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SYSTEMES D’EQUATIONS AUX DERIVEES PARTIELLES
LINEAIRES A COEFFICIENTS CONSTANTS
ASSOCIES AUX IDEAUX DE COLONGUEUR FINIE

par Jean D’ALMEIDA

RESUME. On étend aux équations aux dérivées partielles linéaires a coefficients
constants certains résultats classiques relatifs aux équations différentielles linéaires a
coefficients constants.

1. INTRODUCTION

La théorie des équations différentielles linéaires a coefficients constants est
bien connue. On considere dans un premier temps I’équation homogene. Ses
solutions sont obtenues a partir des racines du polynéme caractéristique. La
forme des solutions dépend de la multiplicit¢ des racines. La dimension de
I’espace des solutions est égale au degré du polyndme caractéristique. Il faut
noter qu’on recherche des solutions ayant une certaine forme. Pour montrer
qu’on obtient ainsi toutes les solutions il faut utiliser le théoréme d’unicité pour
les équations différentielles. Il faut ensuite chercher une solution particuliere
de I’équation complete.

On se propose d’établir des résultats analogues pour les équations aux
dérivées partielles linéaires a coefficients constants.

On va considérer les idéaux / de I’anneau de polynémes Clxy, ..., x,] tels
que le quotient Clxy, ..., x,] / I soit un C-espace vectoriel de dimension finie.
Ces idéaux correspondent aux sous-schémas de dimension zéro de 1’espace
affine C*. Si (Py,...,P;) désigne un systtme de générateurs de I, on est
amené a considérer le systéme P,-(%)f =g (i =1,...,k), ou les g;
sont des fonctions connues, f est la fonction inconnue, P,'((%) I’opérateur
différentiel obtenu en remplacant dans 1’expression du polyndme la variable

d

x; par ’opérateur By pour j=1,...,n.
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Si n =1, C[x] est principal et I est engendré par un polyndme P,
la dimension de Cl[x] / (P) est égale au degré de P et on a une équation
différentielle linéaire a coefficients constants.

Comme on peut s’y attendre, la situation est plus ccmplexe lorsqu’on a
plusieurs variables. Ceci est li€ au fait que le schéma de Hilbert paramétrant les
sous-schémas de C" de dimension zéro et de longueur 7 est plus compliqué.
Pour n = 1 c’est tout simplement la puissance syméirique 7-i€éme, pour
n = 2 le schéma de Hilbert est lisse et est une résolution des singularités
de la puissance symétrique via le morphisme de Hilbert-Chow. Ce n’est plus
vrai quand n > 3. On montrera que les solutions du systtme homogeéne
Pl-(g;)f =0 (i = 1,...,k) sont des combinaisons liréaires de solutions
de la forme «exponentielle de forme linéaire» ou «polyndme multiplié par
exponentielle de forme linéaire». Il faut ensuite déterminer une solution
particulicre du systéme P[(g%) f=g¢ (i=1,...,k). Les fonctions g; doivent
vérifier certaines conditions pour qu’une telle solution existe. Si les fonctions
g; ont une forme «classique» on peut comme dans le cas des équations
différentielles utiliser la méthode des coefficients indéterminés. On traite enfin
le cas ou il y a plusieurs fonctions inconnues. Si les fonctions g; sont régulieres
on montre que les fonctions inconnues le sont aussi.

La philosophie de ce texte et la suivante: Les équations différentielles
linéaires a coefficients constants correspondent aux sous-schémas de dimension
z¢éro de C. Pour avoir des résultats analogues en plusieurs variables il est
donc naturel de considérer les sytemes d’équations aux dérivées partielles
correspondant a des sous-schémas de dimension zéro de C".

Je voudrais remercier Thierry Vust et le rapporteur pour leurs suggestions.

2. RAPPELS

Soit U un ouvert convexe de R" (resp. C") et Pi(%) (i =1,...,k)
une famille d’opérateurs différentiels lin€aires a coefficients constants, appelés
aussi polyndmes différentiels, ou les P; sont dans Clxy,...,x,]. On s’intéresse
au systeme P,-(%)f =g;, 1 <i<k avec g; € C°(U) (resp. holomorphe
dans U). On cherche une solution dans C°°(U) (resp. holomorphe dans
U). On a une condition nécessaire et suffisante pour que le systeme ait

une solution: pour tous Q; € Clxy,...,x,] tels que > Q:P; = 0 alors
> Qi(%) ¢g; = 0. On a aussi un théoreme d’approximation pour les solutions
du systtme homogene Pi(%)f =0 (i = 1,...,k). Toute solution dans

C>(U) (resp. holomorphe dans U) du systtme homogene est la limite
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dans D’espace des fonctions C°° sur U (resp. holomorphe dans U) de
combinaisons linéaires finies de solutions du type «polyndme-exponentielle »
c’est-a-dire Rexp(ajxy + -+ + apxy) ot R € Clxy, ..., x,], les «; étant des
complexes. Ces résultats sont dus a Ehrenpreis-Malgrange-Palamodov ([H], [P]
Ch.VLVII ). Les démontrations utilisent des méthodes d’analyse fonctionnelle,
des estimations L?, des transformations de Fourier. .. . Les résultats peuvent
s’étendre si U est un ouvert de R" aux espaces de distributions dans
lesquels C>°(U) se plonge continlment avec une image dense comme
D'(U) = espace des distributions, H = espace des distributions tempérées,

lOL(U) = fonctions complexes mesurables localement dans [# (voir [T]).

3. SYSTEME HOMOGENE

THEOREME 1. On considere le systéme homogéne Pi(%) f =0 (i =
.,k). On note 1 l'idéal de Clxi,...,x,] engendré par Pi,...,Py. On
suppose que la dimension dim¢ Clxy, ..., x,] / I =t est finie. Alors I’ensemble
des solutions C* (resp. holomorphes) du systeme homogene est un espace
vectoriel de dimension égale a t. Toutes ces solutions sont des combinaisons
linéaires de solutions de type polynéme-exponentielle.

Démonstration. Mentionnons d’abord ’analogue de la formule de Leib-
niz pour les opérateurs différentiels linéaires a coefficients constants. Si
P e Clxy,...,x,] et p € N" on pose

0 0
PP = (G (G )P pour p=(pr,-.o,pu) -
X1 8)6,,

Pour u,v indéfiniment différentiables on a

() P(—(%)(uv) Z(—_ P@( )
pEN”"

En vertu de la linéarité par rapport a P il suffit d’établir la formule (x)
pour un mondme. On s’intéresse aux solutions de P(%)f = 0 de la forme
R(x)exp (o, x) = R(x) exp(ax;+- - ~+a,x,) ou R est un polynéme. La formule
de Leibniz généralisée montre qu’il est nécessaire que o = (aq,...,Q,)
appartienne a 1’hypersurface d’équation P = 0.

Si P(a) = 0 alors exp(a,x) est une solution de P(%)f = 0. L’idéal
I définit un sous-schéma de dimension zéro et de longueur ¢ de C",
c’est-a-dire ¢ points comptés avec des multiplicités convenables. De fagon
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précise ’anneau artinien Clx,...,x,] /I s’écrit comme produit direct d’un
nombre fini d’anneaux locaux artiniens. Si my,...,m, sont les points fermés
de C" ou s’annulent tous les éléments de I, on a un isomorphisme
Clxi, ..., x1/I ~ T[,_, O¢/IO, ot O, désigne I’anneau local de C" en
my. La multiplicité en m, du sous-schéma défini par I est up = dimc I%ZZ et
ona p + puz+---+ p, = t. Pour chaque ¢ on pose my = (myg,,...,my,) et
on s’intéresse aux solutions du systtme homogeéne de la forme Rexp (my, x).
Gréce a la formule de Leibniz généralisée on montre que ceci est un espace
vectoriel de dimension . Il s’agit en effet de résoudre un systeme d’équations
lin€aires homogenes en les coefficients du polyndme R. On choisit une base

Ry,,... ,ng de cet espace.

Les solutions du systtme homogene Pi(%)f = (0 qui sont combi-
naisons linéaires de polyndmes-exponentielles forment donc un espace vec-
toriel de dimension ¢ ayant pour base (Ry, exp (my,x),. .. Ry, exp (my,x))
pour £ =1,...,r. Pour montrer qu’on a ainsi toutes les solutions C> (resp.
holomorphes) on utilise le théoréme d’approximation mentionné dans les rap-
pels qui dit qu’une telle solution est la limite dans I’espace correspondant de
combinaisons linéaires finies de solutions du type polynimes-exponentielles.
L’espace des fonctions C*>° sur U (resp. holomorphes dans U) étant séparé,
tout sous-espace vectoriel de dimension finie est fermé. Les solutions C*
(resp. holomorphes) sont donc toutes des combinaisons linéaires de solutions
du type polynéome-exponentielle.

COROLLAIRE 1. On suppose que I C (xi,...,x,) et que [’anneau
Clxi, ..., x,] /I est local et Gorenstein et est un C-espace vectoriel de
dimension finie. Alors il existe une solution f € Clxy,...,x,] telle que toute

autre solution C* (resp. holomorphe) est obtenue en appliquant a f un
opérateur différentiel linéaire a coefficients constants.

Démonstration.  Soit (A, M) un anneau local artinien. On dira que A est
Gorenstein si ’annulateur de M est de dimension 1 comme (A/M)-espace
vectoriel. Rappelons la méthode des systemes inverses de Macaulay ([E],
p.-526). Soient S = Clx,...,x,] et T = C[xl_l, - ,x;'l] C Clxy, ..., x)
I’anneau des polyndémes en les inverses des x;. On munit 7 d’une structure
de S-module de la maniere suivante: si m € § et n € T sont des mondmes
alors m-n est le mondme mn € C(x|,...,x,) s’il est dans 7 et O sinon.
On a alors une correspondance bijective entre les sous-S-modules de type fini
M C T etles idéaux I C S tels que I C (x1,...,x,) et S/I est local de
dimension zéro.
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La bijection est donnée par

M — (0 ;s M) = annulateur de M dans S

I — (0 :7 ) = sous-module de T annulé par /

et on a M = ws = module canonique de I’anneau S /I. Les idéaux
I C (x1,...,x,) tels que S/I est local de dimension zéro et Gorenstein
sont exactement ceux de la forme / = (0 ;g f) ol f est un élément non nul
de T.

D’aprés [E], p.547 on a une application surprenante de la théorie des
systémes inverses aux polynomes différentiels.

Avec nos hypothéses cela signifie qu’il existe une solution polynomiale f
du systtme homogene telle que toute autre solution polynomiale s’obtienne
en appliquant a f un polynome différentiel.

Le théoréme nous permet d’affirmer qu’on a ainsi obtenu toutes les solutions
C> (resp. holomorphes). En effet, I’anneau étant local, le sous-schéma défini
par I a pour support 1’origine. Toute solution de type polyndme-exponentielle
est en fait polynomiale.

REMARQUE. L’hypothése Gorenstein est nécessaire: prendre par exemple
n=2etl = (x%,xlxz,xg). Rappelons en outre quelques propriétés des
anneaux de Gorenstein: Si A = R/I avec R local régulier et I engendré
par une suite réguliere alors A est Gorenstein. Si codim/ = 1, alors
A Gorenstein <= A Cohen Macaulay <= [ principal. Si codim = 2, alors
A Gorenstein <> I est engendré par une suite réguliere de longueur deux.
Si codim/ = 3 il n’est pas vrai que A Gorenstein est équivalent a / engendré
par une suite réguliere de longueur 3. Ici la codimension (ou la hauteur) de
I est la dimension de Krull du localisé R; si I est premier. Sinon c’est le
minimum des codimensions des idéaux premiers contenant /.

4. SYSTEME AVEC SECOND MEMBRE

On s’intéresse maintenant au systéme Pl-(%) f =9 pour i = 1,... k.
D’aprés [P] Ch. VIVII, la condition nécessaire et suffisante pour qu’il existe
une solution est Y Q;P; = 0 = ZQ;‘(%)Q:’ =0 siles Q; € Clx,...,x,].
Les rclations ) Qi(%) g; = 0 sont appelées relations de compatibilité. Dans
le cas ou n =1 il n’y a pas de condition. Si dim¢ Clxy,... ,x,,]/l est finie
et si les relations de compatibilité sont satisfaites I’ensemble des solutions est
un espace affine de dimension f.
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Lorsque (Py,...,P;) est une suite réguliere les relations de compatibilité
prennent une forme plus agréable. Dans un anneau A on dit qu’une suite
d’éléments (fi,...,f,) est réguliere si f; n’est pas un diviseur de zero
dans A/( JSi,-...fiz1). Rappelons la construction du complexe de Koszul

K(fi,...,f). On note K; le A-module libre de rang r e de base ¢;,...,e,.
Pour p = 0,...r on pose K, = A’K; (puissance extérieure) et on définit
d: K, — K,_; par

dley A---Ne) =Y (1Y ey A A& A Aey .

On a d* = 0 et ceci définit un complexe. Si la suite (fj,...,f,) est régulire, les
groupes d’homologie du complexe vérifient H,-(K(ﬁ, ‘rd 7f,)) =0 pour j >0
et H()(K(f], e ,f,)) = A/(fl, ...,/r). Dans notre situation si (Py,...,P;) est
une suite réguliere de Clxy,...,x,] la condition Y  Q;P; = 0 implique qu’il
existe des polynémes II; tels que Q; = > II;P; avec IT; = —TI1j.

Ija relation ZQi(%)gi = 0 est conséquence des relations P,;(%)gj =
P,-(%) gi- On se contentera de vérifier ces n(n — 1)/2 relations.

Il faut ensuite s’intéresser a la recherche d’une solution particuligre. Si
les g; sont des polyndémes vérifiant les relations de compatibilité on peut
trouver une solution particuliere polynomiale en utilisant la méthode des
coefficients indéterminés. On cherche un polynéme de degré au plus égal a
max deg P; + max deg ¢g;. On obtient un systtme linéaire en les coefficients du
polyndme recherché. Ce systeme admet une solution grics aux conditions de
compatibilité.

On traite de fagon analogue les seconds membres de type R(x)exp (a,x).
Il faut distinguer selon que « est ou non dans le sous-schéma défini par 1.
Comme pour les équations différentielles il faut augmenter le degré du
polyndme en tenant compte de la multiplicité lorsque « appartient au sous-
schéma défini par /.

REMARQUE. Si les P; n’ont pas de zéro commun dans C", le théoreme
des zéros de Hilbert dit qu’on peut écrire 1 = >  A;P; ou les A; sont des
polynomes. On est dans le cas ou dim¢ Clxy,. .. ,xn]/l = 0. Si les relations
de compatibilité sont satisfaites 1’ensemble des solutions de P,;(-g;) Jf =g est
un espace affine de dimension zero. Il y a donc une solution unique. C’est
tout simplement

f= ZAK%)gi.
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5. CAS DE PLUSIEURS FONCTIONS INCONNUES

On s’intéresse maintenant & un systeéme avec plusieurs fonctions inconnues.
On part d’une matrice (P;);; avec P; € Clx,...,x,] et on considere le
systeme Y1, Py(2)fi=gi pour i=1,... k.

On suppose que les g; € C°°(U) (resp. holomorphe sur U) et sont données.
On cherche les fonctions f;.

THEOREME 2. On considere le systéme homogeéne 2;1:1 P,j(%)f,- =0
pour i=1,..., k. On note I 'idéal engendré par les mineurs maximaux de
la matrice (Py);,.

On suppose que la dimension dimc Clxy,...,x,] /I =t est finie. Alors
I’ensemble des solutions C* (resp. holomorphes) du systeme est un C-espace
vectoriel de dimension finie égale a t.

Toutes les solutions sont combinaisons linéaires de solutions du type
exponentielle de forme linéaire multiplié par vecteur colonne de polynomes.

Démonstration. Elle est analogue a celle du paragraphe 3 avec les
adaptations évidentes. Le théoreme d’approximation s’étend au cas de plusieurs
fonctions inconnues. Pour chaque point fermé m = (my,...,m,) du sous-
schéma défini par I on s’intéresse aux solutions du systtme homogene de la
forme exp(mix; + -+ mnxn)V o le vecteur colonne V a h composantes
polynomiales. Si g est la multiplicit¢ du point m comme point du schéma
défini par / on trouvera p vecteurs V linéairement indépendants convenables.

REMARQUE 1. Si ’on s’intéresse aux solutions du syst¢tme avec second
membre Z;.’:] Plﬁi(;%) fi = gi la condition d’Ehrenpreis-Malgrange-Palamodov
sécrit SFQP; =0 (G = 1,...,h) = S 0(Z)g; = 0. Lorsque
le sous-schéma défini par / a la bonne codimension dans C" c’est-a-
dire k — h + 1, cette condition peut étre remplacée par la suivante: soit

Pill Pilh
D(iy, ..., i) = un mineur de la matrice (P;). Pour chaque
P, Pin
i1 €{1,...,k} —{i1,...,in} on pose
P Pihl 9i,
Aig, ...y ipyipgr) =
P, P g,
Pih—o—l1 Pf/,+1h gih+|
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La condition est que tous les A(i, ..., i, i5y) soient auls chaque fois que
D(iy,...,iy) est non nul. Cette condition traduit ’exactitude du complexe
d’Eagon-Northcott (généralisation du complexe de Koszul) que donne une
résolution de C[x,... ,xn]/l.

REMARQUE 2. Si le sous-schéma défini par I est vide et que les relations
de compatibilit€ sont vérifiées le systtme a une solution unique que 1’on
obtient par le théoréme des zéros de Hilbert et les formules de Cramer. Par
exemple si le syteme s’écrit

A D
AN g1
B E =191,
c r) V? 93
on a 1= U(AE — BD) + V(AF — DC) + W(BF — CE).
L’unique solution est

Jfi = U(Egi — Dg2) + V(Eg2 — Dg3) + W(Eg: — Dg3)
f»=U(Ag, — Bg) + V(Ags — Cg1) + W(Bgs — Cg»).

THEOREME 3. On considére le systéme Z;;IPU(—(%) fi = g pour i =
1,...,k. On note I l’idéal engendré par les mineurs maximaux de la matrice
(Py). On suppose que dimc Clxy, ... ,xn]/l =t est finie et que les g; sont
analytiques sur un ouvert U de R" et vérifient les conditions de compatibilité.

Alors les solutions sont analytiques et forment un espace affine de
dimension t.

Démonstration 1. 11 suffit de démontrer que I’on a une solution analytique.
Pour avoir les autres il faudra ajouter les solutions du systtme homogene
qui sont des combinaisons linéaires de polynomes-exponentielles d’apres le
théoreme du paragraphe 3.

On utilise pour cela le résultat suivant de Goldschmidt [G]: soit X une
variété analytique réelle et E, F deux fibrés vectoriels analytiques sur X.

Soit D: E — F un opérateur analytique réel formellement intégrable.
Alors il existe un fibré vectoriel analytique G; et un opérateur analytique
D: F — G; tel que le complexe FE 2> F 25 G soit exact. Cette exactitude
exprime 1’existence d’une solution.

On vérifie que l'intégrabilit¢ formelle est équivalente aux relations de
compatibilité lorsque I’opérateur est linéaire a coefficients constants.



SYSTEMES D’EQUATIONS AUX DERIVEES PARTIELLES 27

Démonstration 2. On dit qu’un systtme ) P,;,-(%) /i = gi est elliptique si
le sous-schéma défini par les mineurs maximaux de la matrice (P;) n’a pas
de point réel a 'infini. On peut vérifier que cette condition est équivalente
3 la suivante: toute solution f est analytique sur I'ouvert U de R" si g
est analytique sur U [M]. Dans notre cas, ellipticité résulte du fait que le
sous-schéma considéré est fini. Il est donc égal a sa cloture projective. Comme
les conditions de compatibilité ont lieu, le systtme admet des solutions. Elles
sont toutes analytiques.

REMARQUE. On dit que le systtme est hypoelliptique si toutes les
solutions distributions sont C> quand les g; sont C°. Sous I’hypothese
dimc Clxy, ..., x4l /I finie, toutes les solutions du systtme homogene sont
C> d’aprés Ehrenpreis-Malgrange-Palamodov. Toutes les solutions sont C™.
On a I’hypoellipticité. Si A =k =1 on a une équation différentielle lincaire
a coefficients constants et il est bien connu que les résultats du théoreme et
de la remarque sont valables dans ce cas.
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