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SYSTÈMES D'ÉQUATIONS AUX DÉRIVÉES PARTIELLES
LINÉAIRES À COEFFICIENTS CONSTANTS

ASSOCIÉS AUX IDÉAUX DE COLONGUEUR FINIE

par Jean D'Almeida

RÉSUMÉ. On étend aux équations aux dérivées partielles linéaires à coefficients
constants certains résultats classiques relatifs aux équations différentielles linéaires à

coefficients constants.

1. Introduction

La théorie des équations différentielles linéaires à coefficients constants est

bien connue. On considère dans un premier temps l'équation homogène. Ses

solutions sont obtenues à partir des racines du polynôme caractéristique. La
forme des solutions dépend de la multiplicité des racines. La dimension de

l'espace des solutions est égale au degré du polynôme caractéristique. Il faut

noter qu'on recherche des solutions ayant une certaine forme. Pour montrer
qu'on obtient ainsi toutes les solutions il faut utiliser le théorème d'unicité pour
les équations différentielles. Il faut ensuite chercher une solution particulière
de l'équation complète.

On se propose d'établir des résultats analogues pour les équations aux
dérivées partielles linéaires à coefficients constants.

On va considérer les idéaux I de l'anneau de polynômes C[xis..., xn] tels

que le quotient C[#i,... ,xn]/l soit un C-espace vectoriel de dimension finie.
Ces idéaux correspondent aux sous-schémas de dimension zéro de l'espace
affine C". Si (P],...,PQ désigne un système de générateurs de /, on est

amené à considérer le système Pi{jL)f ()i (i — 1....où les gt

sont des fonctions connues, / est la fonction inconnue, l'opérateur
différentiel obtenu en remplaçant dans l'expression du polynôme la variable

Xj par l'opérateur pour j — 1,..., n.
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Si n — 1, C[xi] est principal et I est engendré par un polynôme P,
la dimension de C[x\]/(P) est égale au degré de P et on a une équation
différentielle linéaire à coefficients constants.

Comme on peut s'y attendre, la situation est plus complexe lorsqu'on a

plusieurs variables. Ceci est lié au fait que le schéma de Hilbert paramétrant les
sous-schémas de C" de dimension zéro et de longueur t est plus compliqué.
Pour n 1 c'est tout simplement la puissance symétrique Même, pour
n 2 le schéma de Hilbert est lisse et est une résolution des singularités
de la puissance symétrique via le morphisme de Hilbert-Chow. Ce n'est plus
vrai quand n > 3. On montrera que les solutions du système homogène

Pi(j^)f — 0 (i 1 sont des combinaisons linéaires de solutions
de la forme «exponentielle de forme linéaire» ou «polynôme multiplié par
exponentielle de forme linéaire». Il faut ensuite déterminer une solution

particulière du système P/(J^)/ gi (i 1,... Les fonctions gt doivent
vérifier certaines conditions pour qu'une telle solution existe. Si les fonctions

fji ont une forme «classique» on peut comme dans le cas des équations
différentielles utiliser la méthode des coefficients indéterminés. On traite enfin
le cas où il y a plusieurs fonctions inconnues. Si les fonctions gi sont régulières
on montre que les fonctions inconnues le sont aussi.

La philosophie de ce texte et la suivante : Les équations différentielles
linéaires à coefficients constants correspondent aux sous-schémas de dimension
zéro de C. Pour avoir des résultats analogues en plusieurs variables il est

donc naturel de considérer les sytèmes d'équations aux dérivées partielles
correspondant à des sous-schémas de dimension zéro de C".

Je voudrais remercier Thierry Vust et le rapporteur pour leurs suggestions.

2. Rappels

Soit U un ouvert convexe de R'7 (resp. C") et (i L k)
une famille d'opérateurs différentiels linéaires à coefficients constants, appelés

aussi polynômes différentiels, où les Pi sont dans C[xi,... rxn]. On s'intéresse

au système Piinsùf — 9i% l < i < k avec gt G C°°(U) (resp. holomorphe
dans U). On cherche une solution dans C°°{U) (resp. holomorphe dans

U). On a une condition nécessaire et suffisante pour que le système ait

une solution: pour tous Q, G C[xi tels que J~2QiP"i 0 alors

Qî( jh) Q1 ~ 0- On a aussi un théorème d'approximation pour les solutions
du système homogène PA§^)f — 0 (i 1Toute solution dans

C°°(U) (resp. holomorphe dans U) du système homogène est la limite
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dans l'espace des fonctions C°° sur U (resp. holomorphe dans U) de

combinaisons linéaires finies de solutions du type «polynôme-exponentielle»
c'est-à-dire Pexp(aiAi + • • • + anxn) où R G C[xi,..., xn ], les a/ étant des

complexes. Ces résultats sont dus à Ehrenpreis-Malgrange-Palamodov ([H], [P]

Ch.VI,VII Les démontrations utilisent des méthodes d'analyse fonctionnelle,

des estimations L2, des transformations de Fourier... Les résultats peuvent

s'étendre si U est un ouvert de R" aux espaces de distributions dans

lesquels C°°(U) se plonge continûment avec une image dense comme

D'(U) — espace des distributions, H espace des distributions tempérées,

Lploc(U) fonctions complexes mesurables localement dans IP (voir [T]).

3. Système homogène

THÉORÈME 1. On considère le système homogène Pi^dx^f ~ 0 (i —

1,..., k). On note I l'idéal de C[.vi,... ,xn] engendré par P\,..., Pk. On

suppose que la dimension dime C[aj xn \// t est finie. Alors l'ensemble

des solutions C°° (resp. holomorphes) du système homogène est un espace
vectoriel de dimension égale à t. Toutes ces solutions sont des combinaisons

linéaires de solutions de type polynôme-exponentielle.

Démonstration. Mentionnons d'abord l'analogue de la formule de Leibniz

pour les opérateurs différentiels linéaires à coefficients constants. Si

P G C[xi,..., xn\ et p G N" on pose

p(P)
• • .(P-)p"Ppourp (pu...

UX i uxn

Pour w, v indéfiniment différentiables on a

En vertu de la linéarité par rapport à P il suffit d'établir la formule (*)
pour un monôme. On s'intéresse aux solutions de P(^)/ 0 de la forme

P(;t)exp (a,x) P(v)exp(aiXiH \-anxn) où R est un polynôme. La formule
de Leibniz généralisée montre qu'il est nécessaire que a (ai, ...,an)
appartienne à l'hypersurface d'équation P 0.

Si P(a) 0 alors exp(a,x) est une solution de P(§fi)f 0. L'idéal

/ définit un sous-schéma de dimension zéro et de longueur t de CP,

c'est-à-dire t points comptés avec des multiplicités convenables. De façon
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précise l'anneau artinien C[x\,... ,xn]/l s'écrit comme produit direct d'un
nombre fini d'anneaux locaux artiniens. Si ,mr sont les points fermés
de Cn où s'annulent tous les éléments de /, on a un isomorphisme
C[A,.... ,x„\/l * nL, Ot/löv où Oi désigne l'anneau local de C" en
rri£. La multiplicité en rri£ du sous-schéma défini par I est fi£ dime et
on a px -f fi2 + h fir t. Pour chaque £ on pose rri£ (rri£l,..., rri£n) et
on s'intéresse aux solutions du système homogène de la forme Rexp (rri£,x).
Grâce à la formule de Leibniz généralisée on montre que ceci est un espace
vectoriel de dimension fi£. Il s'agit en effet de résoudre un système d'équations
linéaires homogènes en les coefficients du polynôme R. On choisit une base

Tfy R£^ de cet espace.

Les solutions du système homogène Pfjffff 0 qui sont
combinaisons linéaires de polynômes-exponentielles forment donc un espace
vectoriel de dimension t ayant pour base (R^ exp (rri£,x),...,R% exp (rri£%x))

pour £ r. Pour montrer qu'on a ainsi toutes les solutions C°° (resp.
holomorphes) on utilise le théorème d'approximation mentionné dans les
rappels qui dit qu'une telle solution est la limite dans l'espace correspondant de

combinaisons linéaires finies de solutions du type polynômes-exponentielles.
L'espace des fonctions C°° sur U (resp. holomorphes dans U) étant séparé,
tout sous-espace vectoriel de dimension finie est fermé. Les solutions C°°
(resp. holomorphes) sont donc toutes des combinaisons linéaires de solutions
du type polynôme-exponentielle.

COROLLAIRE 1. On suppose que I C (X] ,...,*„) et que Vanneau

C[x\,..., xn]/l est local et Gorenstein et est un C -espace vectoriel de

dimension finie. Alors il existe une solution f G Qxj,... ,xw] telle que toute
autre solution C°° (resp. holomorphe) est obtenue en appliquant à f un
opérateur différentiel linéaire à coefficients constants.

Démonstration. Soit (A, A4) un anneau local artinien. On dira que A est
Gorenstein si l'annulateur de A4 est de dimension 1 comme (A/A4)-espace
vectoriel. Rappelons la méthode des systèmes inverses de Macaulay (|E|,
p. 526). Soient S C[xu...,xn] et T C[xfl,..., jc~

1

] C C(jcj xn)
l'anneau des polynômes en les inverses des x/. On munit T d'une structure
de S -module de la manière suivante: si m G S et n G T sont des monômes
alors m - n est le monôme mn G C(x\,... ,x„) s'il est dans T et 0 sinon.
On a alors une correspondance bijective entre les sous-S -modules de type fini
M C L et les idéaux I C S tels que I C (x\,...,xn) et S/I est local de

dimension zéro.
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La bijection est donnée par

M -* (0 M) — annulateur de M dans S

I —» (0 :T 7) sous-module de T annulé par 7

et on a M — cos/i — module canonique de l'anneau S/I. Les idéaux

7 c (jci Xn) tels que S/I est local de dimension zéro et Gorenstein

sont exactement ceux de la forme I — (0 :$ /) où / est un élément non nul

de T.

D'après [E], p. 547 on a une application surprenante de la théorie des

systèmes inverses aux polynômes différentiels.

Avec nos hypothèses cela signifie qu'il existe une solution polynomiale /
du système homogène telle que toute autre solution polynomiale s'obtienne

en appliquant à / un polynôme différentiel.

Le théorème nous permet d'affirmer qu'on a ainsi obtenu toutes les solutions

C°° (resp. holomorphes). En effet, l'anneau étant local, le sous-schéma défini

par 7 a pour support l'origine. Toute solution de type polynôme-exponentielle

est en fait polynomiale.

Remarque. L'hypothèse Gorenstein est nécessaire : prendre par exemple

n — 2 et / — (X|,jcijc2,*2). Rappelons en outre quelques propriétés des

anneaux de Gorenstein: Si A R/I avec R local régulier et 7 engendré

par une suite régulière alors A est Gorenstein. Si codim7=1, alors

A Gorenstein A Cohen Macaulay <=> 7 principal. Si codim 2, alors

A Gorenstein <=> 7 est engendré par une suite régulière de longueur deux.

Si codim7 3 il n'est pas vrai que A Gorenstein est équivalent à 7 engendré

par une suite régulière de longueur 3. Ici la codimension (ou la hauteur) de

7 est la dimension de Krull du localisé Ri si 7 est premier. Sinon c'est le

minimum des codimensions des idéaux premiers contenant 7.

4. Système avec second membre

On s'intéresse maintenant au système P/(J^)/ 9i pour i 1,...,&.
D'après [P] Ch. VI,VII, la condition nécessaire et suffisante pour qu'il existe

une solution est J2Qipi 0 0 si les Qt G C[*i,... ,xn].
Les relations 0 sont appelées relations de compatibilité. Dans

le cas où n 1 il n'y a pas de condition. Si dime C[xi,.. « txn]/l est finie

et si les relations de compatibilité sont satisfaites l'ensemble des solutions est

un espace affine de dimension t.
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Lorsque (P\,..., Pk) est une suite régulière les relations de compatibilité
prennent une forme plus agréable. Dans un anneau A on dit qu'une suite
d'éléments (/i,...,/r) est régulière si j) n'est pas un diviseur de zero
dans A/(/i,Rappelons la construction du complexe de Koszul
K(j\, • • • ,/r). On note K\ le A-module libre de rang r e ; de base e\,..., er.
Pour p 0,... r on pose Kp — APK\ (puissance extérieure) et on définit
d\ Kp —y Kp_\ par

d(ehA• • • A eip)^(-îy A • • • A ëtj A • • • A

On a d2 — 0 et ceci définit un complexe. Si la suite (fi,... ,f) est régulière, les

groupes d'homologie du complexe vérifient ...fi)) 0 pour j > 0
et H0 (K(fi,... Jr))— A/(fi,.... Dans notre situation si est
une suite régulière de C|xh ,.vf,J la condition ]T Q,P, =0 implique qu'il
existe des polynômes Il(/ tels que g, J2^ijpj avec n,

La relation V g;( )/// 0 est conséquence des relations /',( </.

Pj( jj-y fj, On se contentera de vérifier ces n(n - l)/2 relations.

Il faut ensuite s'intéresser à la recherche d'une solution particulière. Si
les g, sont des polynômes vérifiant les relations de compatibilité on peut
trouver une solution particulière polynomiale en utilisant la méthode des

coefficients indéterminés. On cherche un polynôme de degré au plus égal à

max deg P/4-max deg On obtient un système linéaire en les coefficients du

polynôme recherché. Ce système admet une solution grâce aux conditions de

compatibilité.

On traite de façon analogue les seconds membres de type R(x) exp (a,jc).
Il faut distinguer selon que a est ou non dans le sous-schéma défini par /.
Comme pour les équations différentielles il faut augmenter le degré du

polynôme en tenant compte de la multiplicité lorsque a appartient au sous-
schéma défini par /.

Remarque. Si les Pz n'ont pas de zéro commun dans C", le théorème
des zéros de Hilbert dit qu'on peut écrire 1 AiPl où les A, sont des

polynômes. On est dans le cas où dimc C[xi,... ,xn\/l ==0. Si les relations
de compatibilité sont satisfaites l'ensemble des solutions de P£§^)f gi est

un espace affine de dimension zero. Il y a donc une solution unique. C'est
tout simplement

f Ai(d~x)9i •
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5. Cas de plusieurs fonctions inconnues

On s'intéresse maintenant à un système avec plusieurs fonctions inconnues.

On part d'une matrice (Pifiij avec Py G C[xi,...,x„] et on considère le

système Y!j=i Pij(§-X)fj g\ pour i 1,.,., k.

On suppose que les gt G C°°(U) (resp. holomorphe sur U) et sont données.

On cherche les fonctions fi.

Théorème 2. On considère le système homogène Ylj= i PiAdx^fj ~ ®

pour i 1,... ,k. On note I Vidéal engendré par les mineurs maximaux de

la matrice (Pifiij -

On suppose que la dimension dime C[vi,... ,xn\/l t est finie. Alors

Vensemble des solutions C°° (resp. holomorphes) du système est un C -espace
vectoriel de dimension finie égale à t.

Toutes les solutions sont combinaisons linéaires de solutions du type

exponentielle de forme linéaire multiplié par vecteur colonne de polynômes.

Démonstration. Elle est analogue à celle du paragraphe 3 avec les

adaptations évidentes. Le théorème d'approximation s'étend au cas de plusieurs
fonctions inconnues. Pour chaque point fermé m (m\,... ,mn) du sous-

schéma défini par I on s'intéresse aux solutions du système homogène de la

forme exp(mixi + • • • + mnxn)V où le vecteur colonne V a h composantes

polynomials. Si /i est la multiplicité du point m comme point du schéma

défini par I on trouvera p vecteurs V linéairement indépendants convenables.

Remarque 1. Si l'on s'intéresse aux solutions du système avec second

membre J2j=\ PiA^fj 9i condition d'Ehrenpreis-Malgrange-Palamodov

s'écrit Yli=\Qipii0 Ü £ôi(^).9i °- Lorsque
le sous-schéma défini par / a la bonne codimension dans C" c'est-à-

dire k — h-f1, cette condition peut être remplacée par la suivante : soit

D(iu ,ih)

Au
h+1 {li- M*} - {iu • •

/H ri\h
un mineur de la matrice (Pif)- Pour chaque

Pihh

//,} on pose

Piil Pihl 9i\

À(ûih+1) —

ih •

ih+i i

Pihh gi/,

Pih i i h gi/,4-1



26 J. D'ALMEIDA

La condition est que tous les À(zj,..., ihl ih+{) soient nuls chaque fois que
D(i\, •.., ih) est non nul. Cette condition traduit l'exactitude du complexe
d'Eagon-Northcott (généralisation du complexe de Koszul) que donne une
résolution de C[x\,

Remarque 2. Si le sous-schéma défini par I est vide et que les relations
de compatibilité sont vérifiées le système a une solution unique que l'on
obtient par le théorème des zéros de Hilbert et les formules de Cramer. Par
exemple si le sytème s'écrit

THÉORÈME 3. On considère le système Ylj= i Pîj( ix )fj fJi Pour * —

1On note I Vidéal engendré par les mineurs maximaux de la matrice
(Pij). On suppose que dimc C[xi,... ,xn]/l t est finie et que les gt sont
analytiques sur un ouvert U de Rw et vérifient les conditions de compatibilité.

Alors les solutions sont analytiques et forment un espace affine de

dimension t.

Démonstration 1. Il suffit de démontrer que l'on a une solution analytique.
Pour avoir les autres il faudra ajouter les solutions du système homogène
qui sont des combinaisons linéaires de polynômes-exponentielles d'après le
théorème du paragraphe 3.

On utilise pour cela le résultat suivant de Goldschmidt [G] : soit X une
variété analytique réelle et E, F deux fibrés vectoriels analytiques sur X.

Soit D: E -A F un opérateur analytique réel formellement intégrable.
Alors il existe un fibré vectoriel analytique G\ et un opérateur analytique

D\ : F -A G\ tel que le complexe E -a F -4 G\ soit exact. Cette exactitude

exprime l'existence d'une solution.

On vérifie que l'intégrabilité formelle est équivalente aux relations de

compatibilité lorsque l'opérateur est linéaire à coefficients constants.

on a 1 U(AE - BD) + V(AF - DC) + W(BF - CE).
L'unique solution est

fx U(Egi - Dg2) + V(Eg2 - Dg3) + W(E9l - Dg3)

h U(Ag2 - Bgù + V(Ag3 -Cgx) + W(Bg3 - Cg2).
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Démonstration 2. On dit qu'un système 9i est elliptique si

le sous-schéma défini par les mineurs maximaux de la matrice (Py) n'a pas

de point réel à l'infini. On peut vérifier que cette condition est équivalente

à la suivante: toute solution / est analytique sur l'ouvert U de R" si g

est analytique sur U [M]. Dans notre cas, l'ellipticité résulte du fait que le

sous-schéma considéré est fini. Il est donc égal à sa clôture projective. Comme

les conditions de compatibilité ont lieu, le système admet des solutions. Elles

sont toutes analytiques.

Remarque. On dit que le système est hypoelliptique si toutes les

solutions distributions sont C°° quand les gt sont C°°. Sous l'hypothèse

dimc C[*i,... ,xn\/l finie, toutes les solutions du système homogène sont

C°° d'après Ehrenpreis-Malgrange-Palamodov. Toutes les solutions sont C°°.

On a l'hypoellipticité. Si h k m 1 on a une équation différentielle linéaire

à coefficients constants et il est bien connu que les résultats du théorème et

de la remarque sont valables dans ce cas.
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