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ON INTEGRAL SOLUTIONS OF QUADRATIC INEQUALITIES

by J. BOCHNAK and T. JACKSON

Dedicated to Professor Henri Cartan for his 100™ birthday

ABSTRACT. This paper studies the small values of indefinite quadratic forms with
real coefficients in n variables. It shows that for n > 3 all the Markoff-type spectra of
these forms consist of isolated points (apart possibly from the point 0). This improves
a previous result which was obtained with much more complicated methods.

1. INTRODUCTION
The aim of the paper is to prove the following isolation theorem.

THEOREM 1.1. Let n > 3 be an integer. Then for any € > 0 and any given

non-singular indefinite quadratic form f in n variables, with real coefficients,
there are integers xy,...,X, such that

(1) 0 < f(x1,...,x) < elDH|"

unless [ is equivalent to a positive multiple of one of a finite number of
forms.

In the statement above, D(f) is the determinant of f, that is, D(f) =
det(f;j), where f =) fixix; with f; = f;. As usual, two forms f and g are
said to be equivalent if f = g o L for some linear transformation L given by
a unimodular matrix with integral coefficients.

By the celebrated result of Margulis (previously the Oppenheim conjecture)
[4], for every indefinite irrational quadratic form f in n > 3 variables the set
f(Z") is dense in R. It follows that in order to prove Theorem 1.1 it suffices
to consider only forms with rational coefficients.
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A result slightly weaker than Theorem 1.1 was obtained by Vulakh [11]
(he dealt with | f| rather than f). His approach is entirely different from ours,
more complex and using a variety of arithmetical tools, while we use the
geometry of numbers.

Let &, be the set of non-singular indefinite quadratic forms in n variables
with coefficients in R. Given f € &, let

P(f) = inf{strictly positive values of f(x) for x € Z"}

and
af) = P(H/IDCHI".

Theorem 1.1 can be stated in the following equivalent form, more in the spirit
of the classical Markoff Chain Theorem (see for example [1]).

THEOREM 1.2.  Given an integer n > 3, there is a decreasing sequence
(aien of positive rational numbers, and a sequence (f;)ien of quadratic
Jorms in &, with coefficients in 1., such that

1) a—0as i— oo;
(1) alfp) = /a; for i=1,2,...;
(11) each f € &, with a(f) > /ax+1 is equivalent to a positive multiple of
one of the forms fi,...,J[.

EXAMPLE 1.3. For n = 3, the first 6 terms of the sequence (a;),eN are

known from the classical works of Davenport [5] and Watson [14]. They are
%7—, a, = %, as = 172.—,5—, as = as = ag = 4. The corresponding forms
fi» 1 <i<6, are also known explicitly. For example, fi = 4xy — 22.

a| =

EXAMPLE 1.4. For n =4 the first 12 terms of the sequence (¢;);en (and
the corresponding forms) are known from the work of Oppenheim [8] and

e
Jackson [7]. They are a; =16, ax =32, a3 =as = ¢, as =ag = a7 = 81
ag =ag = ayj = ay = da; = 4.

EXAMPLE 1.5. For n > 4 the first term y/a; is 2 for even n and is
2"% for odd n (see [12]). In particular, given any f in &, with n > 3, the
inequality 0 < f(x) < 2|D(f)|"" can always be satisfied for some x € Z".

It follows from Theorem 1.1 that for n > 3 the non-zero points of the
Markoff spectrum

M, ={a(f) : f € &}
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are isolated. The spectrum M, comes from inequalities of the type 0 < f. More
generally, there are other Markoff spectra of &, associated with inequalities
0<f,0<|f|] and O < |f|. These spectra are proper subsets of M, and
thus their non-zero points are also isolated. The first 11 terms of the Markoff
spectrum of &; associated with the inequality 0 < |f| are given in [10]. It
should be stressed that when zero is included in the inequalities of Theorem 1.1
(so that (1) becomes 0 < f(xy,...,x,) < €|D(f)|1/") the problem becomes
less difficult because the need for Lemma 2.4 below disappears.

We shall give the proof of Theorem 1.1 after some preparation in the next
section. Theorem 1.2 follows directly from Theorem 1.1.

2. PRELIMINARIES

For f € &, we shall make use of the notation N(f) to denote P(—f).
We shall also frequently use the following inequality ([9]) linking P(f) and

N(f).

PROPOSITION 2.1 (The Oppenheim inequality). For n >3

(N2 < e (P2 |DCS)|

where c, is a constant depending only on n. For n = 3 we can take ¢; = 22.

LEMMA 2.2. For n > 3 let (fi)ren be a sequence of quadratic forms in
&, such that limy_, o a(fy) > 0. Then there is a subsequence (fi,)ien Such
that lim;_, oo a(—fi,) > 0.

Proof. The Oppenheim inequality above implies that

(a(£/))*" 7% < cp (Ff))" 2

which in turn implies the result.  []
We shall let s(f) be the signature of the form f € &, and then we have

COROLLARY 2.3. [If Theorem 1.1 holds for all forms in &, with signature
s, then it also holds for all forms in &£, with signature —s.

Proof. The corollary follows immediately from Lemma 2.2, in view of
the fact that —s(f) = s(—f). [
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Now fix a form ¢ € &,. We say that a lattice A in R" defines the form
f € &, (with respect to ) if, for some basis aj,...,a, of A, we have

J(x) = (Zx,-a,-) , for each x = (x,...,x,) € R".
i=1

It A is an automorph of ¢ and A defines f, then A(A) also defines f. For
a lattice A C R" define
|Al = min{[la]| : a € A\ {0}},
where ||a|| = max{|q;| : 1 <i<n} if a=(ay,...,a,). Also let
P,(A) = inf{p(a) :a € A, p(a) > 0}.
If A defines f, then clearly
Po(A)=P(f) and (d(A) =|D(f),

where d(A) is the determinant of A.

LEMMA 2.4. Let f be a form in & with signature 1. If P(f) =1 there
is a lattice A in R, defining f with respect to ¢ = x> + yz, and such that
163
Al > =
‘ ‘ —_ 2 Y
where 3 =min (1,(22|D(/)])7").

Proof. For n =3 the Oppenheim inequality mentioned above and applied
to —f gives
(PO < 22N(H D).

Since P(f) =1 by assumption, we obtain
B<@2|DHDTH S NC).

Let Z= ¢ '(0) and H= ¢ '(J—3,1] \ {0}. The previous inequality and
the equality P(f) = 1 imply that for every lattice X in R® defining f we
have

XNH\Z2)=2.

If we R*\ H and w # 0, then clearly ||w|| > /3/2 > 3/2. Hence, in order
to prove the lemma, we only have to check that for some lattice A defining
f we have ||w|| > /2 for every non-zero w € ANZ.

Let X be any lattice in R? defining f. Since P(f) = 1, and therefore f is
necessarily a rational form by the Margulis theorem, it follows that f takes the
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value 1 at some point in Z°. This, together with the fact that »(1,0,0) =1,
implies the existence of an automorph B of ¢ such that the point v = (1,0,0)
is in B(X) (see [13], p. 11, Theorem 5). Therefore, replacing X by B(X), we
can assume from the beginning that (1,0,0) € X.

Let w € XN Z. Assume first that w is not orthogonal to v = (1,0,0).
Then w = (a,b,¢) with a # 0. We claim that ||w|| > 1 > /2. Replacing
w by —w, if necessary, we may assume that a < 0. If |a| < % then

O<owWw+vV=0+al+bc=1+2a<1;

in other words w +v € X N (H \ Z), contradicting the fact that X N (H \ Z)
is empty.

So if X is any lattice defining f and containing v = (1,0, 0) then for each
non-zero w in X we have ||w|| > 5/2, except possibly when w € XNZ and
w is orthogonal to v.

We shall now deal with the case where w € XNZ, w # 0, and w is
orthogonal to v. Then w must be of the form (0,7,0) or (0,0,7) for some
t # 0. (If no such vector exists the proof is finished.)

If there are two points w; and w, in X N Z that are orthogonal to v
and linearly independent, we can choose these points to be w; = (0,z,0)
and w, = (0,0,7) with, say, 0 < r < ¢ and t and ¢ least possible. Then
necessarily 0 = #/ > 1, as otherwise 0 < o(w; +W,) =1 <1 and w; + w,
would be in XN (H\Z) which is empty. Let A be an automorph of ¢ defined
by

Alx,y,2) = (x,y/1,12) .
Then A = A(X) is a lattice defining f with v € A and, for each w € ANZ,
we have either ||w| > 1 if w is of the form (0,u,0) or ||w| > § > 1 if
w is of the form (0,0, u). Hence, in the case under consideration, for each
non-zero w € AN Z that is orthogonal to v, we have ||w| > 1 > (/2.
In other words, A is a lattice with the required properties: it defines f and
Al > 5/2.

Finally, if each vector in X N Z, orthogonal to v, is a multiple of a
single vector w = (0,¢,0) (or w = (0,0,1)), for some 7 # 0, then taking the
automorph A of ¢ defined by A(x,y,z) = (x,y/t,tz) (or (x,1y,z/t)), we again
obtain a lattice A = A(X) with the required properties. [

LEMMA 2.5. Let A; be a sequence of lattices in R" converging to a
lattice A and let ¢ be in &,. Then

lim sup P, (A;) < Py(A).

i—o0
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Proof. Let M = ¢~ !((—00,0]) and take a € A\ M. Then there are points
a; € A; such that a;, -+ a as i — oo. Since a; is not in M for all large
enough i, we have

p(a;) > inf{p(y) 1 y € A\ M} = PyiA)
for all large i. By the continuity of ¢ we therefore have

p(a) > limsup P,(A;).

i— 00

Since a was an arbitrary point of A\ M, the lemma follows.  []

3. PROOF OF THEOREM 1.1

We shall prove Theorem 1.1 in two steps. First for n = 3, then, using
induction, for n > 4.

3.1 CASE n=3

If Theorem 1.1 is false for n = 3, then there is an infinite sequence f, of
ternary forms in &, having the same signature, such that no f, is equivalent
to a multiple of f, for ¢ # m, and such that

o(fn) > a>0as m— oco.

Moreover, replacing f,, by —f,, if necessary, and taking possibly a subsequence,
we can assume without loss of generality (using Lemma 2.2) that all the f,
have signature 1. Then we scale each f,, to have

P(]L;n) =1
and thus
(2) |D(f)| = a=> as m — oo .

Let A, be a lattice in R® defining f,, with respect to ¢ = x> + yz. In
1

particular, d(A,,) = |D(f,,)|> and P,(A,) = 1. It follows from (2) that for

each m

3) d(Ay) < v for some v >0 .

From (3) and Lemma 2.4, we can assume that for some 7 (for example
n= min(%, ZMI—WQ)) we have
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4 0 <n < |Anl

for every m.

By Mahler’s compactness theorem ([2], p. 137, Theorem IV), properties
(3) and (4) imply that {A, }men contains a subsequence I'; = A, converging
to a lattice T'. Let B be a basis of I' and let B; be a basis of I'; such that
B; converges to B. Let g; be a quadratic form in & which is defined, with
respect to ¢, by (I, B;). Similarly let g be a quadratic form in & which is
defined, with respect to ¢, by (I', B). Then the sequence of forms g; converges
to the form ¢. Since g; is equivalent to f, , we have P,(I'}) = P(g;)) = 1.
By Lemma 2.5

P(g) = P,(I') > limsup P,(I';) = 1
which implies that g is a multiple of a rational form (by Margulis’ theorem
again).

By the Cassels-Swinnerton-Dyer theorem ([3], p. 86, Theorem 8), for each
g; close enough to g, there is an x; € Z* with 0 < g;(x;) < 1, contradicting
the fact that P(g;)) = 1.

This completes the proof of the case n = 3.

32 CASE n>4

First we need a preliminary result about binary quadratic forms.

LEMMA 3.1. Let F be a form in &,. Then for each n > 3

n—1

) P(F)"N(F)""% < |4D(F)

Proof. If F does not represent zero on Z7, except trivially, the inequality
is implied by stronger results in [6], Theorems 2—4. When F represents zero
non-trivially we may scale it to have determinant —1 and then, by an integral
unimodular transformation, suppose that it has the shape

2xy — 0y?
where 0 < 0 < 1. This gives P(F) <2 — 6 and either N(F) =2 if 6§ =0 or

N(F) < 6. Then either P(FY'N(F)'~? = 2*~2 if F is equivalent to 2xy or
P(F)'N(F)""% < (2—60)"8"2 < 2" otherwise. Thus (5) holds in all cases. [

We shall now prove Theorem 1.1 for n > 4. We suppose that the theorem
has already been established for indefinite forms in n — 1 variables and we
shall prove it for n variables using induction on n. It suffices, without losing
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generality, to consider the case of forms in &, having signature less than n—2.
The remaining case of signature n — 2 would follow from Corollary 2.3.
For a given € > 0 we shall concentrate on establishing

(6) P(f)" <elD())]

where f € &, and s(f) < n—2. This is a convenient alternative to the original
inequality in Theorem 1.1. By the Margulis Theorem it suffices to consider
only rational forms. For such a form f we have P(f) >> 0 and N(f) > 0 and
we then scale f to have

N(f)=1.

Since f is rational it takes the value —1 and an integral unimodular
transformation puts it in the shape

—(0 + apxy + - 4 )+ g, .. x)

Here g is a rational form in n— 1 variables which is indefinite, the signature
of f being by assumption less than n — 2. Also

DA = [D(g)] -

The form g attains its least positive value P(g) = g(L,...,l,) = v, say, for
some [; € Z. The binary section F' of f defined by

F(X,y) :f(-xa 12y713y7"'alny)

is then an indefinite non-singular binary form and so satisfies the inequality
in (5). Since f represents all the values of F' we have

P(f) < P(F) and N(f)=N(F)=1
and hence
(7) P(fY" < P(FY'N(FY'™2 < [4D(F)["™" = (40)"~".
The case n — 1 of the theorem implies that we will have
" < e4' 7" D(g)|

unless g is equivalent to a positive multiple of one of a finite number of
forms. Apart from those possibilities, (7) gives the desired inequality

P(f)" < e|D(g)| = e[D(f)].
So either (6) holds or for some & > 0 the form f is equivalent to

(8) f/(xla . 7xn) — _(xl + Qo X> + -+ anxn)2 + kg/(x% “ee 7xn)
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where

G X)) =+ O3x3 4 - Fazs(xz+ - - Fanxs,

ID(f)| = |D(f")| = k*~'|D(g")| and there are only a finite number of choices
for the form ¢ with ¢'(1,0,...,0) = 1.
Observe that by simple parallel transformations on x;, and thus without

changing kg’, we can assume that ay, ..., a, satisfy 0 < o; < 1. The strategy
for ending the proof is to show that for each ¢ in (8) there are only a finite
number of allowable values for &, a;,...,qa, with 0 < a; < 1.

The form f' represents k — (x; + a;)? and for a suitable x; we can have

1
k—1<k—(+am) <k- .
This contradicts N(f') = N(f) =1 unless 4k > 1.
For each choice of ¢’ the leading (n— 1)-ary section f'(xy,x2,...,X,—1,0)
of f/ has determinant —k"~2D(g')/a, # 0 and so, for any ¢, > 0, it will

. 1/n—1 . :
represent a positive value v; < € |k”_2D(g’ ) /an| /n unless it is equivalent

to a multiple of one of a finite number of forms. Using 4k > 1 and choosing
g < %5|D(g’)/a,,|_1/"_] the inequality for v; implies

1/n—1

vy < 2e1|D(g")/ay| k<ek

so taking
o1 = min (JelD a7 alf)
we would have
P(f)' < v < |ek"~'D(g")| = e|D(f)] = e[ D(f)] -

Hence, if P(f)" < e|D(f)| fails, f'(xi,...,x,—1,0) must be equivalent to

a positive multiple of one of a finite list of (n— 1)-ary forms #, ..., h, which
we can take to be normalised in any way we please. Moreover, for each form
h; there can only be one multiple r;4; which makes f'(x;,x2,...,%,-1,0)

equivalent to r;4; because there will only be one value of r; making
N(rihi) - N(fI(X1,X2, v 7xn—170)) = 1.

This means that for each A; there will only be one allowable value of &
giving D(f'(x1,%2,...,%,—1,0)) = —k""2D(g')/a, = r?~'D(h;). The number
of allowable values of & in (8) is therefore finite.

So, if P(f)" < e|D(f)| fails, there are only a finite number of possibilities
for the form kg’ in (8) and for each of these possibilities f'(xy,x2, ..., X,—1,0)
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must be equivalent to one of a finite number of forms r/;. Now let g be
the least common denominator of the coefficients of 74;. If we could have
S'(x1,x2,...,x,_1,0) equivalent to r; for an infinite number of possible
values of ayp, with 0 < a; < 1, there would be two allowable values, say
B and v, with 0 < |8 —~| < —2% Then considering f'(0,1,0,...,0), we see
that f'(xy,x2,...,x,-1,0) represents k— 3 for a, = (3 and represents k—~?
for ap = . However

[k~ 8% — (k= 7D)| = |8 — 7| < zilﬁ-ml <1

q q
contradicting the fact that distinct values of rh; are never closer than é.
Similar considerations of /(0,0,1,...,0),...,7(0,0,...,1,0) show that there
are only a finite number of allowable values of as,.. ,a,_; for each r;h;.
Finally, to show that the number of allowable values of «, in (8) is
finite, consider the indefinite (n — 1)-ary sections f'(x;,xa,...,%,—2,0,x,),
S x0, o X2, X0, X)) and F (X1, X2, ..., Xn—2, 2Xn, X,). At least one of
these, called (x;,x2,...,x,-2,%,) say, has a non-zero determinant (whose

value depends only on k and the coefficients of ¢'). So, taking e, =
3 |D(f)|l/" |D(¢)|_1/’hl > 0, ¢ will represent a small positive value

v < & || = e D)

unless it is equivalent to a multiple of one of a finite number of forms.
Since N(v) =1, there will again only be one allowable multiple for each of
the finite number of forms. As before, we can also see that for each of the
finite number of possibilities for ay,...,a,_1,k, ¢’ there will only be a finite
number of allowable values of «,.

It follows that the number of forms f € &, for which (6) fails (for a given
€ > 0) is finite. So the theorem holds for n—ary forms.
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