V5 o)xv 1s obviously surjective, so we can always find a right inverse,
which means that ¢ has property (R). As (VHO')X,V = (VV), is the ordinary
covariant derivative of the vector field V, which is a lincar endomorphism of
the finite dimensional vector space 7,7, it is clearly Fredholm of index 0,
so o has property (Fy). Property (P) for o follows from the compactness
of H. Finally, H x B has H x {0} as a deformation retract, and we have,
canonically,

Det(V0) 35 g0y = A" TH @ A" TH ~ R,
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where R denotes the trivial line bundle over H x {0} and the bundle
isomorphism uses the inner product. Thus o also satisfies condition (O).
To fix a trivialization, we define a section po: H x {0} — Det(VHJ)mX{O}
by setting

MO(X) - (61 Aor e en) & (€1 ARERSA en) € AmaxTfo b2 AmaxszH )

which is clearly independent of the choice of the orthonormal basis {ej,...,e,}
of T,H and varies smoothly with x € H.
Notice that V € B is a regular value for the projection

70 N0)— B

if and only if the vector field V is transverse to the zero section of TH.
This is equivalent to the fact that (VV), is a linear isomorphism of T, H
whenever V(x) = 0. According to Theorem 3.4, a choice of trivialization of
Det(Vo) gives rise to an orientation of the 0-dimensional manifold v—10),
i.e. an element sgnx € {£1} for each x € V-1(0). As should be expected,
the equality

(3.4) > sgnx = x(H)
xevV—10)
holds, where () is the Euler characteristic of H.

To prove equation (3.4), one has to understand continuous sections of the
determinant line bundle. As we point out in Corollary A.6, the determinant
line bundle of a family of Fredholm maps is canonically isomorphic to that of
any Fredholm extension defined on the direct sum of the original bundle with
some oriented finite-dimensional bundle . In the case at hand, we choose
F =THPTH (which is canonically oriented even when H is not orientable)
and extend the map

D=V"o: TH — TH

to a surjective Fredholm bundle map
D:TH®(TH®TH) — TH
(v, , 0" — Dv =

Note that this is just a version of Example A.7 depending on the additional
parameter x € H. In particular, we may consider the section

w: H x B— Det(V'0)

constructed by extension of the above py as in that example. Then, according
to equation (A.8) of Example A.7, for any vector field V transverse to the
zero section and any zero x € H of V we have
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ey = det(Vo), )1 @ 1 = det(VV))1 @ 1.

As sgnx is defined to be the sign of the coefficient of 1 ® 1 in this formula,
we see that it agrees with the index of the vector field V at the isolated zero
x € H. Now (3.4) follows from the Poincaré-Hopf Theorem. In the context
of this example, Corollary 3.5 expresses the familiar fact that on a manifold
with non-zero Euler characteristic every vector field has at least one zero.

4. COUNTING FORMULA

In this section, we continue to develop our general framework in the
particular case of a Fredholm section of index 0. Then, under the assumptions
of Theorem 3.4, the inverse image of a regular value of the projection map
7m: s~ 1(0) — B is an oriented zero-dimensional manifold, whose oriented
cobordism class D was proven to be independent of the regular value.
Recall that integration of the constant function 1 identifies the set of oriented
cobordism classes of oriented O-dimensional manifolds with Z, so we will
think of D as an integer.

To state our result we need to introduce the notion o a section of gradient
type. As in the previous section, we start with the Hilbert space bundle
& — H x B over the product of the Hilbert manifold H with the Banach
manifold 5. We now further assume that we are given enother Hilbert bundle
&' — H so that for any x € H we have the scale of Hilbert spaces

4.1 TH — Ep— &

where b € B is some given point. Furthermore assume 7,H is dense in &/
for any x € H. Extending the inner product (-,-)" in &£ to a dual pairing
(-,-) between T\H, (T\H)* and &, (E.5)* one obtairs the scale of Hilbert
spaces

(4.2) Ec 2 (E) = (Eep)” = (TLH)™

In particular, T\H < (£, )* densely.

We say that the section s(-,b): H — &3 (py is of gradient type with
respect to the Hilbert scales (4.1) if there exists a C* functional £: X — R
such that for any x € H, the differential d,L: T,H — R extends to a
bounded linear functional grad,L: (£,;)* — R, so that

grad, L = s(x,b) VxeH.
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Moreover, we say that the critical set
C=Critl(L):={xe€H|dL =0}

of £ is nondegenerate if C is a closed (so in particular finite dimensional)
C?— manifold so that, for any x € C, zero is isolated in the spectrum of the
Hessian Vd,L: T\H — &, and we have

4.3) KerVd,L = T,C = Coker Vd, L .

This definition is modelled on the corresponding nondegeneracy condition for
the energy functional in § 2. We remark that if a section s(-,b): H — Erx (b}
is of gradient type for some functional £ with nondegenerate critical set, then

Det(V™s)cx 5y = A™TC @ A™TC,

which is canonically trivial. If the section s: H x B — £ satisfies condition
(O) of §3, i.e. Det(Vs) — H x B is trivial, we will refer to the trivialization
whose restriction to C x {b} coincides with the above canonical one as the
preferred trivialization of Det(Vis).

Our goal in this section is to prove

THEOREM 4.1. Suppose H is a Hilbert manifold and B is a pathconnected
Banach manifold, both of class C" (r > 3) and without boundary, and suppose
that £ — H x B is a C"-Hilbert space bundle. Assume that s: HxB — £
is a C'-section (3 <[ < r) satisfying assumptions (R),(FR),(O) and (P)
of §3. Further assume that for some b € B, the restriction of s to H x {b} is
of gradient type with respect to the scale of Hilbert bundles TH — £, — &',
i.e. s(x,b) = grad, L where L: H — R is a C' -functional whose critical
set Crit(L) consists of a nondegenerate minimum.

Then the oriented cobordism class D € 71 of the inverse image of a
regular value of w: s~1(0) — B with respect to the preferred trivialization
of Det(N™s) is given by the Euler characteristic of Crit(L), i.e.

4.4) D = x(Crit(L)) .

The proof of Theorem 4.1 is based on ideas from [CMS], where a vastly
more general statement is proven. As the situation at hand is much more
elementary, we prefer to give a shorter, more direct argument. As a first step
we show

LEMMA 4.2. Under the assumptions of Theorem 4.1, there exist a
neighborhood U of Crit(L) and a C?-family of perturbations L,: H — R
of L, 0 <1t <1, with gradient grad . L,: T,H — &, such that
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1. £, = L outside U for all t €10,1];

2. for t < 1/2, we have L, = L

3. Crit(L;) is compact for all t € [0,1], and Crit(L)) consists of finitely
many Morse critical points of finite index;

4. for any x € Crit(L) and t € [0,1], Vgrad L and Vgrad L, agree on
T.Crit(L)" C T H, where the orthogonal complement is taken with respect
to the inner product on T H.

Proof. Denote by mw: v — Crit(L) the normal bundle of Crit(L) C H,
whose fiber at x € Crit(L) is given by T,Crit(£)* C T,H. Following Meyer’s
argument in [Me] for the C°-case, under our conditions one finds an open
neighborhood U O Crit(£) and a C? parametrization ¢: v(§) — U of U by
a 0-neighborhood v(9) of the zero section in v, such that in these coordinates
on U the functional £ has the form

L(p(v)) = L(Crit(L)) + |]v]* .

Then, as in the finite-dimensional situation, one may pick a smooth Morse
function f: Crit(L) — R and consider the functional

Ae(v) = L) +ep(||v]]) - flm()),

where p: R — [0, 1] is a bump function which is equal to 1 for # < §/4
and equal to zero for r > §/2, so that \. agrees with £ outside {/. Note
also that, when restricted to the J/4-ball in the fiber of v over some point
x € Crit(L), £ and ). differ only by a constant.

For all € > 0 sufficiently small, the functional A. has a finite number
of Morse critical points, located on Crif(L) and corresponding to the critical
points of f. The index of such a critical point equals its index as a critical
point for f. The family £, is constructed by reparametrizing the line between
L =Ly and L£L; = \. for a fixed, sufficiently small £ >0. []

Now we fix a regular value y € B of m and a C? path v: [-1,0] — B
with y(—1) =y and ~(r) = b for —1/2 < < 0. We define the C? family
{S:}ier—1,11 of Fredholm sections S;: H — & by

s(x,y(r)) for —1<t<0
4.5) Si(x) =
gradl, for0<¢r<1,
where L, is the family of functionals constructed in Lemma 4.2. We will
denote S+, by S+ . By the property (P) for the section s (see the assumption
in Theorem 4.1), S, 1(0) is compact for any —1 < t < 0 whereas for
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0<tr <1, S,_](()) is compact by part (3) of Lemma 4.2. As y is a
regular value of 7, 8:1(0) is a compact, oriented 0-dimensional manifold.
The same is true by construction for 8;1(0). As St_l(O) C S L) for
all + > 0, the preferred trivialization of the determinant line bundle of
Vs over H x B induces a trivialization of Dex(VS,) over S, 1(0) for any
—1 <t <1 which in turn induces together with the standard trivialization of
the tangent space 7[—1,1] a trivialization of Det(VS), again referred to as
the preferred trivialization. In particular, 8;1(0) inherits an orientation from
this trivialization of Det(VS,).

LEMMA 4.3. In the above situation, the oriented cobordism class D' of
8;1(0) is given by the Euler characteristic of Crit(L),

D' = x(Crit(L)).

Proof. As for any 0 <1 <1, S,‘I(O) - S(;I(O) = Crit(L) =: C, it is
enough to restrict our attention to what happens on this set in order to
understand the orientation of S;](O). Recall that £: H — R is assumed to
have a nondegenerate minimum, which implies that

TC = Ker (VSy)|c = Coker (VSy)|c .

Part (4) of Lemma 4.2 asserts that for x € C and 0 <t <1, (VS), differs
from (VSp), only on T,C, where it is given by a suitable multiple of the
covariant derivative of the gradient of the Morse function f: C — R used in
the proof of Lemma 4.2. Thus we are back in a finite dimensional situation
and we may argue as in Example 3.6 to see that

D' = Z sgn(det(V grad f)) = Z ind,(f) = x(C). [

PECritf) peCrit(f)

Note that, alternatively, the family S;: H — £ of Fredholm sections of
index 0 may be viewed as a Fredholm section S: H x[—1,1] — £ of index
1. As VS is an extension of VS, in the sense of Corollary A.6, we see
that the canonical trivialization of the tangent bundle T[—1, 1] of the interval
[—1,1] gives rise to an isomorphism Det(VS,) = Det(VS).

In view of Lemma 4.3, to show Theorem 4.1 it remains to prove that the
oriented manifolds S~'(0) and 8;1(0) are orientedly cobordant. To this end,
we first construct, following [CMS], a so called finite-dimensional reduction
of the problem. A standard finite-dimensional transversality argument will then
yield the required cobordism.
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LEMMA 4.4. Let T:H x[—1,1] — & be a Fredholm section such that
T-Y0) c H x [—1,1] is compact. Then there exist a positive integer N € N
and a bundle map

RY — ¢,
where BN — H is the trivial bundle, such that
(4.6) Ep =Im(VT)y, +ImI,
whenever (x,t) € T'(0).

Proof. Let (xo,%) € T7'(0) be given. As (VT )y is Fredholm,
its cokernel is finite-dimensional. Hence there exist some positive integer
L = L(xy,%) and a map ©: RE — £ . such that

0,00
ng’tO = Im (VT)X()J() + Im©®.

Given a small neighborhood &/ C H x [—1,1] of (x,%), we may use a
trivialization of &, to extend © to a family of maps O, : R — &, with
(x,1) € U. As the set of surjective Fredholm operators is open, we may shrink
U in such a way that

gx,t = Im (VT)x,t + Im ®x,t

for all (x,7) € Y. By compactness, we find finitely many of these open sets
{Uy, ..., U} that cover T'(0). Set R¥ = RN @--- @ R>. Using a partition
of unity {p;} we may construct the required map T': BV — & as

Tei(w) =Y pilx, 6L (pri(v)) ,
i=l
where pr;: RY — R% is the obvious projection. [
Applying Lemma 4.4 to our Fredholm section S: H x [-1,1] — &
defined in (4.5), we obtain a finite dimensional oriented Hilbert space RV

and the family of maps T, ,. Following [CMS, Prop. 7.7], for 6 > 0 and any
neighborhood U C H x [—1,1] of S~1(0) we consider the set

H=HU,E) = {(x,t,v) €U x RV | S(x,1) = T ((v), ||v]| < &},

and the map o: H — R given by o(x,t,v) = v.
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LEMMA 4.5. With the notation just described, for a sufficiently small

neighbourhood U of S~Y(0) and a sufficiently small & > 0,

1. H is an (N + 1)-dimensional manifold with boundary 0H = 0_H\10, H,
where OLH is contained in H x {&1} x RY, respectively,

2. the preferred trivialization of Det(NS) - see the definition before Lemma
4.3 - gives rise to an orientation of H, and

3. S710) x {0} = o7 1(0).

4. ol|on is transverse to zero.

5. The O-dimensional compact manifold (7|5,i,(0), with the orientation in-
duced from those of OH and RN, is orientedly diffeomorphic to
ST 0)u-8210).

Proof. To prove (1), note that H is the zero set of the section S—1I" of the
bundle £ — H x[—1,1]xRY. As on the boundary of H x[—1, 1] the section
S itself is transverse to zero, we can choose I/ and ¢ small enough so that
the restriction of S—T" to (U x B(0,8)N(H x {£1}) x RY is also transverse
to zero, which proves (1) for boundary points of H. Furthermore, I" was
constructed to make S — I transverse to the zero section on S~'(0) x {0},
so by the compactness of S~!(0), for sufficiently small / and &, the section
S —T is transverse to the zero section for all (x,z,v) € U x B(0, ). It follows
that, with this choice of ¢/ and 0, H is a manifold of dimension equal to
the Fredhom index of & —I', which is N + 1, and (1) is proven.

As V(S — D)y is an extension of VS, ,, we see from Corollary A.6
that Det(V(S — )|y = Det(VS)|y . For points in (S — )~1(0) the cokernel
of V(S —T) is trivial and the kernel equals the tangent space of H, so that
assertion (2) follows. Part (3) is a direct consequence of the definitions.

To prove (4), it is enough to show injectivity of dolsy, because
dim OH = N. Note first that for p = (x, +1,0) € 0H we have

T,0H = {(p,0) € T,H x RY | (VE)u(9) = Ty 11(w)} .
As d(o|om)p(p, w) = w, we see that
@.7) Kerd(olom)y = {(,0) € T,0H} = Ker (VS1), x {0}

But as S+ are Fredholm sections of index O which are transverse to zero,
Ker(VS4), =0, hence Kerd(o|sn), is trivial for all p € o~ 1(0), and (4) is
proven.

Now (5) follows from (2), (3) and (4) and the use of the standard
trivialization of the tangent bundle 7[—1, 1] in the isomorphism of Det(VS)
and Det(VS). [
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The last statement of Lemma 4.5 shows, together with the preceeding
discussion, that in order to prove Theorem 4.1 it suffices to show that a|5[§(0)
1s orientedly nullcobordant. This is a consequence of the following standard
finite-dimensional transversality statement applied to o :

LEMMA 4.6. Let K be a possibly noncompact (N+r)-dimensional oriented
manifold with boundary and let 7: K — RN be a differentiable map. Suppose
that Tlgx is transverse to 0, and that 77'(0) is compact. Then there is a
perturbation 7': K — RN of 1 such that

1. 7/ =7 in a neighborhood of OK.
2. 77N0) is compact.
3. 7' is transverse to 0.

It follows that 7’ _1(0) is an r-dimensional compact oriented submanifold of
K with 9(r'~'(0)) = 7' ,x(0) = T|54(0). In particular, T|;1(0) is orientedly
nullcobordant.

Sketch of Proof. As 77'(0) is compact and 7|gx is transverse to 0, the
set of points in K where 7 is not transverse to 0 admits an open neighborhood
whose closure is compact and does not intersect 0K . It is sufficient to perturb 7
on this neighborhood. The map 7’ is then obtained by standard arguments. [

5. APPLICATION TO PERTURBATIONS OF THE HARMONIC MAP EQUATION

We want to apply the abstract procedure of the previous two sections
to study the perturbed harmonic map equation. Returning to the setup of
§2, we fix a homotopy class ¢ of maps between M and M and study
the space H(CHZ) of maps in this homotopy class of Sobolev class H*t2,

where k > 2 + %’i We let £H — ’H(CkH) x F® denote the C!-Hilbert
space bundle (2 < [ < k — ’”5—”/) with fibre Slﬁk,)p = H*u*TM’) at a point
(u,F) € H(CkH) x F® Note that the bundle has a natural connection V
induced from the Levi-Civita connection of M. The map

(5.1) (U, F) = Op(u) = O(u, F) = 7(u(x)) + F(x, u(x))

defines a section of this bundle of class C', where 2 < 1 < k— %’1/ as above.
Note that the moduli space M(Ck) of solutions to the perturbed harmonic map
equation in this homotopy class can be expressed as MEQ) = ®~1(0). The next
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three lemmas verify the basic assumptions made in the Fredholm argument
of section 3 for our specific section @.

First we compute the restriction (VZ®),p: TpF® — 5,5"} of the
covariant derivative (V®), r, evaluated at F) € TpF® = F®  as

(V7 D), p-Fi(x) = H_r% D(u, (F + F)(x, u();))) — ®(u, F(x, u(x)))
= Fi(x, u(x)).

Now it is easy to show

LEMMA 5.1. Under the assumptions stated above, the restriction (V7 D), r
of the covariant derivative (V®),r to TrFX has a right inverse for
all (u,F) € H(CHZ) x F® _ In particular, the section ® of EX satisfies
condition (R).

Proof. For fixed (u,F) € HE"H) x F®  we are supposed to construct a
bounded linear map R: H'(u*TM') —s F® such that (VF®), r o R(p) = ¢
for all ¢ € H*(u*TM'). In light of the above computation this means that we
need R(p)(x,u(x)) = p(x) for all o € H*(u*TM’') and all x € M.

! . . . .
As k > "5y is continuous. Hence there are finite coverings {Q;}i<j<n

and {Q}}lggzv of M and M’ by open charts such that for all 1 <j < N the
image u(Q;) is compactly contained in Q]’-. Here Q; is allowed to be empty.
We may further assume that the restriction of TM' to Q; has been trivialized

by a smooth map p;: TM"Q, — O} X R"” for each 1 < j < N. Denote by

p; the composition of p; followed by the projection onto R" . We choose a
smooth partition of unity {x;}i<j<ny subordinate to {Q;}i<j<ny and smooth
cut-off functions {x}}i<j<y on M' with

u(@) C {x;j=1} and suppx;C Q.
Now define bounded linear maps R;: H*(uw*TM') — F® by

XiOX0p; (3, Pile(x)))  for (x,y) € Qj x Q]
0 otherwise .

Notice in particular that R;(¢)(x, u(x)) = x;(x)¢(x). The required right inverse
R: H'(uw*TM') — F® is then given by

N
R(@)x,y) ==Y Ri(p)x,y). O

J=1
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LEMMA 5.2. Under the assumptions stated at the beginning of this section,
the restriction (VH(I)),M of the covariant derivative (V®), r to Tu”;‘-[(CHz) is
a continuous family of Fredholm operators of index 0 on ”Hékﬂ) x F&
In particular, the section ® of EX satisfies condition (Fp).

Proof. Let (u,F) € Hg‘”) x F® be given. Using the description (2.2)
in Lemma 2.1 for the covariant derivative of 7, we compute the covariant
derivative VH® as

(52) (qu))u,F : E = Jué + VHF : 5:

where ¢ € H*2(u*TM') and VF - ¢ denotes the covariant derivative of F
along u in the direction &. Thus (VHCD)M,F is a lower order perturbation of
the selfadjoint elliptic operator J,. It follows that (V”(I))L,ﬂF is a Fredholm
operator of index 0. [

LEMMA 5.3. Under the assumptions stated at the beginning of this
section, the determinant line bundle Det(N"®) over ’H(CHZ) x F® admits a

canonical trivialization. In particular, the section ® of EX, when restricted
to ”HgﬁLz) x F® | satisfies condition (O).

Proof. From Lemma 5.2 and Theorem A.5 we know that the determinant
line bundle Det(V'®) is well-defined on all of H(CkH) x F® . By [ES] the
heat flow gives rise to a deformation retract of ’H(CHZ) x F® to Cril(E|:)x{0}.
At points (u,0) € Crit(E|;) x {0}, the operator V*® equals the nonnegative
self adjoint operator J, (compare (5.2) above). Hence, for every ¢ > 0,
Ju -+t H*(u*TM') — L*(u*TM') is a positive selfadjoint linear isomorphism
and so in particular Fredholm. Thus the family {J,},ccriqg|) of Fredholm
operators is homotopic to the family {J, +1},ccrie,) of bijective selfadjoint
Fredholm operators, whose determinant line bundle is canonically trivial.  []

REMARK 5.4. If the restriction of the energy functional to H(CHZ) has a
nondegenerate minimum, then the trivialization of Lemrna 5.3 agrees with the
preferred trivialization introduced in §4.

Following the outline of §3, we introduce the projection map
r=mcp: MP =0710) — FO

We know from [KKS1] (cf. Theorem 1.2 (1) in the introduction) that 7 is
proper. Combining this fact with Lemmas 5.1 through 5.3 and Theorem 3.4,
we arrive at
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THEOREM 5.5. Let ¢ be a homotopy class of maps between closed
Riemannian manifolds M and M', where M' has nonpositive sectional
curvature. Then for any k > 2+ (n+n')/2 the following statements hold :

1. The moduli space M() is a C'-Hilbert submanifold of ”H,(Hz) F®
without boundary for any 0 <1 < k— (n+n')/2 and so the projection
./\/lg() F® s .
2. The set m—'(F) of solutions of the perturbed harmonic map equation (1.1)
is a compact O-dimensional manifold, i.e. a finite set of points, for any
regular value F € F®O of r.

3. The restriction of the determinant line bundle Det(V"®) 1o H(CHD x F®
is canonically trivial.

4. Assume in addition that some trivialization of the restriction of the
determinant line bundle Det(N"®) ro /\/l(k) has been chosen. Then the
preimage 7~ '(F) of any regular value F of m is oriented, and its oriented
cobordism class D’é is independent of the choice of the regular value F. []

Note that elliptic regularity implies that any regular value F € F® of
m¢k 1s also a regular value for 7¢ 4 for all ¥ < k. In particular, D; = D’é
is independent of k. So together with Corollary 3.5 we have proven the first
part of Theorem 1.1. Furthermore, assuming that E|- has a nondegenerate
minimum, the section ® of £® satisfies the assumptions of Theorem 4.1 and

we obtain

THEOREM 5.6. If the assumptions of Theorem 5.5 hold and the restriction
El¢ of the energy functional has a nondegenerate minimum, then for the
canonical trivialization of Det(N"®) we have

D¢ = x(CritE|¢)). [

We briefly comment on the results for the general case of equation (1.2)
where G # 0. Here we consider the section

u, ', G) = W(u, F, G) = 7(u(x)) + F(x, u(x)) + us(G(x, u(x)))

of the bundle E® — HET? x F0 x GO with fibre £X), ; = H*u*TM'). The
right inverse R for (V7 <I))u r constructed in Lemma 5.1, when considered as a
map into F® x {0} C F¥x G, is obviously a right inverse for (V7XOU), r .

Similarly, as G is contractible, the same argument as in Lemma 5.3 shows
that the determinant line bundle Der(V*W) is trivial over 7—[2-“2) x FR x g®
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Combining this with the obvious generalization of Leraima 5.2, we thus find
that in the general case conditions (R), (Fp) and (O) hold as well.

Finally condition (P) is true by Theorem 1.2 (2) (for ¢ sufficiently small).
Thus the version of Theorem 5.5, stated in the second part of Theorem 1.1
holds.

A. DETERMINANT LINE BUNDLES

In this appendix, we present a construction of the determinant line bundle
associated to a family of Fredholm operators. Our exposition is partially based
on the corresponding appendix in [Sal].

Let A: E; — E, be a Fredholm operator between Hilbert spaces. We can
identify the dual of the cokernel (Coker A)* = (E;/ImA)* with the orthogonal
complement (ImA)% of the image using the inner product. The determinant
Det(A) of the operator A is the 1-dimensional real vector space defined by

Det(A) : = A" Ker A @ A" (Coker A)*
=~ A™Ker A ® A" (ImA)™,

where for any finite dimensional vector space E we use the abbreviation
A™XE for the top exterior product AY™EE. The first expression is the standard
definition for Fredholm maps between Banach spaces, but in our Hilbert space
context we will always work with the second interpretation.

Let RV denote the N-dimensional Hilbert space with the standard
Euclidean inner product and the standard orientation. Recall that an orientation
of the finite dimensional vector space E is given by a choice of a linear
isomorphism A™*E = R.

We say that a linear map A: E; ®RY — E, is an extension of the linear
map A: E; — E, if K|E] «{0} = A. As a first observation we have

LEMMA A.l.

1. Let A: E; — E, be a Fredholm map of index k. Then any extension
A:E,®RY — E, of A is again Fredholm and of index k + N.
2. For A and A as in (1), Det(A) and Det(A) are canonically isomorphic.

Proof. (1) As ImA C ImA and dimKerA < dimKerA + N we see that
A is Fredholm. The statement about the index is seen by writing A =Ao¢
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where ¢: E; — E, &RV is the standard embedding with Fredholm index —N
and using the additivity of the index under composition.
(2) As KerA C KerA and (ImA)" C (ImA)L, we have splittings
(A.1) KerA KerA @ KerA N (Ker A)*
(A.2) ImA)*" = (ImA)" & (ImA)*NImA

I

where the orthogonal complement in (A.1) is taken in E; @©RY. Note that the
orthogonal projection P: E; & RY — RV gives rise to an isomorphism

(A.3) KerA N (KerA)- = P(Ker A) .

Denoting by Q: ImA —» (Im Ay NImA the orthogonal projection, we claim
that

(A.4) 0 — P(KerA) —s RY 2 (1 A)- A tmA — 0

i1s a short exact sequence. Clearly, Qo A]Rv is onto. On the other hand,
Q(A(O v)) = 0 is equivalent to A(O v) = A(e) for some e € E; and so
(—e,v) € KerA. This in turn means that v E P(KerA) and so exactness
also follows. Observing that for finite dimensional Hilbert spaces there are
canonical isomorphisms

AmaxE ® AmaxF % AmaX(E @ F)

and
AmaxE® AmaxE g R7

we combine equations (A.1) through (A.4) to obtain the canonical 1somorphism
Det(A) = Det(A) @ A" RN
= A" Ker A @ A™(ImA)" @ A™((Im A)* N Im A) ® A™™P(Ker A)
= A" Ker A @ A™ P(Ker A) © A" (Im A)" @ A™ P(Ker A)
(A.5) = Der(d). [

The following example serves to illustrate the isomorphism (A.5).

EXAMPLE A.2. Let E| = E; = E be a finite dimensional Hilbert space
and let RY := E® E be the canonically oriented sum of two copies of E.
Given a linear map T: E — E, define

T-E@pRY — E

(w, W, W) — Tw-—w.
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Note that T is onto, so that Det(f) o~ AmaKerT. Given an orthonormal
basis {ei,...,er} of KerT and an orthonormal basis {A,.. . fi} of (Im T,
the element

(A.6) p=er A Ak ®fi A A

spans Det(T). Choosing any orthonormal basis {fit1,-- -, Ja} of ImT, there
are unique elements Agq1,...,h, € (Ker T)- with

Th=f, k+1<I1<n.

Then we claim that the isomorphism (A.5) is realized by mapping u € Der(T)
to

k n n
A = A0 N Gfi,0) A NO,0.f) € DerD).
i=1

I=k+1 j=1

First observe that the assignment ju +— i gives rise to a linear map which
is independent of the choice of orthonormal bases {e }1<i<x and {fiti<j<n-
If {e/}1<i<k and { f }i<j<n are two other orthonormal bases for Ker7T and
E respectively, such that { f h<j<k 1s a basis of (Im T)L, then there are
orthogonal transformations «: Ker7 — KerT and (:E — E with

ale) =¢, B =f -
Note that 3 preserves the splitting £ = Im7 & (Im T~ . We conclude that

' = det(cr) det(B)gmr)+) 1

and
i’ = det(ar) det(B]im7) det(B) 1t ,

so the claimed independence follows since det(3) = det(3 tm 7) det(Bam 1)+)
and all three take values in {%1}.

To compare our construction of the assigment y +— 1 with the isomorphism
(A.5), first note that in this example

PKerT)=ImTHE CE®E=R".

Hence for a given 1 as in (A.6), the choice of orthonormal basis {fests--sfut
of Im7T corresponds to fixing the respresentative

A GoANOHE N GO ANOH

I=k+1 j=1 I=k+1 j=1
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for the canonical generator of A™* P(Ker T)®Am“P(Ker T). The passage from
(f1,0) to (hy,f;,0) realizes the identification of P(KerT) with KerTﬂ(Ker T)*-
as in (A.3). Because T is surjective, we have (ImT)t = (ImT)- NIm 7T, and
the identification

A" (Im T)t @ A" P(Ker T) = A™*RY

corresponding to the splitting (A.4), is realized by lifting the generator

AN Afi of A"™(ImT)" to the generator (fl,O) Ao A (fi,0) of

A““"‘(P(KerT))L By wedging with /\ (f1,0) A /\(O 5) € Am‘“‘P(KerT)
I=k+1 j=1

this gives a representative of the canonical generator of A™* RV, and our

discussion of Example A.2 is complete.

Now let £ — X and & — X be continuous Hilbert space bundles over
some Hausdorff topological space X, and let A: & — & be a Fredholm
bundle map inducing the identity on X, i.e. a continuous family of Fredholm
maps A,: &1y — & If dimKer A, is constant or, equivalently, dim(Im A, )"
is constant, we will say the bundle map has constant rank. This terminology is
motivated by the finite-dimensional case. For constant rank Fredholm bundle
maps, we denote by Ker A and (Im . A)! the corresponding finite-dimensional
vector bundles over X.

A constant rank extension of the Fredholm bundle map A: & — & is
a constant rank bundle map A: E1®F — &, defined on the direct sum
of & with a finite-dimensional oriented vector bundle F over X, such that
A|g, A. Often one chooses F = R", the trivial bundle over X with fiber
R" and with the standard orientation.

LEMMA A3. Let A: & — & be a Fredholm bundle map between
Hilbert space bundles over some base space X, and let x € X be any p()int

admits a constant rank extenszon A: Ei, @ RY — 82|U

Proof. Let V C X be a neighborhood of x € X such that both bundles
are trivialized over V, ie. &y = Vx &, for i € {1,2}. As A,: &, — Ex
is Fredholm, we can choose a basis wy,...,wy of (ImA,)" and define a
map A: V x Eix xRV — Vx &, by

A(}’a Uy, Z a]ej) =y, A yUy -+ Z ajwj)

j=1 j=1
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By construction, ,Z( = /T(x, ,+) 1s surjective. As j depends continuously on
y and the set of surjective linear maps is open, there is a whole neighborhood
U, C V of x such that .A\ is surjective for y € U,. The family .A\U of
Fredholm operators has constant index, and hence, since it is surjective, it has
constant rank. [

LEMMA A4, Let A: & @RV — & and Ay: & @RV — & be
constant rank extensions of A. & — &, defined on subsets U, and U, of
X, respectively. Then on the intersection Uy N U, we have a canonical bundle
isomorphism

A" Ker A, @ A" (Im AT 22 A™Ker A, @ A™ (Im Ay .

Proof.  Denote by A the common extension A: & @RV ¢ RV — &,
of A1 and A2 on U; N U,, which in general needs no: be of constant rank.
However, given any point x € UyNU,, by Lemma A.3 there exists a constant
rank extension A of A in a neighborhood U, of x. As A extends both A,
and Az, we can use part (2) of Lemma A.l to conclude that, pointwise and
hence everywhere on U,, we have canonical isomorphisms

A™Ker A, @ A™(Im A" = A™Ker A ® A™ (Im .A)*
&~ AMXKer Ay 0 A™(Im A,)7L.

As x € Uy N U, was arbitrary, this proves the claim.  []
We are now in a position to formulate

THEOREM A.5. Let A: & — & be a Fredholm bundle map between
Hilbert space bundles over some base space X . Then there is a well-defined line
bundle over X, called the determinant line bundle Det(A), whose restriction
to any open subset U C X where A has a constant rank extension A s
given as

Det(A)y = A" Ker A ® A™*(Im A)*

Proof. Consider the collection {A }ier of all local constant rank extensions
.A E dRY — & of A, each defined over some open subset U; C X.
By Lemma A.3, the collection of open subsets U; covers all of X, and by
Lemma A.4 the local determinant bundles are compatible on overlaps. Thus
they define a global line bundle.  []

The following fact is apparent from the definitions.
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COROLLARY A.6. Let A: E\DF — & be an extension of the Fredholm
bundle map A: € — &, where F is a finite-dimensional oriented vector
bundle over X. Then the orientation of F gives rise to a canonical
isomorphism

Det(A) = Det(A).

Proof. The pointwise isomorphism of Lemma A.1 is canonical and thus
gives rise to a global canonical isomorphism. [

EXAMPLE A.7. Given a finite dimensional Hilbert space E, we consider
the trivial E-bundle & = L(E,E) x E — L(E,E) over the space of linear
automorphisms of E with the tautological bundle map 7: & — £, which
on the fiber & = E over T € L(E,E) is given by Tr(w) = T(w).

As L(E, E) 1s contractible, we conclude that the line bundle Det(T) is triv-
ial. For use in Example 3.6, we want to construct an explicit trivialization. To
this end, we consider the canonically oriented bundle F = £ $ & — L(E,E)

and the extension N
T-EOF — €&

of 7, which acts on the fibre over T by Tr(w, (W', w'")) = T(w) — w'. Note
that this is just the family of maps T considered individually in Example A.2.
For T =0 we have

Det(Ty) = A" Ker To @ A" (Im Tp)~ = A™E @ A™E,
and so any orthonormal basis {ej,...,e,} of E gives rise to the canonical

generator o = \ e, ® A ¢ € Det(Ty). As explained in Example A.2, the
i=1 j=1
element po € Det(7Ty) is mapped to the generator

fio = [\(¢:,0,0) A /\(0,0,¢) € Der(Tp)

i=1 j=1

under the isomorphism (A.5) identifying Der(7T) and Det(7:’). Observe that
fto can be continuously extended to a trivialization of Der(7T) by setting

fir = [\(ei, Tei,0) A \(0,0,¢)) € Der(Tr) .
i=1 j=1
To see which element pr € Det(Ty) this corresponds to under the iso-
morphism (A.5), we observe that py is independent of the chosen or-
thonormal basis. Hence we may arrange things so that {e,...,e;} span
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Ker T'. Then, using the orthonormal basis {fi,...,f,} of E and the elements
{his1,.--,h,} € (KerT)* as in Example A.2, we see that

k n

fir = N 0,0 A N\ (er,Ter,0) A \(0,0,¢))

i=1 I=k+1 j=1

k n n
=c- N, 0,0~ N\ ., 00 A \0,0,1),

i=1 r=k+1 s=1

where
¢ = det((Tey, f;)] y—p41) - det({€),fs)js=1) -

lolal

In particular, K = 0 in the above formula whenever I
the expression then simplifies to ¢ = det(7).

To recapitulate the above, we have shown that there is a natural trivialization
of Det(T) determined by the canonical generator of De#(]y), which when
evaluated at an invertible map 7 € L(E, E) corresponds to the element

is invertible, so that

(A.8) pr =det(T)1 @ 1 € Det(Tr) .

This explains the name determinant line bundle for the bundle De#(7) and
concludes our discussion of Example A.7.
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