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ELEMENTARY CONSTRUCTION OF
EXHAUSTING SUBSOLUTIONS OF ELLIPTIC OPERATORS

by Terrence NAPIER *) and Mohan RAMACHANDRAN T)

ABSTRACT. By a theorem of Greene and Wu [GreW], a noncompact connected
Riemannian manifold admits a C* strictly subharmonic exhaustion function. Demailly
provided an elementary proof of this fact in [D]. A further simplification of Demailly’s
proof and some (mostly known) applications are described. Applications include the
fact that the holomorphic line bundle associated to a nontrivial effective divisor on a
compact connected complex manifold X admits a C> Hermitian metric with positive
scalar curvature.

0. INTRODUCTION

Let (M,g) be a Riemannian manifold of dimension n. The Laplace

operator A, for g is given in local coordinates (xi,...,x,) by
1 & 9. —0p
Ajp = — —|d'"vVG==L],
9% \/5 Z 8)6,’ lg an]

j=1
for every function ¢ of class C?; where
G=det(g;) and  (¢") = (gp)~".

A C? real-valued function ¢ is called subharmonic (strictly subharmonic)
with respect to g if Agp > 0 (respectively, Ay > 0). A real-valued function
p on a topological space X is called an exhaustion function if

{xeX|px)<a}ccX VaeR.

*) Research partially supported by NSF grants DMS9971462 and DMS0306441.
) Research partially supported by NSF grant DMS9626169.
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A special case of the main result of this paper is the following:

THEOREM 0.1 (Greene and Wu [GreW]). A connected noncompact Rie-
mannian manifold M admits a C* strictly subharmonic exhaustion function.

Greene and Wu actually produced a proper embedding by harmonic
functions and obtained the above as a consequence. Thus their proof is
not elementary. A related construction is that of Ohsawa [O] of a strongly
n-convex exhaustion function on an n-dimensional complex space with no
compact irreducible components. Demailly [D] provided an elementary (and
relatively simple) proof of Theorem 0.1 (his proof is written for the case of
the Laplace operator of a Hermitian metric, but it can be modified to give
the above theorem). His method is a version of the classical idea in Runge
theory in one complex variable of pushing singularities to infinity using a local
construction. His local construction, although short, requires some calculations
which are not completely transparent.

Theorem 0.1 is of some importance. It implies, for example, that the top
homology of an open manifold vanishes (cf. Theorem 2.2 below). Demailly
gave his version for applications to ¢g-convex spaces. It can also be used
to give a simple proof of the Behnke-Stein approximation theorem for open
Riemann surfaces. We hope to return to this question elsewhere.

In this paper, we give a local construction which is very simple and
transparent. It is based on the following observation which is of some
independent interest.

BUMP FUNCTION LEMMA. Let B be a domain in M, let K be a compact
subset of B, and let W be a nonempty open subset of B\ K. Then there exists
a nonnegative C* function o on M such that « =0 on M\ B, a >0 and
Aga >0 on K, and Agoe >0 on M\ W.

To conclude this introduction, we give an outline of the ideas in the proof
of the main theorem. For the bump function lemma, we may assume without
loss of generality that W CC B CC M and we may fix a domain U and a
nonnegative C*° function p on M such that

KUWcUccB, p>0onU, and p<Oon M\B.

Replacing p by an approximating Morse function (see, for example, [GoG]),
we may also assume that p has only isolated critical points in B. Fix a
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regular value € >0 for p with p > ¢ on U and let V be the component of
{xe M| p(x) > e} containing U. Thus U CC V CC B.

We will say that a mapping ®: N — N of a connected smooth manifold
N onto itself has compact support if ® is equal to the identity outside a
compact set. Given two points p,q € N, there exists a C*> diffeomorphism
®: N — N with compact support such that ®(p) = g (for the set of points
g in N to which p can be moved by such a diffeomorphism is open and
closed). For distinct points py,...,Pm,q1,---,qn in N, one gets such a @ with
®(p;) = g; for j=1,...,m by forming a compactly supported diffeomorphism
®; of N\ {pi,..,Djs-- sPm:sq1,---,Gj,...,qn} moving p; to g; for each
j=1,...,m and letting ® be the composition of the extensions by the
identity for ®y,...,®,,.

Thus we may move into W the critical points of p in V by a
diffeomorphism with compact support in V, and hence we may assume that
Vp # 0 at each point in V\ W D K. For R > 0, let 3 = f? — ¢R¢. Then

A3 = R (Ayp + R|Vp[*) > 0

on V\ W, provided R > 0. Finally, fixing a C* function x: R — R such
that x(r) =0 for + <0 and X'(¥) > 0 and x"(r) > 0 for r > 0, we get a
nonnegative C°° function

o= JXB) onV,
o on M\'V.

On V\ W, we have a > 0 and
Agor=X'(B)AgB + X" BV > 0.

It follows that « has the required properties.

For B a coordinate n-dimensional rectangle (or another nice set), one can
easily construct such a function « explicitly (see Lemmas 1.6—1.8). Moreover,
such bump functions are all that are needed to reduce the construction of a
strictly subharmonic exhaustion function to point set topology (so the proof
is very elementary).

One pushes the bad set off to infinity (in the usual way) as follows. Given
a point p € M, there is a locally finite sequence of relatively compact domains
{B,}52, with

v=1
pEB and B,NB, 1 #2 forv=1,2,3,....

Hence there exist nonempty disjoint open sets {W, }2°, such that p € N, =
Wo CC By and W, CC B, NB,4 forv=1,2,3,... and, as in the lemma,
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C*° bump functions {a,}°, such that, for each v = 1,2,3,..., we have
suppay, C B, o, >0 and Ager, >0 on W,_y, and Ay, >0 on M\ W,
For constants 0 <r) < r, < r3 < --+, we get a C* subharmonic function

00
/Bp = _—>_ ryo,
v=1

with supp 8, C 0, =J,—, B, and 8, > 0 and A,3, > O on the neighborhood
N, of p. Paracompactness implies that we can form a locally finite covering
{N,} of M by such sets and a corresponding locally finite collection {Q,,}.
Thus, for R; > 0 for j = 1,2,3,..., we get a C* strictly subharmonic
exhaustion function

@ = ZRJ‘,BPJ. .
j=1

In fact, the above arguments actually give the following analogue of Urysohn’s
lemma:

THEOREM 0.2 (cf. Theorem 1.13). Suppose U is a domain in a connected
noncompact Riemannian manifold M, C is a connected noncompact closed
subset of M with C C U, and p is a positive continuous function on M.
Then there exists a nonnegative C* subharmonic function ¢ on M such that
¢=0on M\U and ¢ > p and Ayp > p on C.

REMARK. The existence of such a set C C U is & necessary condition
(see the remarks following Theorem 1.13). In the terminology of [EM], U has
an exit to oo (relative to M).

A detailed proof of Theorem 0.1 (in fact, a proof of the existence of
an exhausting subsolution for a more general elliptic operator) appears in
Section 1. Some (mostly known) applications are described in Section 2. These
include the fact that the holomorphic line bundle associated to a nontrivial
effective divisor on a compact connected complex manifold X admits a C™
Hermitian metric with positive scalar curvature (Theorem 2.3).

ACKNOWLEDGEMENTS. We would like to thank Professors Narasimhan
and Vust for helping improve the exposition of the paper.



EXHAUSTING SUBSOLUTIONS OF ELLIPTIC OPERATORS 371
1. CONSTRUCTION OF EXHAUSTING SUBSOLUTIONS

Throughout this section, M will denote a connected smooth manifold of
dimension n and A will denote a second order linear elliptic differential

operator with continuous coefficients. Thus, in local coordinates (xi,...,x,),
n n
0? 0
A= aij ——— + bi — +c;
l; 4 axian ; ' 8xi

where a; for each i and j, b, for each i, and ¢ are continuous real-
valued functions and (a;) is a symmetric matrix-valued function with positive
eigenvalues at each point.

Theorem 0.1 follows from the theorem below if we choose for A the
Laplacian A, of a Riemannian metric g and, for p, a positive continuous
exhaustion function.

THEOREM 1.1. If M is noncompact and p is a positive continuous function
on M, then there exists a C* function ¢ on M such that ¢ > p and Ap > p.

The main step in the proof is the following:

PROPOSITION 1.2. Suppose K is a compact subset of M, U is a component
of M\ K which is not relatively compact in M, and p € U. Then there exists
a C* function o such that

1) >0 and Aa >0 on M,
(i1) suppa C U,
(iii)) a(p) > 0, and
(iv) Aa(p) > 0.

REMARK. Theorem 1.1 also holds for a second order locally uniformly
elliptic linear differential operator A with locally bounded (not necessarily con-
tinuous) coefficients. One applies the corresponding version of Proposition 1.2
in which the property (iv) is replaced with Aa > 1 on a neighborhood of p.
The generalizations considered in this paper (Theorem 1.10 and Theorem 1.13)
also hold for such an operator A.

The following equivalent version of Proposition 1.2 implies that a compact
set which 1s fopologically Runge is convex with respect to functions «
satisfying Ao > 0 :
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PROPOSITION 1.3. Let K be a compact subset of M whose complement
has no relatively compact components. Then, for each point p € M\ K, there

is a C> nonnegative function o on M such that Aac >0 on M, a =0 on
K, a(p) >0, and Aa(p) > 0.

REMARK. If the coefficients are (for example) C' and the constant term
¢ <0 (for example, if A = A,), then a nonconstant subsolution on a domain
cannot attain a positive maximum and, therefore, the ccnverse will also hold.
That is, if such a function « exists for some point p € M \ K, then the
component of M\ K containing p is not relatively compact.

Proposition 1.2 and Proposition 1.3 together with standard arguments in
Runge theory give Theorem 1.1. Proofs are provided for the convenience of
the reader. For this, we need two elementary observations (cf. Malgrange [M]
or Narasimhan [N]).

LEMMA 1.4. Let X be a noncompact, connected, locally connected, locally
compact, Hausdorff topological space. If K is a compact subset of X and K
is the union of K with all of the relatively compact components of X\ K, then
K is compact, X \K has only finitely many components, and each component
of X\ K has noncompact closure.

Proof. We may assume without loss of generality that K # @. Since X
i1s Hausdorff, K is closed and, since X is locally connected, the components
of X\ K are open. It follows that K is a closed set whose complement has
no relatively compact components (since X \I? is the union of components
of X\ K with noncompact closure).

Since X is locally compact Hausdorff, we may choose a relatively compact
neighborhood Q of K in X. The components of X\ K are open and disjoint,
so only finitely many meet the compact set 0Q C X \ K. By replacing Q2
by the union of Q with all relatively compact components of X \ K meeting
0Q, we may assume that no relatively compact component of X \ K meets
0Q. On the other hand, every component E of X \ K must satisfy

ENK=0E+3.

For E is open and closed relative to X \ K, so OF C K, while E # X,
so OE = E\E # @ (E cannot be both open and closed in the connected
space X). It follows that, if £ meets X \ Q, then E meets 0Q and hence E
is not relatively compact in X. Thus
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X\QCE]U"'UEm

for finitely many components E,...,E, of X\ K, none relatively compact
in X, and K C Q CC X. The claim now follows. [

LEMMA 1.5. Let X be a second countable, noncompact, connected, locally
connected, locally compact, Hausdorff topological space. Then there is a
sequence of compact sets {K,}52, such that X = J,_, K,, and, for each v,

K, CK,+1 and E,, =K, , where I/(\,, is defined as in Lemma 1.4.

Proof.  'We may choose a sequence of compact sets {H,} such that
X=U 2 H, Weset K; = H,. Given K,, we may choose a compact set

K,’/le such that H, UK, C K,’/+1 and set K, = I?,’/: This yields the
desired sequence. [

Proof of Theorem 1.1. By Lemma 1.5, we may choose a sequence of
nonempty compact sets {K,} such that M = (J°° K, and, for each v,

K, C K,41 and M\ K, has no relatively compact components. Set Ky = &.

Given p € M, there is a unique v = v(p) with p € K, | \ K, and
we may apply Proposition 1.3 to get a C*° nonnegative function «, and a
relatively compact neighborhood V, of p in M\ K, such that Acy, > 0 on
M, o, =0 on K,, and o, > p and Aa, > p on V, (one obtains the last
two conditions by multiplying by a sufficiently large positive constant). Thus
we may choose a sequence of points {p;} in M and corresponding functions
{ap,} and neighborhoods {V,,} so that {V,,} forms a locally finite covering
of M (for example, one may take {p;} to be an enumeration of the countable

(o]
set U,C/)O:o Z, where, for each v, Z, is a finite set of points in M \ K, such

that {V,},cz, covers K, \IO(,, ). The collection {supp,,} is then locally
finite in M since suppa,, C M\ K, whenever p; ¢ K,. Hence the sum
> ie @p, is locally finite and, therefore, convergent to a C°° function @ on
M satisfying ¢ > «;,, > p and Ap > Awy,, > p on V), for each k. Therefore,
since {V, } covers M, we get ¢ > p and Ap >p on M. []

It remains to prove Proposition 1.2.

LEMMA 1.6. Each point p € M has a relatively compact connected
neighborhood V' such that, for each point q € V, there is a C* nonnegative
Junction p on M such that p =0 on M\'V, p >0 on V, and q is the
unique critical point of p in V (hence p(q) = maxp).
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Proof. We may assume without loss of generality that M is an open
subset of R”, p is in the cube V =(—1,1) x --- x (--1,1), and V CC M.
Let ¢ = (aj,...,a,) € V and, for each i = 1,...,n, fix a C* function
Xi: R = [0,00) such that \; =0 on R\ (—1,1), \; >0 on (—1,1), and a;
is the unique critical point of A; in (—1,1); for example, the function

(t — a;)* .
o {2 s
0 i e > 1.

The function p given by
n
p) = )  Vx=(u,...,.x)eM
then has the required properties. [

LEMMA 1.7. Let ¢o: M — (r,s) C R be a C? function, let K be a
compact subset of M which does not contain any critical points for ¢, and let
x: (r,s) = R be a C? function satisfying X" > |x'| and x" > |x|. Then, for
every € and R with 1> ¢ >0 and R > 0, we have A[x(Rp)] > eR* X" (Ryp)
on K.

Proof. Locally, we have

A= Za,]8 % +Zb

(with a; = aj;). Hence, for R > 0, we have

62 " 26@0‘10
G, T 2 WX RO 5o

AR =Y a; X' (Rp)R
+ bix (Rso)Ra—xi + ex(Rp)

dp Do
_ p2. N
= RX"(Rp) Y aij - o

2

+ Ry (Ro) [Z a 88 ot > b

Since A is elliptic with continuous coefficients and d¢ # 0 at each point in
the compact set K, it follows that there exist constants 6 > 0 and N > 0
(which do not depend on R) such that, at each point in K,

] + cx(Ryp) .

l
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Alx(Rp)] > R*5X"(Rp) — RIX' (RP)|N — N|x(Rp)| > x"(Rp)(OR> — RN —N).

We have 6R*> — RN — N > eR* for 16 > ¢ >0 and R > 0, so the claim
follows. []

LEMMA 1.8. There exists a C*> function x: R — R such that
(1) x(©) =0 for t <0, and
(i) x"(@ = x'®) = x() >0 for t>0.

Proof. For example, if a,b > 1, then the C*° function

_ Jexp(at—(b/n)) ift>0
MQ_{O if 1< 0

satisfies (i) and (ii). [

Lemmas 1.6-1.8 allow one to produce bump functions which are subsolu-
tions outside a small set. To push the bad set off to infinity, we require chains
of such bump functions. For this, we recall an elementary fact from point set
topology. It is convenient and instructive to have this fact in a form which is
slightly stronger than is needed at present.

LEMMA 1.9. Let X be a connected, locally connected, locally compact,
Hausdorff topological space, let B be a countable collection of connected
open subsets which is a basis for the topology in X, and let U be a connected
open subset which is not relatively compact in X. Suppose that there exists a
connected noncompact closed subset of X which is contained in U. Then

(1) for any connected noncompact closed subset C of X with C C U, there
exists a sequence of connected open subsets {U,} of X such that C C U,
U=U,_, Uy, and, for each v, U, is noncompact and U, C U,y ; and

(i1) for each point p € U, there exists a sequence of basis elements {Bj}
which tend to infinity (i.e. {B;} is a locally finite family in X) such that
P € By and, for each j, B CC U and B;N B # &.

If, in addition, X is locally path connected, then
(i) for each point p € U, there is a proper continuous map ~: [0, 00) — X
with ~v(0) = p and ([0,00)) C U (i.e. a path in U from p to o).

REMARK. Conversely, each of the properties (ii) and (iii) clearly implies
the existence of a connected noncompact closed subset of X which is contained
in U.
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Proof. We first observe that there is a sequence of connected open subsets
{Q,} of U such that U =J,—, Q, and, for each v, Q, CC Q,,. For we
may choose a covering of U by a sequence of basis elernents {G;} which are
relatively compact in U. For each v, let I', be the cornected component of
G U---UG, containing G;. Then I' = JTI', is equal to U. For if p € rnu,
then p € G; for some j and G; must meet I', for some p. Therefore, for
v > max(j, 1), G;UTI', is a connected subset of G;U---UG, containing G,
and hence

peG CT,CT.

Thus T is both open and closed relative to U and is therefore equal to U.
A suitable subsequence of {I',} (chosen inductively) will then have each
term relatively compact in the next term, as required. We may also choose
a sequence of open subsets {@©,} such that X =|J -, ©, and, for each v,
O, CCO,4. Set Q) =0y = 0 =0.

Next, we observe that, for any set C as in (i), there is a countable locally
finite (in X) covering Ac of C by basis elements which are relatively compact
in U. For we may take Ac = |50, AY, where, for zach v = 1,2,3,...,
A(C”) is a finite covering of the compact set C ICH \©, _1) by basis elements
which are relatively compact in U\ ©,_,.

For the proof of (i), we may choose the sequence {Q, } so that Q;NC # &.
Let Cyo = C and Qy = Uy = &. Given connected open sets Uy,...,U, and
connected closed sets Cp,...,C, such that, for py =1,...,v, we have

Q,  UuC,.,CcU,cU,=C,CU

(which holds vacuously if v = 0), we may choose U,; to be the union
of those elements of the collection A?Q,,L iC, which meet the connected
noncompact closed set Q, UC, and set Corr = U,.. Proceeding, we
get a sequence {U,} with the required properties.

For the proof of (ii), we may fix a connected noncompact closed subset
C of X with p € C C U (for this, we may take {U,} as in (i) and let
C = U, for some v > 0). For each point ¢ € C, there is a finite sequence
of elements By,...,B; of Ac which forms a chain from p to q; that is,
pPEB, g€ By, and BiNBjy # @ for j=1,...,k—1 (we will call k£ the
length of the chain). For the set E of points ¢ in C for which there is a
chain from p to ¢ is clearly nonempty and open relative to C. On the other
hand, E is also closed because, if g € E, then g € B for some set B € Ac
and there must be some point r € BN E. A chain By,...,B; from p to r
yields the chain By,...,B;,B from p to g. Thus £ = C. Observe that if
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g € E and By,...,B; is a chain of minimal length from p to ¢, then the
sets By,..., By are distinct.

Now since C is noncompact and closed, we may choose a sequence of
points {g,} in C with g, — oo in X (for example, ¢, € C\©, for each v)
and, for each v, we may choose a chain B(l"), e ,Bg:) of minimal length
from p to g, . Since the elements of Ac are relatively compact in U and
Ac is locally finite in X, there are only finitely many possible choices for
B](-”) for each j (only finitely many elements of Ac will be in some chain
of length j from p). Moreover, for each fixed j € N, we have k, > j for
v > 0, because the set of points in C joined to p by a chain of length < j is
relatively compact in C while g, — oo. Therefore, after applying a diagonal
argument and passing to the associated subsequence of {g,}, we may assume
that, for each j, there is an element B; € A¢ with B}”) = B; for all v>> 0.
Thus we get an infinite chain of distinct elements {B;} from p to infinity as
required in (ii) (local finiteness in X is guaranteed since A¢ is locally finite
and the elements {B,} are distinct).

Finally, suppose X is locally path connected. Then the sets {B;} as in (ii)
are path connected and, setting pyp = p and, choosing p; € B;N B for each
j=1,2,3,..., we may take ~y|j_i; to be a path in B; from p; | to p; for
each j. [

Proof of Proposition 1.2. We first observe that, if V is a set with the
properties described in Lemma 1.6, D is a compact subset of V, and W
is a nonempty open subset of V \ D, then there is a nonnegative C>
function 3 with compact support in V such that A3 > 0 on M\ W
and 3 > 0 and A > 1 on D. For we may choose a point ¢ € W,
a C* nonnegative function p on M which is positive on V and has unique
critical point ¢ in V, a C* function y on R as in Lemma 1.8, and a
constant € > 0 with p > ¢ on D. By Lemma 1.7 (applied to the compact
set K ={xe M\W | px) >e} C V\W), for R > 0, the function
8 = x(R(p — €)) will have the required properties.

Next, by Lemma 1.9, given a point p € U, there is a locally finite (in X)
sequence of relatively compact open subsets {V,,} of U such that p € V; and,
for each m, V,, has the properties described in Lemma 1.6 and V,,N\V,,;| # &.
Hence we may choose a sequence of disjoint nonempty open sets {W,}
such that p € Wy CC V; and, for each m > 1, W,, CC V,, N V1.

By the first observation, there is a sequence of nonnegative C°° functions
{Bn}o., such that, for each m, 3, is compactly supported in V,,, A3, >0
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on M\ W, and §, >0 and AB, > 1 on W,_;. We will choose positive
constants {R,} inductively so that, for each m =1,2,3,...,

- >0 on M\ W,,
A(ZRJ‘@) 20 on M}
= >1 on Wj.

Let Ry > 1. Given Ry,...,R,_; > 0 with the above property, using the fact
that AG,, > 1 on W, _;, we get, for R, > 0,

A(ZR,[);) >1 on Wm—l .
j=1

On M\ (W, UW,) we have A3, >0 and hence

(ZR,@) > A<

On W,, the above middle expression, and hence the expression on the left,
is greater than 1. Proceeding, we get the sequence {R,}. The sum > R,.(3,
is locally finite in X and the sequence of sets {W,,} is locally finite in X,
so the sum converges to a function « with the required properties. L]

m—1

ZR][}/> >0,

A slight modification of the proof of Theorem 1.1 gives the following
more general version:

THEOREM 1.10. Suppose K is a compact subset of M whose complement
M\ K has no relatively compact components, p is a positive continuous
Junction on M, and W is a neighborhood of K in M. Then there exists a
C* function ¢ on M such that

(1) >0 and Ap >0 on M,

(i) ¢ > p and Ap >p on M\ W,

(i) ¢ =0 on K, and

(iv) ¢ >0 and Ap >0 on M\ K.

Proof. We proceed as in the proof of Theorem 1.1 but now with Ky = K.
By Lemma 1.5, we may choose nonempty compact sets {K,} such that
M= USOZI K, and such that, for each v =0,1,2,..., we have K, C K,
and M\ K, has no relatively compact components.
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Given a point p € M\K, there is a unique v = v(p) > 0 with p € K, 11 \K,,
and, by Proposition 1.3, there is a C* nonnegative function ¢, and a relatively
compact neighborhood V, of p in M\ K, such that Aaj, >0 on M, a, =0
on K, , and o, > p and Aa, > p on V,. Thus we may choose a sequence of
points {pi} in M\ K and corresponding functions {c,,} and neighborhoods
{V,.} so that {V, } forms a covering of M\ W which is locally finite in M
(as in the proof of Theorem 1.1, one may take {py} to be an enumeration

of U;O:O Z, where, for each v, Z, is a finite set of points in M\ (WUK,)

such that {V,},cz, covers K, i\ (W UIO(,,)). The collection {suppa,,} is
then locally finite in M and the locally finite sum E,C:il ay, converges to a
C*> function ¢ on M satisfying ¢ > o, and Ay > Acy,, for each k. It
follows that ¢ >0 and Ay >0 on M, v» =0 on K = Ky, and ¥ > p and
Ay >p on M\ W.

To obtain the properties (iv), we choose a sequence of points {g,} in M\K
and corresponding functions {«y,} and neighborhoods {V,, } so that {V,, }
covers W\ K. Applying a diagonal argument, we may choose a sequence of
positive numbers {¢,} converging to O so fast that each derivative of arbitrary
order for the sequence of partial sums of  e€,a,, converges uniformly on
compact subsets of M. The function ¢ = ¢ + Y €,0y, will then have the
required properties. [

The main topological fact required in the proof of Proposition 1.2 was
part (ii) of Lemma 1.9. This fact is slightly easier to verify for U a component
of the complement of a compact set. But the more general version (as stated
in Lemma 1.9) and the proof of Proposition 1.2 actually yield the following:

PROPOSITION 1.11. Let U be a connected open subset of M which contains
a connected noncompact closed subset of M. Then, for each point p € U,
there exists a C*™ function « such that
(1) « >0 and Aa >0 on M,
(i1) suppa C U,
(iii)) adp) > 0, and
(iv) Aa(p) > 0.

PROPOSITION 1.12. Let K be a closed subset of M such that each
component of M\ K contains a connected noncompact closed subset of M.

Then, for each point p € M\ K, there is a C> nonnegative function « on
M such that Aa >0 on M, a =0 on K, a(p) >0, and Aa(p) > 0.
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We also get a corresponding generalization of Theorem 1.10:

THEOREM 1.13.  Suppose K is a closed subset of M such that each
component of M\ K contains a connected noncompact closed subset of M
and D C M\ K is a closed subset of M with no compact components. Then,
Jor every positive continuous real-valued function p cn M, there is a C®
Junction ¢ such that

(1) >0 and Ap >0 on M,
(i) ¢ > p and Ap > p on D,
(iii)) ¢ =0 on K, and

(iv) ¢ >0 and Ap >0 on M\ K.

Before addressing the proof, we consider some remarks.

REMARKS. 1. If the coefficients of A are (for example) C' and the
constant term is nonpositive, then the existence of a connected noncompact
closed subset C of M with C C U is necessary in Proposition 1.11. In fact, if
U is a connected open subset of M and M admits a nonconstant nonnegative
upper semi-continuous subsolution o which vanishes on M\ U, then U must
contain such a set. For a(p) > 0 at some point p € U and hence we may
choose a number ¢ with 0 < € < a(p) and a neighboraood V of the closed
set {x € M| a(x) > e} with V C U. The maximum principle then implies
that the component W of V containing p is not relatively compact in M.
Thus the set C = W is a closed connected noncompact subset of M contained
in U.

In particular, as the following example illustrates, the conclusions of
Proposition 1.2 and Proposition 1.3 do not hold in general for K a closed
noncompact set.

ExXAMPLE 1.14. Let K be the closed subset of the manifold M =
R*\ {(0,0)} given by

K= (M\(0,2) x(0,2)) U U{l/m} x [0,1].
m=1

Then the complement U = M\ K is connected and U is noncompact. But U
does not contain a connected noncompact closed subset of M and, therefore,
every nonnegative upper semi-continuous subharmonic function ¢ on M which
vanishes on K must vanish everywhere in M.
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2. As the following example shows, the conclusion of Theorem 1.13 may
fail to hold if the set D C M\ K has compact components.

EXAMPLE 1.15. The complement U = M\ K in M = R*\ {(0,1)} of
the closed set

K = (M\ (0,00) x (0,4)) U | J{1/@2m)} x [0,2]
m=1

is a connected set with noncompact closure and U contains the closed
noncompact connected set C = [1,00) x {3}. The noncompact subset

D={1/Cm+1),1)|meN}

of U is closed (in fact, discrete) in M. If ¢ is a nonnegative upper semi-
continuous subharmonic function on M which vanishes on K, then, for each m,
applying the maximum principle in [1/(2m + 2),1/(2m)] x [0,2], we get a
number {r,} with 1/Q2m+2) <r, < 1/(2m) and @(r,,2) > o(1/2m+1),1).
Since (r,,,2) — (0,2) € K C M and ¢ is upper semi-continuous, it follows
that ¢ must be bounded on D.

3. If K C M is a compact set, then one can achieve the conditions in
Proposition 1.3 and Theorem 1.10 by replacing K by the compact set K.
Because we have Proposition 1.12 and Theorem 1.13, for a general closed set
K C M it is natural to define K to be the union of K with all components of
M\ K which do not contain any connected noncompact closed subsets of M.

The main step in the proof of Theorem 1.13 is the case in which D and

M\ K are connected.

LEMMA 1.16. Suppose U is a connected open subset of M, C is a
connected noncompact closed subset of M with C C U, and p is a positive
continuous function on M. Then there is a C*> function ¢ such that

(1) ¢ >0 and Ap >0 on M,

(i) ¢ > p and Ap > p on C,

(iii) ¢ =0 on M\ U, and

(av) ¢ >0 and Ap >0 on U.

Proof. We first show that there is a nonnegative C°° function 7 such
that Ay» >0 on M, v =0 on M\ U, and ¢ > p and Ay > p on C.

For this purpose, we may assume without loss of generality that C is
locally connected. For we may choose (as in the proof of Lemma 1.9) a
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locally finite (in M) covering A of C by relatively compact connected open
subsets of U. We may also choose the covering so that each element meets
C and has locally connected closure (for example, we may choose A so
that, for each B € A, there is a diffeomorphism of sorne neighborhood of B
onto an open subset of R* mapping B onto a ball). The closed connected

noncompact set
¢ = U B = U BCcU

BEA BEA
is then locally connected. For if p € C' and By, ..., B, are the (finitely many)
elements of A whose closures contain p, then, for each j = 1,..., k, we may

choose a neighborhood W; of p in M such that W; N B; is connected and
W;NB =@ for each set B € A\ {By,...,Bc}. The set D=J_,(W;NB)
is then a connected subset of C’ which contains the set W;N---NW,NC’, a
neighborhood of p relative to C'. It follows that C’ is locally connected (since,
by choosing the neighborhoods {W;} small, one sees that the components of
any open subset of C’ are open relative to C’). Therefore, by replacing C
with the set C', we may assume that C is locally connected.

By Lemma 1.4, there is a sequence of compact sets {K,} such that

M = J;_ K, and, for each v, we have K, C IO(,,+1 and C\ K, has only
finitely many components, all of which have noncompact closure. For we
may choose inductively a sequence of compact subsets {K]} of M such that
M =J;~, K/, and such that, for each v, we have

K, =K, UK, NC)p CK yy1:

where, for K C C compact, K¢ is the union of K with all of the relatively
compact components of C \ K.

We now proceed as in the proofs of Theorem 1.1 and Theorem 1.10. Let
Ky = @. Given p € C, there is a unique v = v(p) with p € K, \ K,,.
The component U, of U\ K, containing p must also contain the closure

of some component of C\ K, C C\ IO(,,+1 C C\ K,.. For we may take a
point ¢ in the component of C \ K, containing p (a set with noncompact
closure) which lies outside K, ;. The closure of the component of C\ K,
containing ¢ is then contained in U,. We may apply Proposition 1.11 to get a
C* nonnegative function «, and a relatively compact neighborhood V, of p
in U, such that Aoy, >0 on M, suppca, C U,, and o, > p and Ac, > p on
V,. Thus we may choose a sequence of points {p;} in C and corresponding
functions {c,, } and neighborhoods {V,, } so that {V, } forms a locally finite
(in M) covering of C. The collection {suppay, } is then locally finite in M
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because supp oy, C U\ K, whenever p; ¢ K,,. Hence the sum »_ .~ v, is
locally finite and, therefore, convergent to a C°° function @ on M with the
required properties.

Now, by Lemma 1.9, there is a sequence of connected open sets {U, } such
that U =J,—, U,, C C Uy, and, for each v, U, C U, ;. By the above, we
may form a C*° nonnegative function v such that Ay >0 on M, ¢ =0 on
M\ U,, and ¥ > p and Ay > p on C and, for each v = 1,2,3,..., we may
form a C*° nonnegative function v, such that Ay, >0 on M, v, =0 on
M\U,41, and ¢, > 1 and Av, > 1 on U, . Choosing a sequence of positive
numbers {¢,} converging to 0 sufficiently fast, the function ¢ = ¥+ €,1,
will have the required properties. [

For the general case, we will apply the following:

LEMMA 1.17. Suppose X is a second countable, connected, locally
connected, locally compact, Hausdorff topological space; K is a closed subset
of X; and D C X\ K is a closed subset of X with no compact components.
Then there exists a countable locally finite (in X ) family of disjoint connected
noncompact closed sets {Cx} ca and a locally finite (in X ) family of disjoint
connected open sets {Ux}rea such that

DcC=[]JC and CyoCcUCUCX\K VYA€A.
A€A

REMARK. We will not use the fact that the sets {U,} are disjoint.

Proof. As in the proof of Lemma 1.9, there is a countable locally finite
covering Ap of D by connected open relatively compact subsets of X \ K
which meet D. Thus

Dcv=|)BcV=|JBcx\K
Be Ap Be Ap
(where we have used the local finiteness of the collection Ap). Since each of
the components of V meets, and therefore contains, a component of D, the

family of components {V,},cr of V is a locally finite family of connected
open sets with noncompact closure. The set

CEV:UV7

is a closed set contained in X \ K and the family of components {Cy}xea
of C satisfies
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= vv= U v vrea
vel yer
VWCC)\ VWCC)\

It follows that the family is locally finite in X (since the family {V,}er is
locally finite) and that C) is closed for each A € A. Consequently, we may
choose a locally finite covering A¢ of C by connected relatively compact
open subsets of X \ K such that, for each element B = Ac, B and B meet
exactly one component of C. For each A € A, taking Uy to be the component
of the set

containing C), we get disjoint connected open sets {Uy}rca With
C,CUyCUyCX\K

for each A € A. This family is locally finite in X. For each point in X has a
neighborhood Q which meets only finitely many elements B, ...,B; of Ac.
Each B; meets a unique component Cy, of C. If A € A with QN Uy # &,
then QN B # @ for some B € Ac with BN Cy # &. Hence we must have
B = B; for some j and, therefore, A = ;. []

Proof of Theorem 1.13. Let

DccC=|JCn and CiCU CULCM\K VIeA
AEA

be as in Lemma 1.17. Applying Lemma 1.16 to each pair of sets C\ C U,,
we get a nonnegative C* function « such that Aay >0 on M, oy =0 on
M\ Uy, and ay > p and Aay > p on C, (we do not need the properties (iv)
of Lemma 1.16 for this part). Since the family {U,} is locally finite in M,
the sum )« determines a nonnegative C* function a with Ao > 0 on
M, a=0 on M\{JycoUrDK,and a>p and Aa >p on C D D.

Applying Lemma 1.16 to each of the components {Vf'}je ; of M\ K, we
get, for each j € J, a C° nonnegative function [3; such that A3; >0 on M,
B;=0on M\V,;,and 3; >0 and AB; >0 on V;. For J a finite set, we
may now take p = a + Zje ;B;. If J is infinite, then, assuming as we may
that J = N and choosing a sequence of positive numbers {¢} converging
to 0 sufficiently fast, the function ¢ = o+~ ¢;3; will have the required
properties. [
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We close this section with the following observation concerning Theo-
rem 1.10 for K the closure of a smooth relatively compact domain.

COROLLARY 1.18. Suppose Q is a C*> relatively compact domain in M
whose complement M \ Q has no compact components, p is a positive
continuous function on M, and W is a neighborhood of Q. Then there
is a C* function ¢ on M such that ¢ > p on M\ W, Ap > p on M, 0 is
a regular value for ¢, and Q={x e M| p(x) <0}.

Proof. There exists a C* function 7 on M such that 0 is a regular
value for 7, 7 is locally constant on M\ V for some relatively compact
neighborhood V of 9Q in W, and Q = {x e M | 7(x) < 0}. For ¢ >0
sufficiently small, we have

D={xeM|-2e<7(x)<2}CV

and (d7), # 0 for each point x € D. By Theorem 1.1, there is a C*
function o with compact support in € such that « <0 on M and Aa > p
on {x € M| 7(x) < —e}. By Theorem 1.10, there is a C° nonnegative
function 5 on M such that AB >0 on M, =0 on Q, >0 and AG >0
on M\ Q, and 3> p and AB > 1+4p on {x € M| 7(x) > ¢}. Finally, we
may fix a C* function xy: R — [0,00) as in Lemma 1.8. Let R;,R,,R3 > 1
and let

¢ = a+ Rox(Ri(T + 2¢)) — Rox(2R1€) + R3 /3.
On M\ W, we have ¢ > R3;3 > (3> p. On Q, we have

¢ <0+ Ryx(Ri(0+ 2€)) — Ryx(2Rie) + R3 -0 =0.
On M\ Q, we have
© >0+ Ryx (R1(0 + 2¢)) — Ryx(2Ri€) + Rs3 > R33 > 0.

Thus Q = {x € M| ¢(x) < 0 }. For any point x € 90Q = {x € M | p(x) =0},
we have o =0 near x and [ has a local minimum at x. Thus

d(p =da—+ R]RzX/(2R]E)dT + R3d3 =0+ R1R2X1(2R16)d7’ +0 ?é 0.

By Lemma 1.7, for R} > 0, we get A[X(RI(T + 26))] > 0 on
QUD ={xe M| 7(x) <2} and A[x(Ri(Tr+2¢))] >0 on {x € M|
—2e <71(x) <2} CD.On {xeM|1(x) <—€} we have

Ap > Aa+04+0=Aa > p.
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For R, > 0, 0n {xe M| —e < 7(x) < e} we have
Ap > Aa + R,A [X(Rl(T -+ 26))] > p.

Finally, since 7 is locally constant on M\ V, for Ry > 0, on {x € M |
T(x) > e} C M\ Q we have

Ap = 0+RA[x (Ri(T426)) 14+R3AB > RoA[X (Ri(7+26)) ]+R3(14p) > p. [

2. TWO APPLICATIONS

To illustrate the broad utility of the existence of exhausting strict subsolu-
tions, we consider two (mostly known) consequences.

We first recall that any CF function ¢ on a smcoth manifold can be
approximated in the C¥ Whitney topology by a C> Morse function v
[GoG]. Applying this to a function ¢ from Theorem 1.1, we get

COROLLARY 2.1. If M and A are as in Section 1 with M noncompact
and p is a positive continuous function on M, then there exists a C> Morse
Junction 1 satisfying 1 > p and Ay > p.

Taking A to be A, for a Riemannian metric g and p to be a continuous
exhaustion function, we get a Morse exhaustion function 1 with Agy > 0.
Since A,v is the trace of the Hessian of ¢ with respsct to ¢, the Hessian
has at least one positive eigenvalue at each point, so the index of 1/ is at
most n — 1. Thus we get the following well-known fact:

THEOREM 2.2. A connected noncompact C*> marifold of dimension n
has the homotopy type of a CW complex with cells of dimension < n — 1.

The next observation is that the existence of exhausting strict subsolutions
allows one to construct a Hermitian metric of positive scelar curvature (positive
curvature in the case of a Riemann surface) in a holomorphic line bundle with
a nontrivial holomorphic section.
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For the rest of this section, X will denote a connected complex manifold
of (complex) dimension n and g will denote a C°° Hermitian metric in X.
The Levi form of a C* function ¢ on X is the Hermitian tensor given by, in
local holomorphic coordinates (z,...,2,),

2
L(p) = Z 5007 —dzid;

ij=1

The Laplace operator A, for the Hermitian metric g is given by the trace of
the Levi form:

Bg = Zgu 82,82,

where (¢"/) = (g[-j)_l. This elliptic operator is equal to 1/2 the Laplace
operator of the associated Riemannian metric if ¢ is Kihler. A C? real-
valued function ¢ is called subharmonic (strictly subharmonic) with respect
to g if Ay > 0 (respectively, Ay > 0).

If L is a holomorphic line bundle on X and % is a C*> Hermitian metric
in L, then the curvature of h is the Hermitian tensor ©; given by

0, = L(—log |s},21)

for any nonvanishing local holomorphic section s of L. The scalar curva-
ture Ry, of h with respect to g is given by the trace of the curvature; that
is, locally,

Rn=Ay(—log|s | b

In particular, if X is a Riemann surface, then R, = ©,/g.

THEOREM 2.3. Let L be a holomorphic line bundle on X. If X is
noncompact or L = [D] is the holomorphic line bundle associated to a
nontrivial effective divisor D in X (i.e. L is a holomorphic line bundle
which admits a nontrivial global holomorphic section), then L admits a C™
Hermitian metric h with positive scalar curvature.

Proof. Fix a C*° Hermitian metric k£ in L. We will modify & to obtain 4.

Assuming first that X is noncompact, Theorem 1.1 provides a C*> strictly
subharmonic (with respect to ¢) exhaustion function ¢. If y is a C* function
on R with x' >0 and x” >0 and

h = e'”X(‘P)k,
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then

Ri = Ag(x(@) + Ri = X' (©)Agp + X" (9|00, + Ri > X' (©)Agip + R

Choosing x so that x/(r) — oo sufficiently fast as ¢t — co, we get Ry > 0.

Assuming now that X is compact and L = [D], where D is a nontrivial
effective divisor, let Y = |D| C X be the support of D and let s be a global
holomorphic section of L with associated divisor D. Applying Theorem 1.1
to a noncompact neighborhood of Y in X and cutting off, we get a C™
function o on X which is strictly subharmonic on a nzighborhood U of Y.
After shrinking U slightly and replacing « by a large multiple, we may
assume that

Aja+Rrg>2 on U.
Since —log]s|/% — oo at Y, we have, for N > 0,
YC{xEX\oz(x)—log|s(x)|,§2N}:U

(setting « — log Mi = oo along Y). We may choose a C* function A on R
such that X >0, X" >0, M) =1 if t > 3N, and A1) =2N if t < N. We
set A(co) = oo. The restriction of the function

p = Ao —log |s|,%)

to X\ Y is C° and subharmonic because p = 2N on a neighborhood of
X\ U (and hence Agp =0), while on U\ Y we have

Agp = N (o —log s];) - (Aga+Ry) + X' (a — log|s[;) - |8 (e — log|s];)]
> 2\ (o —log|s];) > 0.

2
g

Observe also that p = a — log )s|i on the relatively compact neighborhood V
of Y in U given by

V={xeX|ax —log|s)]| >3N}.

Applying Theorem 1.1 to the connected noncompact manifold X \ Y and
cutting off near Y, we get a C> function 3 with compact support in X \ ¥
satisfying Ay >0 on X\ V. Choosing ¢ > 0 so small that eA,5 > —1 on
X, we see that the restriction of the function v = p+4 €8 to X\ Y is C™
and strictly subharmonic. In fact, on V'\ Y, we have

Agy =AMy —logls|y +ef) >2—1=1.
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We may now define |£|i for £ € L, with x € X by

e [TVl WE ifxex\y,
h= e W0l ifxe V.

Then £ is a well-defined C* Hermitian metric in L since, for x € V\ Y and
& € L., we have

€*V(X)|§/S(x)|2 — (a(X)—logIS(X)lf-Hﬁ(x)) |£|1%/’5(x)|13 — e—a(x)—eﬁ(X)Kli.
Furthermore, on X\ Y we have

>0 onX\Y

Ry = A, (—log|s]) = A
" g( th) g7{>1 on V\Y

By continuity, we also have R, > 1 > 0 at points in Y. Thus R, > 0
on X. [

For X a Riemann surface, the above proofs become especially simple.
For example, the construction of « in the proof of Theorem 2.3 is trivial
for dimX = 1 because Y is discrete. For X an open Riemann surface,
Theorem 0.1 provides a C* strictly plurisubharmonic exhaustion function
and, therefore, by [Gr] and [DG], one gets the theorem of [BS] that an open
Riemann surface is Stein. For a compact Riemann surface X, Theorem 2.3
becomes the familiar fact (see, for example, [GriH]) that the holomorphic line
bundle associated to a nontrivial effective divisor admits a C>* Hermitian
metric 4 with positive curvature ©j.
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