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SMOOTH LYAPUNOV 1-FORMS

by M. FARBER *), T. KAPPELER, J. LATSCHEV T) and E. ZEHNDER

ABSTRACT. We find conditions which guarantee that a given flow @ on a closed
smooth manifold M admits a smooth Lyapunov 1-form w lying in a prescribed
de Rham cohomology class ¢ € H'(M;R). These conditions are formulated in terms
of Schwartzman’s asymptotic cycles A, (®) € H\(M;R) of the flow.

1. INTRODUCTION

C. Conley [1, 2] showed that any continuous flow ®: X x R — X on
a compact metric space X “decomposes” into a chain recurrent flow and a
gradient-like flow. More precisely, he proved the existence of a continuous
function L: X — R which (i) decreases along any orbit of the flow in the
complement X — R of the chain recurrent set R C X of ® and (ii) is constant
on the connected components of R. Such a function L is called a Lyapunov
Junction for ®. This existence result plays a fundamental role in Conley’s
program of understanding general flows as collections of isolated invariant
sets linked by heteroclinic orbits.

A more general notion of a Lyapunov 1-form was introduced in paper [5].
Lyapunov 1-forms, as compared to Lyapunov functions, allow one to go one
step further and to analyze the flow within the chain-recurrent set R as well.
Lyapunov 1-forms provide an important tool in applying methods of homotopy
theory to dynamical systems. In the recent papers [4], [5] a generalization
of the Lusternik—Schnirelman theory was constructed which applies to flows
admitting Lyapunov 1-forms.

|
*) M. Farber was partially supported by a grant from the Israel Academy of Sciences and
Humanities; this work was done while M. Farber visited FIM ETH in Zurich.

') T. Kappeler and J. Latschev were partially supported by the European Commission under
grant HPRN-CT-1999-00118 and by the Swiss National Science Foundation.
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The problem of existence of Lyapunov 1-forms was addressed in our
recent preprint [6], where we worked in the category of compact metric spaces,
continuous flows and continuous closed 1-forms. In the present paper we study
the smooth version of the problem: we construct smooth Lyapunov 1-forms for
smooth flows on smooth manifolds. We use Schwartzman’s asymptotic cycles
to formulate a necessary condition for the existence of Lyapunov [-forms in
a given cohomology class. We also show that under an additional assumption
this condition is equivalent to the homological condition introduced in our
previous paper [6].

2.  DEFINITION

Let V be a smooth vector field on a smooth manifold M. Assume that
V generates a continuous flow ®: M x R — M and Y C M is a closed,
flow-invariant subset.

DEFINITION I. A smooth closed 1-form w on M is called a Lyapunov
1-form for the pair (®,Y) if it has the following properties :

(A1) The function ty(w) = w(V) is negative on M — Y ;
(A2) There exists a smooth function f: U — R defined on an open
neighborhood U of Y such that

w

v=4df and dfly=0.

The above definition is a modification of the notion of a Lyapunov 1-form
introduced in section 6 of [5]. The definition of [5] requires that Y consists
of finitely many points and the vector field V is locally a gradient of w with
respect to a Riemannian metric.

Definition 1 can also be compared with the definition of a Lyapunov
1 -form in the continuous setting which was introduced in [6]. Condition (A1)
above is slightly stronger than condition (L.1) of Definition 1 in [6]. Condition
(A2) is similar to condition (L2) of Definition 1 from [5] although they are
not equivalent.

There are several natural alternatives for condition (A2). One of them is:

(A2") The I-form w, viewed as a map w: M — T*(M), vanishes on Y.

It is clear that (A2) implies (A2"). We can show that the converse is true
under some additional assumptions:
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LEMMA 1. If the de Rham cohomology class & of w is integral,
E=lwleH (M;Z), then the conditions (A2') and (A2) are equivalent.

Proof. Clearly we only need to show that (A2') implies (A2). Since & is
integral there exists a smooth map ¢: M — S' such that w = ¢*(df), where
df is the standard angular 1-form on the circle S'. Let o € S' be a regular
value of ¢. Assuming that (A2’) holds it then follows that U =M — o ()
is an open neighborhood of Y. Clearly w|y = df where f: U — R is a
smooth function which is related to ¢ by ¢(x) = exp(if(x)) for any x € U.
Hence (A2) holds.

LEMMA 2. The conditions (A2') and (A2) are equivalent if Y is an
Euclidean Neighborhood Retract (ENR).

Proof. Again, we only have to establish (A2") = (A2). Since Y is
an ENR it admits an open neighbourhood U C M such that the inclusion
iy: U — M is homotopic to iy or, where iy: ¥ — M is the inclusion and
r: U — Y is a retraction (see [3], chapter 4, §8, Corollary 8.7). Pick a base
point x; in every path-connected component U; of U and define a smooth
function f;: U; — R by

X

ﬁ(x):/w, xeU;.

X

The latter integral is independent of the choice of the integration path in U
connecting x; with x. This claim is equivalent to the vanishing of the integral
f», w for any closed loop ~ lying in U. To show this we apply the retraction
to see that ~ is homotopic in M to the loop 7 = ro~, which lies in Y ; thus
we obtain f7 w= fm w = 0 because of (A2'). It is clear that the functions f;
together determine a smooth function f: U — R with df = w|y.

A class of interesting examples can be obtained as follows. Let w be a
smooth closed 1-form on a closed Riemannian manifold M. Consider the
negative gradient vector field V of w, i.e. (V,X) = —w(X) for any vector
field X on M where (-,-) denotes the Riemannian metric. Denote by @ the
flow induced by the vector field V and by Y the set of zeros of w. Then
clearly conditions (A1) and (A2') are satisfied. If either the cohomology class
of w is integral or Y is an ENR then (by the two Lemmas above) w is a
Lyapunov 1-form for the pair (®,Y).
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Our main goal in this paper is to find topological conditions which guarantee
that for a given vector field V on M there exists a Lyapunov 1-form w lying
in a prescribed cohomology class ¢ € H'(M;R).

3. ASYMPTOTIC CYCLES OF SCHWARTZMAN

Let M be a closed smooth manifold and let V be a smooth vector field.
Let ®: M x R — M be the flow generated by V.

Consider a Borel measure 1 on M which is invariant under ®. According
to S. Schwartzman [16], these data determine a real homrology class

A,LL = Au(q)) € H\(M;R)

called the asymptotic cycle of the flow ® corresponding to the measure 1i. The
class A, is defined as follows. For a de Rham cohomology class ¢ € H'(M;R)
the evaluation (£,A,) € R is given by the integral

3.1) @Am:/uwm%
M

where w is a closed 1-form in the class £. Note that (£,.4,) is well-defined,
i.e. it depends only on the cohomology class £ of w, see [16], p.277. Indeed,
replacing w by ' = w + df, where f: M — R is a smooth function, the
integral in (3.1) gets changed by the quantity

1
62 [ Vindu=rim < [ {9 -} duco.
M S— S JM

Here V(f) denotes the derivative of f in the direction of the vector field V
and x-s stands for the flow ®(x,s) of the vector field V. Since the measure
o is flow invariant, the integral on the RHS of (3.2) vanishes for any f. It is
clear that the RHS of (3.1) is a linear function of & € H'(M;R). Hence there
exists a unique real homology class A, € H|(M;R) which satisfies (3.1) for
all £ € HY(M;R).

4. NECESSARY CONDITIONS

We consider the flow @ as being fixed and we vary the invariant measure /.
As the class A, € H;(M;R) depends linearly on p, the set of asymptotic
cycles A, corresponding to all d-invariant positive measures p forms a
convex cone in the vector space H|(M;R).
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PROPOSITION 1. Assume that there exists a Lyapunov 1-form for (®,Y)
lying in a cohomology class § € HY(M;R). Then

for any ®-invariant positive Borel measure p on M ; equality in (4.1) takes
place if and only if the complement of Y has measure zero. Further, the
restriction of £ to Y, viewed as a Cech cohomology class

£ly € H'(Y;R)
vanishes, €|y = 0.

Proof. Let w be a Lyapunov 1-form for (®,Y) lying in the class £.
According to Definition 1, the function uy(w) is negative on M — Y and
vanishes on Y. We obtain that the integral

/ (W) dp = (€, Au)
M

is nonpositive.

Assuming (M —Y) > 0, we find a compact K C M —Y with u(K) > 0;
this follows from the Theorem of Riesz — see e.g. [12], Theorem 2.3(iv),
p. 256. There is a constant ¢ > 0 such that ty(w)|x < —e. Therefore, one has

/ y(w)dpu < —ep(K) < 0.
M
Hence, the value (£,.A,) is strictly negative if the measure p is not supported
in Y.

To prove the second statement we observe (see [19]) that the Cech
cohomology H 1(Y ;:R) equals the direct limit of the singular cohomology

H'(Y:R) = lim H'(W;R),
WOY

where W runs over open neighborhoods of Y. It is clear in view of condition
(A2) that £y =0 € H'(U;R) (by the de Rham theorem). Hence the result

follows.
5. CHAIN-RECURRENT SET R¢

Given a flow ®, our aim is to construct a Lyapunov 1-form w for a pair
(®,Y) lying in a given cohomology class ¢ € H'(M;R). A natural candidate
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for Y is the subset R, = R¢(®) of the chain-recurrent set R = R(®) which was
defined in [6]. For convenience of the reader we briefly recall the definition.

Fix a Riemannian metric on M and denote by d the corresponding distance
function. Given any 6 > 0, T > 1, a (8, T)-chain from x € M to YEM
is a finite sequence Xy = x,xj,...,xy = y of points in M and numbers
fi,...,ty € R such that ; > T and d(x;_| - t;,x;)) < & forall 1 <i < N.
Here we use the notation ®(x,#) = x - ¢. The chain recurrent set R = R(®D)
of the flow @ is defined as the set of all points x € M such that for any
0 >0 and T > 1 there exists a (8, 7)-chain starting and ending at x. The
chain recurrent set is closed and invariant under the flow.

Given a cohomology class £ € H'(M;R) there is a natural covering space
pe: Mg — M associated with £. A closed loop ~:[0.1] — M lifts to a
closed loop in Mg if and only if the value of the cohomology class ¢ on the
homology class [v] € H;(M;Z) vanishes, <§ [v]) = 0. See [19].

The flow @ lifts uniquely to a flow ® on the covering Mg Consider
the chain recurrent set R(®) C Mg of the lifted flow and denote by
R = pf(R((I))) C M its projection onto M. The set Re 1s referred to as
the chain recurrent set associated to the cohomology Class &. It is clear that
R¢ 1s a closed and ®-invariant subset of R. We denote by C¢ the complement
of R¢ in R,

C§:R~R£.

Let us mention the following example illustrating the definition of Re.
Consider a smooth flow on a closed manifold M whose chain recurrent set R
consists of finitely many rest points and periodic orbits. Given a cohomology
class & € H'(M;R), the chain recurrent set R¢ is the union of all the rest
points and of those periodic orbits whose homology classes z € H;(M;Z)
satisfy (£,z) = 0.

In general, if the homology class z € H|(M;Z) of a periodic orbit satisfies
(§,2) = O then the orbit belongs to Re. However, it may happen that the
points of a periodic orbit belong to R although (£,z) # 0 ; such an example
is described in [6], example after Definition 5.

A different definition of R. which does not use the covering space A715
can be found in [6].

To state our main result we also need the following notion.

A (6,T)-cycle of the flow @ is defined as a pair (x,¢), where x € M and
t > T such that d(x,x-f) < ¢. If § is small enough then any (§,T)-cycle
determines in a canonical way a unique homology class € H;(M;Z) which
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Xt

is represented by the flow trajectory from x to x-¢ followed by a “short” arc
connecting x -t with x. See [6].

6. THEOREM

THEOREM 1. Let V be a smooth vector field on a smooth closed manifold
M. Denote by ®: M x R — M the flow generated by V. Let £ € H'(M;R)
be a cohomology class such that the restriction &|g., viewed as a Cech

cohomology class &g, € H l(Rg;R), vanishes. Then the following properties
of & are equivalent :

(I)  There exists a smooth Lyapunov 1-form for (®,R¢) in the cohomology
class § and the subset C¢ is closed.

(I) For any Riemannian metric on M there exist 6 > 0 and T > 1
such that the homology class z € H|(M;Z) associated with an arbitrary
(0,T)-cycle (x,t) of the flow, with x € C¢, satisfies (§,z) < —1.

(IIl) The subset C¢ is closed and there exists a constant n > 0 such

that for any ®-invariant positive Borel measure |1 on M the asymptotic cycle
A, = A (D) € H(M;R) satisfies

(6.1) <‘£7 A/1,> <-n- :“(Cf) .

(IV) The subset C¢ is closed and for any ®-invariant positive Borel
measure . on X with u(Ce) > 0, the asymptotic cycle A, = A, (P) €
H\(M;R) satisfies

(6.2) (€, A,) <0.

The main point of this result is that it gives sufficient homological
conditions for the existence of a Lyapunov 1-form in the cohomology class £.
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Condition (6.1) can be reformulated using the notion of a quasi-regular
point. Recall that x € X is a quasi-regular point of the flow ®: X x R — X
if for any continuous function f: X — R the limit

—00

(6.3) lim 1/f()c-s)ds
I Jo

exists. It follows from the ergodic theorem that the subset Q C X of all
quasi-regular points has full measure with respect to any ®-invariant positive
Borel measure on X, see [11], p. 106. From the Riesz representation theorem,
see e.g. [15], p.256, one deduces that for any quasi-regular point x € Q
there exists a unique positive flow-invariant Borel measure p, with p(X) =1
satisfying

(6.4) tlim %/f(x-s)ds:/fa,’u)C
— 00 Jo X

for any continuous function f. We use below the well-known fact that any
positive, ®-invariant Borel measure g with p(X) = 1 bzlongs to the weak*
closure of the convex hull of the set of measures u,, x € Q, see [11], p. 108.

If the subset C¢ C X is closed, and hence compact, one can apply the
above mentioned facts to the restriction of the flow to C¢. Let w be an
arbitrary smooth closed 1-form lying in the cohomology class &. For any
quasi-regular point x € C¢ of the flow ®|c, one has

1
(6.5) lim — /
t—oo f

X

Xt

1
w = lim -1—/ Ly(w)(x - s)ds = / LV(W)de = <£7A/.Lx> :
t—oo I [y M

We therefore conclude that condition (III) is equivalent to:

(II") The subset C¢ is closed and there exists a constant 1 > O such that
Jor any quasi-regular point x € C¢,

X1

1
(6.6) lim - [ w < -7,

t—oo t x

where w is an arbitrary closed 1-form in the class &.

The value of the limit (6.6) is independent of the choice of a closed 1-form
w ; the only requirement is that w lies in the cohomology class £.

In the special case { = 0 the set C¢ is empty and R = R.. The above
statement then reduces to the following well-known thecorem of C. Conley —
see [1] and [18], Theorem 3.14:
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PROPOSITION 2 (C. Conley). Let V be a smooth vector field on a smooth
closed manifold M. Denote by ®: M x R — M the flow generated by V
and by R the chain recurrent set of ®. Then there exists a smooth Lyapunov
function L: M — R for (®,R). This means that V(L) < 0 on M — R and
dL =0 pointwise on R.

Proposition 2 is used in the proof of Theorem 1. As we could not find a
proof of this statement in the literature we present one in the appendix.

Next we state a simple corollary of Theorem 1.

COROLLARY 1. Let ®: M x R — M be a smooth flow on a closed
manifold M. Any de Rham cohomology class ¢ € H' (M;R) satisfying

(r=0€H (MR),

where R = R(®) denotes the chain recurrent set of the flow, contains a
Lyapunov 1-form w for (®,R).

We emphasize that vanishing £|z = 0 is supposed to happen in the Cech
cohomology. Corollary 1 follows directly from Theorem 1 since under the
assumption &|g = 0 the set R coincides with R and so the set C¢ is empty.
Corollary 1 admits also a simple proof independent of Theorem 1 based on
Conley’s Theorem (Proposition 2 above).

7. EXAMPLES

Here we describe a class of examples of flows for which there exists a
cohomology class ¢ satisfying all the conditions of Theorem 1.

Let M be a closed smooth manifold with a smooth vector field v. Let
Y: M xR — M be the flow of v. Assume that the chain recurrent set R(W)
is a union of two disjoint closed sets, R(W) = RiUR, and RiNR, = .
With these data we will construct a flow @ on

X=MxS

such that Re(®) = Ry x §°, C¢ = Ry x S'. Here £ € HY(X;Z) denotes the
de Rham cohomology class of the 1-form —df where 6 € [0,27] denotes
the angle coordinate on the circle S'. S° ¢ S' is a two-point set.



12 M. FARBER, T. KAPPELER, J. LATSCHEV AND E. ZEHNDER

We will need two vector fields w; and w, on S', w; = cos(0) - g@ and
wy = 5(% The field w; has two zeros {p;,p} = S° C S! corresponding to
the angles § = 7/2 and 6 = 37/2.

Let fi: M — [0,1], where i = 1,2, be two smooth functions having
disjoint supports and satistying fi|g, = 1, |z, = 1.

Consider the flow ®: X x R — X determined by the vector field
V=v+fiw + fHws.

Any trajectory of V has the form (y(z), 0(¢)), where (f) = v(y(1)), i.e. ()
is a trajectory of wv. It follows that the chain recurrent set of V is contained
in R(W) x S'. Over R, we have the vertical vector field w, along the circle
which has two points S° C S' as its chain recurrent set. Over R, we have
the vertical vector field w, which has all of S' as the chain recurrent set.
We see that R x S° = Re(®), Ry x S' = C¢. Hence

£lre =0

and C¢ is closed. One easily checks that condition (III) of Theorem 1 (and
hence the other conditions as well) is satisfied.
Further examples can be found in section 7 of our paper [6].

8. PROOF OF THEOREM 1

The implication (I) = (II) follows from the proof of Proposition 4 in [6].

(ID=-(I). By [6], Theorem 2, the set C¢ is closed. Now we want to
show that the inequality (6.2) is satisfied for any positive ®-invariant Borel
measure p on X with p(C¢) > 0. Fix a closed 1-form ¢« in the cohomology
class £&. By Lemma 6 from [6], there exist constants o >0 and (3 > 0 such
that for any x € C¢ and r > 0, one has

X1
/ w< —at+ 0.
X

Set to = 2(3/cv. Then for any x € C¢ and r > £, we have

(8.1) l/m < -2
. [ w < >

With any quasi-regular point x € C¢ one associates in a canonical way a
positive @-invariant Borel measure p, on C¢, see above. It has the property
that
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1 X1
(8.2) lim — w :/ Ly(w) dpy .
M

t—)oot'x

From (8.1) and (8.2) one obtains
(8.3) (&, A,) < —% <0

for any quasi-regular point x € Cg¢. According to [I1], p.108, any
positive ®-invariant Borel measure p with pu(M) = w(C) = 1 be-
longs to the weak™ closure of the convex hull of the set of measures
{py; x € Ce¢ is quasi-regular} ; hence

(8.4) (& A < —% <0.

It is well known that every (finite) positive d-invariant Borel measure
is supported on R = R¢ U C¢, see e.g. [13], Proposition 4.1.18, p.141. As
Re and C¢ are closed and flow-invariant we may write p = p + p2 where
1, pp are @-invariant and g, is supported on Rg, while p, is supported
on Cg. It follows from (8.4) that (£, A,,) < —5 - 12(C¢). Further, we claim
that (£, A, ) = O for the following reason. Since [z, = 0 (as a Cech
cohomology class), for any smooth closed 1-form w on M representing &
there exists a smooth function f defined on an open neighborhood of R¢ such

that w = df near R¢. Then we obtain
(8.5) (€A = / lw) dppy = / ol dp = / V(f)dp =0.
Jm Re Re

The last equality holds since the measure p; is @®-invariant (see e.g.
[16], Theorem on page 277). Finally, as A, = A, + A,, we see that
(€, A,) < —n-(Ce¢) with n = /2, which completes the proof of (II)=-(III).

The implication (IIT)=-(IV) is obvious.

We are left to show the implication (IV)=-(I). Our argument uses the
technique of Schwartzman [16]. It is to show that under the conditions (IV)
there exists a smooth Lyapunov 1-form for (®,R¢) in the class £. In a first
step we prove that there exists a smooth, closed 1-form w; in the class ¢
so that ty(w;) <0 on C¢. To this end, denote by D C Co(M) the space of
functions

D ={V(f); f: M — R is smooth}
and by C~ the convex cone in C°(M) consisting of all functions f € C°(M)
with
J(x) <0 forall xe Ce.
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As C¢ is compact, the cone C~ is open in the Banach space C°(M)
of continuous functions on M, endowed with the usual supremum norm.
Choose an arbitrary smooth, closed 1-form w in the class €. Assume that
C™ N(y(w)+ D)= @. It then follows from the Hahn-Banach Theorem (cf.
[15], p.58) that there exists a continuous linear functional A: CO(M) — R
such that

A|Lv(w)+D >0 and AIC* <0.

Since ty(w)+D is an affine subspace and A is bounded on it from below, we
obtain that A restricted to D vanishes. According to the Riesz representation
theorem (cf. [12]), there exists a Borel measure p on M so that

A(.f)—/Mfdu

for any f € C°(M). By Theorem [16], p.277, the condition Alp = 0 implies
that y is ®-invariant. On the other hand, Alo- < O implies that plc, > 0.

Denote by x: M — R the characteristic function of C¢ and let v = y - .
As C¢ is ®-invariant v is a ®-invariant Borel measure and (unlike, possibly,
() is positive. Note that ¢ — v is a ®-invariant Borel measure supported on
R¢ (again using that any ®-invariant measure is supported on R = R: U C¢).
Thus, it follows from our assumption {|z, = 0, by the same argument which
led to (8.5), that

<€¢ Alt—u> =0.

Since A,_, = A, — A, we find

(€& A) = (€, A,) = / (@) d = A(f) > 0

M

where f = 1y(w), contradicting condition (6.2). This means that the intersection
C™N(y(w)+D) cannot be empty, i.e. there exists a smooth function g: M — R
so that the smooth closed 1-form w; = w+dg is in the class £ and satisfies

ty(wr) <0 on Cg.

This completes the first step of the proof.

To finish the argument, we now adjust w; on the ccmplement of C¢ so
that the resulting form is a Lyapunov 1-form for (®,R¢). As ty(w;) <0 on
Ce and Cg¢ is compact, there is some open neighborhcod W, of C¢ such
that W, MR = & and ty(w;) <0 on W;. Since §|RE = 0, there exists an
open neighborhood W, of R¢ such that W, NW, = & and a smooth function
g: M — R such that wyw, = dg and dg|w, = 0. By Proposition 2 there
exists a smooth Lyapunov function L: M — R for (®,K). Now consider



SMOOTH LYAPUNOV 1-FORMS 15

(8.6) wr =w; —dg+ AdL,

where A > 0 remains to be chosen. Clearly, the form w, is smooth and
closed and represents the class £. For any X > 0 it satisfies ws|w, = d(AL),
because w; — dg vanishes on this set. In particular, w, has property (A2) of
a Lyapunov 1-form for the pair (®,R;). Note also that for all positive A we
have ty(ws) < 0 on W, (by the construction of W;) and on W, — R, because
w — dg vanishes there, whereas V(L) < 0. As the complement of W; U W,
is compact and disjoint from R,

—d
I<X:=14+ sup |—L—V(L—i)l<oo,

x§§ wWiuWw, I V(L)l
and ty(wp) <0 on M —Re for all A > Ao, showing that for such choices of
A the form w, also has property (A1) of a Lyapunov 1-form for (®,R).
This completes the proof of the implication (IV)=>(I) and hence the proof of
Theorem 1. [

APPENDIX : PROOF OF PROPOSITION 2

Recall from [1, I 6.2.A] the alternative characterization of the chain
recurrent set R as

R = ﬂ {AUA* | (A,A") is an attractor-repeller pair}.

Here a closed, flow-invariant subset A C M is called an attractor if it admits
a neighborhood U such that A is the maximal flow-invariant subset in the
closure of U -[0,00). The dual repeller A* is the set of all points x € M
whose forward limit set is disjoint from A (cf. [1, II 5.1]). Equivalently,
(A,A*) is an attractor-repeller pair if and only if both A and A* are closed
flow invariant subsets of M and the forward (resp. backward) limit set of
every point x ¢ AU A* is contained in A (resp. A*) — see [14, Prop. 1.4].

As M is a closed manifold and hence separable, the number of distinct
attractor-repeller pairs is at most countable (cf. [1, II 6.4.A]). Let {(A;, A})}i>1
be some enumeration. For each n > 1, the construction of Robbin and Salamon
(Prop. 1.4. of [14] and the remark following it) yields a smooth function
fu: M — 0,11 with £7'0) = A,, f,7'(1) = A* and df(V) < 0 on the
complement of A, UA’. Let ¢, be positive constants such that in a fixed
finite atlas of charts all partial derivatives of f, of order < n are bounded
pointwise in absolute value by ¢,. Then
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L) = i.ﬁxx)

2"cy

n=1

is a smooth function having the required properties. In particular, as for any
n > 1 the differential df, vanishes on A, UA*, the differential of L vanishes
on R. [J
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