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1. Einleitung

Die vorliegende Arbeit beschreibt die Konstruktion einer Auflösung von
ebenen Kurvensingularitäten in beliebiger Charakteristik. Die Darstellung ist
vollständig und detailliert - sie setzt nur die elementaren Grundkenntnisse
der algebraischen Geometrie und kommutativen Algebra voraus. Prägnant
formuliert lautet die zu beweisende Aussage wie folgt.

Satz. Jede singulare ebene algebraische Kurve ist der Schatten einer
glatten algebraischen Kurve unter einer geeigneten Projektion.

Abbildung 1

Die Schleife als Schatten einer glatten Kurve

Die Aussage des Satzes gilt auch für singuläre Kurven in höher dimen-
sionalen Mannigfaltigkeiten, also solche, die nicht notwendig in eine
zweidimensionale Fläche eingebettet sind. Wir werden uns indessen auf ebene

Kurven beschränken. Der Beweis des allgemeinen Falles mit der in dieser

Arbeit besprochenen Methode würde größeren technischen Aufwand erfordern.

Seit Mitte des neunzehnten Jahrhunderts ist die Auflösung der
Singularitäten algebraischer Varietäten ein zentrales Thema der algebraischen
Geometrie. Kronecker, Max Noether, Dedekind, Riemann, Weber, Picard, Jung,

sowie die Geometer der italienischen Schule - Enriques, Chisini, Bertini,
Del Pezzo, Levi, - beweisen wiederholt und mit ähnlichen Methoden
die Existenz von Auflösungen ebener algebraischer Kurven über C. Siehe
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[Za, Sg, Abi, Lp, Hai] für Details über die historische Entwicklung. Die

Arbeiten lassen vielfach die heutzutage selbstverständliche Präzision der

Begriffe und Argumente vermissen. Grundlegendes Hilfsmittel war (und ist auch

heute noch) die Explosion (Aufblasung) des umgebenden Raumes (der Ebene

oder einer zweidimensionalen Mannigfaltigkeit) durch den lokalen Übergang

zum Möbiusband ("Wendeltreppe"). Durch Kontraktion des Nullschnittes des

Möbiusbandes auf einen Punkt erhält man eine Projektionsabbildung auf die

Ebene, siehe Abbildung 2.

V

Abbildung 2

Explosion eines Punktes in der Ebene

Das Hochziehen der gegebenen Kurve (wobei der singuläre Punkt gerade

die Projektion des Nullschnittes sein soll) von der Ebene auf das Möbiusband
soll die Singularität der Kurve entflechten. Geometrisch ist das einsichtig für
gewöhnliche Doppelpunkte, d.h., transversale Selbstschnitte der Kurve, deren

Zweige durch das Hochziehen getrennt werden, siehe Abbildung 3.

Bei Spitzen benötigt man bereits eine algebraische Überlegung, um zu
sehen, daß das Urbild der Kurve "weniger singulär" als die Ausgangs-
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Abbildung 3

Hochziehen der Schleife

Singularität ist. Für die einfachste Spitze mit Gleichung x3 y1 erhält man
in einem Transformations-Schritt eine glatte Kurve, siehe Abbildung 4. Bei
komplizierteren Kurven sind mehrere Iterationen dieses Prozesses notwendig.
Der Satz über die Existenz von Auflösungen von ebenen Kurven besagt, daß

immer endlich viele Transformationen genügen, um auf diese Weise eine glatte
Kurve zu erhalten.

Oben beschriebene Transformation der Ebene zum Möbiusband und das

Hochziehen der eingebetteten Kurve nennt man die "Explosion des

Nullpunktes in der Ebene" und den Übergang von der Kurve zu ihrer "strikt
Transformierten". Diese Transformation war den algebraischen Geometern
des neunzehnten Jahrhunderts geläufig. Sie ist heutzutage auch unter den

Namen "Punktaufblasung", "quadratische Transformation", "Hopf-Abbildung"
oder "sigma-Prozess" bekannt. Dulac verwendet sie zur Vereinfachung und
Klassifikation von (singulären) Differentialgleichungen [Du].

Mit Zariski findet um 1940 in der Auflösungsprcblematik eine starke
und sehr erfolgreiche Algebraisierung statt. Von nun an werden algebraische

Varietäten über beliebigen Körpern oder über d^m Ring der ganzen
Zahlen betrachtet. Zariski erkennt bereits, daß der Fall positiver Charakteristik
wesentlich vertrackter ist, ebenso wie die arithmetische Situation. Schon zu
Zeiten Zariski's war der Fall von Kurven in positiver Ch arakteristik als gelöst
betrachtet worden. Sein Schüler Abhyankar beweist in einer spektakulären und
technisch anspruchsvollen Arbeit Mitte der fünfziger Jahre die Existenz von
Auflösungen für Flächen in Charakteristik p > 0 [Ab3]
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Abbildung 4

Auflösung der Spitze

Die in der Literatur vorliegenden Beweise der Kurvenauflösung lassen sich
im wesentlichen in zwei Typen einteilen.

(1) Auflösung durch Normalisierung:

Der Koordinatenring R der (nicht notwendig ebenen) irreduziblen Kurve
C wird in seinen Funktionenkörper K eingebettet. Man zeigt, daß der ganze
Abschluss R von R in K wieder der Koordinatenring einer Kurve C ist.
Diese Kurve C, die Normalisierung von C, erweist sich als glatte Kurve.
Die Inklusion R C R induziert die gewünschte Projektionsabbildung C C.
Literatur: Zariski-Samuel [ZS, vol.II, p. 93], Mumford [Mu, III.8], Shafarevich
[Sh, II.5].

Vorteil: Man erhält die Auflösung in einem Schritt. Charakteristikunabhängig.

War es ursprünglich mühsam, die Normalisierung zu berechnen,
so gibt es heute dafür in Computeralgebra-Systeme integrierte Algorithmen.

Nachteil : Man verliert die Einbettung der Kurve. Die gleiche Methode
via Normalisierung funktioniert für Flächen nur unter Hinzunahme von
Explosionen von Punkten, und versagt vollkommen in Dimension > 3 [BL],
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(2) Auflösung durch Folge von Punktexplosionen des umgebenden
Raumes :

Hier besteht das zentrale Problem darin, zu zeigen, daß man in endlich
vielen Schritten eine glatte Kurve erhält. Dazu kann man drei verschiedene

Argumente verwenden.

(2a) Verwendung der Normalisierung : Die Normalisierung der Kurve
faktorisiert über jede Explosion der Kurve, und da die Ringerweiterung R C R

endlich ist, muss die Folge der Explosionen stationär werden. Das bedeutet,
daß die in hinreichend vielen Schritten erhaltene Kurve glatt ist. Literatur:

Campillo [Cp, Thm. 1.5.10].
Vorteil : Sehr elegantes und schnelles Argument. Funktioniert auch für

Raumkurven. Charakteristikunabhängig.
Nachteil: Argument versagt in höherer Dimension. Keine Aussage über

die mindestens notwendige Anzahl von Explosionen.

(2b) Induktion über das arithmetische Geschlecht : Für ebene (projektive)
Kurven wird das arithmetische Geschlecht definiert als

l(<i- \){d-2)~ V - 1),
P

wobei d der Grad der Kurve ist, die Summe über alle singulären Punkte p
der Kurve läuft, und rp die Multiplizität der Kurve in p bezeichnet. Das

Geschlecht fällt unter Explosion in einem singulären Punkt der Kurve. Da
das Geschlecht nicht negativ werden kann, muss nach endlich vielen Schritten

die Kurve glatt geworden sein. Die Argumentation gellt auf Bertini zurück.

Literatur: Fulton [Fu, chap.7], Hartshorne [Hs, Thm. 3.9, chap.V].
Vorteil: Induktionsinvariante kann direkt definiert werden.

Charakteristikunabhängig.

Nachteil : Funktioniert nicht für Raumkurven. Verwendet wesentlich die

Theorie der Flächen. Argument versagt in höherer Dimension.

(2c) Induktion über Ordnung und Steigung des Newton-Polygons : Jedem

singulären Punkt der Kurve wird ein Paar von Zahlen zugeordnet. Die
erste Komponente ist die Ordnung der Taylorentwicklung des definierenden

Polynoms im Punkt (Multiplizität), die zweite die Steigung eines genau
spezifizierten Segments des Newton-Polygons des Polynoms. Das Paar wird
bezüglich der lexikographischen Ordnung betrachtet. Es fällt unter jeder
Explosion, solange der Punkt singulär ist. Da die lexikographische Ordnung
eine Wohlordnung ist, sind nach endlich vielen Explosionen alle Punkte regulär.

Literatur: Brieskorn-Knörrer [BK] in Charakteristik Null, Abhyankar [Ab2]
und Orbanz [Or] in beliebiger Charakteristik.
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Vorteil: Sehr explizit und elementar. Charakteristikunabhängig.
Funktioniert mit entsprechenden Erweiterungen auch in höherer Dimension,
allerdings bis jetzt nur in Charakteristik Null. Beinhaltet bereits die zentrale Idee,
eine Induktion über die Dimension des umgebenden Raumes zu verwenden.

Nachteil: Etwas rechnerisch. Keine tiefere Einsicht in die Geometrie
der Singularitäten. Funktioniert in beliebiger Charakteristik nicht direkt für
Raumkurven.

Es gibt weitere Beweise für die Kurvenauflösung, siehe etwa Casas

[Cs, sec. 3.7] für eine etwas andere Induktionsinvariante in Charakteristik 0,
oder Oka [Ok] und Goldin-Teissier [GT] für einen Zugang über torische
Modifikationen.

Die vorliegende Arbeit beweist die Auflösung von ebenen Kurvensingularitäten

durch Induktion über das Paar (Ordnung, Steigung) wie in (2c). Eine
ähnlich explizite Darstellung, allerdings beschränkt auf den Fall der Charakteristik

Null, findet sich im Buch von Brieskorn-Knörrer, das sich gut als

begleitende Lektüre zu diesem Artikel eignet. Die Darstellung von Abhyankar
in [Ab2] ist sehr suggestiv, wenn auch im Detail nicht ganz leicht nachzuvoll-
ziehen. Wir empfehlen auch den Artikel von Orbanz [Or] als Ergänzung und

Abrundung.
Hier ist eine präzise Version des Satzes, mit dessen Beweis wir uns

beschäftigen wollen.

Satz. Sei C C M eine algebraische Kurve, die in eine zweidimensionale
glatte algebraische Varietät M eingebettet ist, wobei M und C über einem

algebraisch abgeschlossenen Körper beliebiger Charakteristik definiert seien.

Zu jedem Punkt a von C lässt sich in natürlicher Weise ein Paar von Zahlen

(r,s) e N2 konstruieren, das für singuläre a unter der Punktexplosion von M
in a in jedem Punkt a' der strikt Transformierten C' von C bezüglich der
lexikographischen Ordnung auf N2 fällt,r',s')<lex (r,s),

wobei .v' das dem Punkt a' zugeordnete Paar bezeichnet. Dabei hängt
(r, s) nur von der Isomorphieklasse der Vervollständigung des lokalen Ringes
von C in a ab.

Die Iteration von Explosionen in den singulären Punkten von C und ihren
strikt Transformierten liefert also nach endlich vielen Schritten eine glatte
Kurve.
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Als erstes müssen natürlich die verwendeten Begriffe definiert und erläutert
werden. Als Erleichterung für den Leser schicken wir dem Text einige Beispiele
voraus. Im Hauptteil entwickeln wir die wesentlichen Ideen und Konzepte,
im Anhang werden die notwendigen Definitionen und Hilfsmittel aus der

kommutativen Algebra bereitgestellt.
Die Auflösung von Kurvensingularitäten ist ein wichtiges Resultat der

algebraischen Geometrie. Die Beweistechnik beruht, ausgehend von geometrischen

Überlegungen, auf Begriffen und Sätzen der kommutativen Algebra,
die jeder Studierende einmal in realiter angewandt gesehen haben sollte. Die
verwendete Induktion über ein lexikographisch geordnetes Paar von
Invarianten ist ein Musterbeispiel für elegante und ökonomische Beweisführung.
Schlussendlich ist der Kurvenfall als Vorläufer des Falles beliebiger Dimension

eine ausgezeichnete Vorbereitung, um Hironaka's Beweis der Auflösung
von beliebigen Varietäten in Charakteristik Null zu verstehen. Siehe dazu die

Originalarbeit von Hironaka [Hi] und die nachfolgenden Weiterentwicklungen,

bzw. Vereinfachungen seines Beweises durch Aroca, Vicente, Villamayor,
Encinas, Bierstone-Milman und Hauser [AHV1, AHV2, Vil, Vi2, EV, BM,
EH, Ha2].

Gleichzeitig ist ein tiefes Verständnis des Kurvenfalls in positiver Charakteristik

die Voraussetzung dafür, das bislang noch immer ungelöste Problem der

Auflösung algebraischer Varietäten beliebiger Dimension in positiver Charakteristik

p > 0 anzugehen. Siehe [Ha3] für die Auflösung von Flächen in

beliebiger Charakteristik und [Ha4, Ha5] für eine Beschreibung der
auftretenden Probleme in Dimension > 3.

Wir beschreiben nun kurz das in dieser Arbeit verfolgte und klassisch

vielfach verwendete Beweisschema. Eine Kurve hat nur endlich viele
Singularitäten, also genügt es, jede einzeln zu betrachten und aufzulösen. Wir können

uns hiermit auf lokale Überlegungen beschränken. Unter Explosion geht ein

singulärer Punkt der Kurve in höchstens endlich viele singuläre Punkte der

transformierten Kurve über. Wieder genügt es, einen herauszugreifen. Damit
erhalten wir einen Homomorphismus der zugehörigen lokalen Koordinatenringe
als hauptsächliches Objekt unserer Untersuchungen.

Unsere Kurve ist nach Voraussetzung in eine glatte zweidimensionale
algebraische Varietät M eingebettet. Diese Fläche M erlaubt im allgemeinen keine

Überdeckung durch offene Teilmengen, die isomorph zu offenen Teilmengen
des affinen Raumes A2 sind. Damit können wir bei den lokalen Untersuchungen

der Kurve a priori nicht voraussetzen, daß die Kurve in den A2 eingebettet

ist, also dort durch eine polynomiale Gleichung in zwei Variablen definiert

ist.



AUFLÖSUNG VON KURVENSINGULARITÄTEN 313

Eine wesentliche Vereinfachung stellt nun der Übergang zu den

Vervollständigungen der lokalen Ringe dar. Damit können wir im Ring der formalen

Potenzreihen arbeiten. Dies erleichtert die Konstruktion der Invarianten. Die

Vervollständigung des lokalen Koordinatenringes der Kurve ist ein Faktorring
des formalen Potenzreihenrings in zwei Variablen nach einem Hauptideal.
Dieses wird von einer formalen Potenzreihe erzeugt. Zur Vereinfachung der

Darstellung werden wir stets annehmen, daß dieses Ideal durch ein Polynom

erzeugt wird, daß also die Kurve lokal in den A2 eingebettet ist. Im allgemeinen
Fall sind die durchzuführenden Konstruktionen sehr ähnlich, unsere Annahme

stellt also keine wesentliche Einschränkung dar.

Jedem solchen Faktorring wollen wir ein Paar von Zahlen zuordnen, und

zwar so, daß das Paar unter Explosion lexikographisch fällt. Dazu ist es

natürlich notwendig, das Paar intrinsisch zu wählen, d.h., unabhängig von der

Wahl von Koordinaten oder anderen Hilfsmitteln.
Die erste Komponente des Paares wird die Ordnung der Taylorentwicklung

der die Kurve definierenden Gleichung im singulären Punkt sein. Klarerweise

ist sie intrinsisch. Die zweite Komponente wird durch die Wahl von lokalen

Koordinaten und die Betrachtung des Newton-Polygons der Kurve eingeführt.
Sie wird definiert als ein (geeignetes) Vielfaches der Steigung eines

ausgezeichneten Segments des Newton-Polygons. Um diese Steigung koordinatenunabhängig

zu machen, wird ihr Supremum über alle Koordinaten als Invariante

genommen. Man erhält ein Paar von Zahlen (r, s) in N2 (bis auf Multiplikation
mit einer fixen positiven Zahl, die etwaige Nenner bereinigt). Dieses Paar

heißt die lokale Auflösungsinvariante der Kurve im betrachteten Punkt.

Dem Verhalten dieses Paares unter Explosion gilt nun unser Hauptaugenmerk.

Es ist leicht zu zeigen, daß die erste Komponente, die Ordnung, unter

Explosion nicht steigen kann, wenn man von der Kurve zu ihrer strikt
Transformierten übergeht. Damit kann man sich, per Induktion über die Ordnung,
im weiteren auf jene Punkte der strikt Transformierten beschränken, wo diese

Ordnung gleich bleibt (ist sie gefallen, ist auch das Paar (r, s) lexikographisch
gefallen). Die Konstanz der Ordnung der Kurve unter der Explosion erlaubt

präzise Rückschlüsse über die Form und Veränderung des Newton-Polygons der

lokalen definierenden Gleichung vor und nach der Explosion. Dies geschieht
wie folgt. Sei a ein singulärer Punkt von C, und sei ar ein Punkt der strikt
Transformierten von C, in dem die Ordnung gleich geblieben ist.

Der Übergang zur Vervollständigung der lokalen Ringe ermöglicht es

zunächst, das oben definierte Supremum der ausgewählten Steigung durch
einen formalen Koordinatenwechsel bei a vor der Explosion als Maximum zu

realisieren (dies ist i.a. im lokalen Ring selbst nicht möglich). Die Konstanz
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der Ordnung der lokalen Gleichung impliziert nun, daß dieses Maximum in
Koordinaten angenommen wird, bezüglich derer die Koordinatentransformation
der Explosion beim Übergang von a zu o' einer monomialen Substitution
der Variablen entspricht. Insbesondere folgt dann, daß die in a' induzierten
Koordinaten wieder das Maximum der Steigung realisieren. Nun ist es ein
Leichtes, die Veränderung der Steigung am Newton-Polygon abzulesen. Und
in der Tat, die maximale Steigung fällt, wenn die Ordnung gleich geblieben ist.
Damit ist der Induktionsschritt vollständig durchgeführt: Das der Singularität
zugeordnete Paar von Zahlen fällt unter Explosion,

(r',s') <iex

Da N2 mit der lexikographischen Ordnung wohlgeordnet ist, also jede
absteigende Folge stationär wird, können wir Induktion über unsere Invariante
anwenden. Nach endlich vielen Explosionen erreicht in jedem Punkt die
lokale Auflösungsinvariante ihr Minimum. Dies tritt ein, wenn die Ordnung
der Taylorentwicklung der definierenden Gleichung auf 1 gesunken ist (in
welchem Fall die maximale Steigung irrelevant ist). Das heißt aber gerade,
daß die Kurve im betrachteten Punkt glatt ist. Genau das war zu zeigen.

2. Beispiele

Wir diskutieren die wesentlichen Punkte der Konstruktion der Auflösungsinvariante

an den folgenden drei Beispielen. Sei

f(y,Z) y3 +Z4.

Die Variablensubstitution

CU z) (Tg z)

in / entspricht der Explosion des Nullpunktes in A2 (betrachtet in einer
affinen Karte). Wir erhalten als total Transformierte /* von /

/* —JXy~-, z) =y3z3 +z4.

Wir können aus /* das irrelevante Monom z3 faktorisieren (dieses entspricht
der exzeptionellen Komponente) und erhalten das Polynom

f'iy, z) y3

die strikt Transformierte von / in der betrachteten Karte. Die Ordnung von

f im Nullpunkt dieser Karte ist

ord0 /' 1 < 3 ord0 /,
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also hat sich die Singularität von / verbessert (jeweils im Nullpunkt der

Karten). Wir sind sogar nach einer Explosion bei einer regulären (einer Kurve

mit Ordnung 1) angelangt.
Sei nun

/ y3 + z7.

Dann ist

/* f(yz, z) y3z3 + z7 und V, z) y3 +z4.

Also gilt für die Ordnung

ord0 /' ord0 / 3

Trotzdem hat sich die Situation verbessert, denn wir wissen vom vorherigen

Beispiel, daß wir nach einer weiteren Explosion eine reguläre Kurve erhalten.

Um dies auch anhand unserer Auflösungsinvariante zu sehen, betrachten wir
die zweite Komponente der Invariante, die "Steigung" des Newton-Polygons.
Die genaue Definition des Newton-Polygons und der zweiten Komponente
der Invariante geben wir in den folgenden Abschnitten. In den Beispielen

entspricht sie dem (kleinsten) Exponenten der Terme, die nur die Variable

z enthalten (da das Newton-Polygon nur aus zwei Ecken besteht), also z7

und z4. Wir sehen, daß

stg0 /' 4 < 7 stg0 /.
Damit ist

(ordo f,stg0/') <kx (ordo /, stg0 /),
und die Auflösungsinvariante ist (im Ursprung der betrachteten Karte) gefallen.

Wir betrachten nun ein Beispiel, in dem die Definition und die Beobachtung
der Auflösungsinvariante

(r, s) (ordfl /, stgfl /)
etwas subtiler ist. Sei

f(y, z) yV + + / + z12
•

Als Grundkörper wählen wir einen Körper der Charakteristik 3. Analoge

Beispiele gibt es für jede beliebige Charakteristik.

Wie zuvor berechnen wir die total und strikt Transformierte von /, also

f*(y, z) =f(yz, z) y3z5 + z8 + yV + z12

und f'iy,z)j3 + z3 + y9z4 + z7.
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Die Ordnung von f im Nullpunkt ist gefallen

ord0 /' 3 < 5 ordo /,
und die Singularität von / hat sich verbessert. Wir explodieren nochmals den

Nullpunkt. Eine analoge Rechnung wie vorher liefert als strikt Transformierte

/,Uz) / + l+jV° + z4,

mit ordo /" 0. Im Nullpunkt der betrachteten Karte ist die Ordnung wieder
gefallen (die Kurve V(f") enthält nicht diesen Punkt). Hingegen gibt es einen
Punkt in dieser Karte, nämlich a — (1,0), in dem die Ordnung von f" nicht
gefallen ist. In der Tat, die Translation y i-a y — 1 liefert die Taylorentwicklung

/,,(j-l,z) /+/z10-z10 + z4

mit

ordö/" 3.

Wir sind hier gezwungen, die zweite Komponente stgfl / der Invariante zu
betrachten. Wir sehen

stg0 /' 3 und stgfl f" 4.

Unsere Auflösungsinvariante ist (scheinbar) gestiegen. Doch Halt Unsere

Berechnung der Steigung von f war zu naiv : Wechselt man etwa in f die
Koordinaten (was ja nicht verboten sein kann) vermöge

(y, z)*->(y- zf z),

so hat f die Taylorentwicklung

f =ff(y-z,z) y3+y9z4-zl3+zJ

im Nullpunkt. Die Ordnung ist mit ord0 f 3 unter diesem Koordinatenwechsel

natürlich unverändert geblieben, aber die Steigung ist nun

stgo/ 7.

Dies zeigt, daß unsere Definition der Steigung koordinatenabhängig war. Damit
kann sie aber nicht aussagekräftig sein. Wir müssen als Maß der Komplexität
der Singularität der Kurve ihrem Polynom / Invarianten zuordnen, die nicht
von der Wahl von Koordinaten abhängen. Die Ordnung der Taylorentwicklung
tut dies von vornherein. Bei der Steigung bietet sich an (und bewährt sich
a posteriori bestens), das Supremum aller koordinatenabhängigen Steigungen
zu wählen (in der Vervollständigung des lokalen Ringes). Sofern es existiert,
hängt es natürlich nicht von den Koordinaten ab.
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In unserem Beispiel erkennen wir mit dieser Definition, daß

stgo/' 7

maximal ist (unter allen Koordinatenwechseln) und ebenso

8tga/" 4.

Zusammen sehen wir:

(orda /", stga /") <[ex (ordo /', stg0 /').
Diese Ungleichung zeigt, daß die Singularität beim Übergang von auf /"
in den betrachteten Punkten wirklich besser geworden ist.

Ein wichtiger Bestandteil des Auflösungsbeweises wird also das Studium
der Steigung eines Polynoms in einem Punkt unter Koordinatenwechseln sein,
sowie das Verhalten der maximalen Steigung unter Explosionen.

3. Das Newton-Polygon

Wir definieren in diesem Abschnitt das Newton-Polygon für eine Potenzreihe

in zwei Variablen. Mit Hilfe dieses Polygons ordnen wir jeder Potenzreihe

eine Zahl zu. Das Newton-Polygon ist aber von der Wahl des regulären
Parametersystems abhängig. Wir untersuchen daher im Abschnitt 4 das Verhalten

dieser Zahl bei Anwendung eines Automorphismus. Im Teil 5 definieren
wir schließlich eine weitere Invariante neben der Ordnung und untersuchen
deren Eigenschaften.

Sei k ein Körper. Bezeichne im folgenden R den formalen Potenzreihenring
in zwei Variablen über k. Mit m bezeichnen wir das maximale Ideal von R.
Sei y (y,z) ein reguläres Parametersystem von R. Wir kennzeichnen durch
den Index y, daß eine Definition von der Wahl des Parametersystems abhängt.
Seien f e R, f ^ 0, und

(3.1) / =f(y,z) Vcqy", mit (ai, a2)G Nq
a a.

Die Menge

Ay(/) U Nq mit ca ^ 0}

nennen wir den Träger von /. Der Rand der konvexen Menge

conv( [J {a + R>o}) C R>0

«Ay(f)
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zerfällt in zwei Halbgeraden und einen kompakten Streckenzug. Diesen

Streckenzug nennt man das Newton-Polygon von /. Die endliche Menge
der Ecken des Newton-Polygons bezeichnen wir mit NPy(/). Das Newton-

Polygon von / besteht genau dann aus nur einem Punkt, wenn / yalza2e
mit e G R invertierbar.

a2

Abbildung 5

Das Newton-Polygon von / y1 + y5z2 + y3z4 + y4z6 + y2z1

Beispiel 3.1. Das Newton-Polygon von / y1 + yr'z2 + y3z4 + y4z6 + y2z1

und dessen Konstruktion ist in Abbildung 5 zu sehen. Die Menge der Ecken,

NPy(/), ist {(7,0), (3,4), (2,7)}.

Aus der Definition des Trägers und der Multiplikation zweier Potenzreihen

folgt unmittelbar für f,g £ R mit f,g^ 0

(3.2) Ay(/0)C Ay(/) + Ayfo).

Seien f,e £ R, f ^ 0 und e invertierbar. Im allgemeinen ist nicht jedes
Element des Trägers von / im Träger von fe enthalten. Zum Beispiel ist

(y + yz)( 1 — z) y — yz2. Es gilt aber folgendes Lemma.

Lemma 3.2. Wenn S £ NPy(/), dann ist 6 £ Ày(fe).

Beweis. Wenn / auch invertierbar ist, gilt die Aussage trivialerweise.
Seien / wie in (3.1) mit ord / > 1,
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e^ dß yßundß

feJ2'mit c»dß
7 a+ß=j

Angenommen b$ 0. Dann gäbe es, da c$do fr 0, ein ca fr 0 mit a fr S

und ai < S\, G2 < £2- Also ein Widerspruch zur Annahme, daß J eine Ecke
des Newton-Polygons von / ist.

Mit diesem Lemma, (3.2) und der Definition des Newton-Polygons folgt:

Lemma 3.3. Seien f,e É R, f fr 0 und e invertierbar. Dann ist

NPy(/) — NPy(/ e).

Seien / G m, / fr 0, wie in (3.1) und r ord/. Die Steigung von /
bezüglich y wird definiert als

stgy/ =inf |mit a e Npy ^ a ^ °)j G Q>° U {oo},

wobei inf 0 oo. Wenn a G NPy(/), g ^ (r,0), dann ist (0, frffrfr) die

Projektion von (gi,G2) durch (r,0) auf die G2-Achse der Schnittpunkt der

Geraden

lj(/3i, /?2) mit —+ ß2= }
r — ai r — ai J

durch (r,0) und (gi,G2) mit der G2-Achse. Also ist s stg / das Minus
r-fache der Steigung des steilsten Segments des Newton-Polygons von /.
Siehe Abbildung 6.

Lemma 3.4. Seien / Gm, / ^ 0 wrcd r ord/. :

(i) stgy/ G G Q>o niit p und q teilerfremd und 1 < q < r} U {oo}.
(ii) r < stgy/ < oo.

(iii) stgy/ r genau dann, wem? ^ ein g G NPy(/), g (r, 0), razY

Gi + G2 r, gibt.

(iv) stgy/ > r genau dann, wenn die Initialform fr von f gleich cyr mit
c fr 0 ist.

(v) stgy/ =j oo genau dann, wenn f yr£ mzY e G invertierbar.

Beweis. Klar.
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Abbildung 6

Die Steigung

Seien / G m, / ^ 0, wie in (3.1), r ord/ und / G R mit t > r. Wir
schreiben

F, =a V caya Summe über a mit -ol\ + ot2 — t bzw.
r

(x

F>t y caya Summe über a mit -a\ + 02 > t.
ra

Dann bestehen Ft bzw. F>t aus allen Termen von / deren Exponenten auf
bzw. oberhalb der Geraden durch (r,0) und (0,0 liegen.

Sei ^ stg / < 00. Dann können wir / zerlegen in

(3.3) f^Fs+F>s.
Wenn r < s, dann besteht Fs nach Definition von ^ neben cyr aus noch
mindestens einem Term.

LEMMA 3.5. Sei umgekehrt r<iGR so, daß

f Ft + F>t.

Wenn es in Ft einen Term caya,zŒ2 mit a / (r,0) gibt, dann ist stg / t.

Beweis. Sei a G Ay (/), ol\ < r. Aus f-a\ + oti > t folgt

rôti
— > t.

r — ol\
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Nach Voraussetzung gibt es ein o G NPy(/) mit ~ra\ +02 t, d.h.,

ra2t
r — a 1

Damit ist stg / t.

4. Koordinatenwechsel

Es bezeichne G Autk(R) die Gruppe der /uAlgebrenautomorphismen
des formalen Potenzreihenringes R in zwei Variablen. Um die Beziehung
zwischen stg / und stgy p(f) stg^_i / für ein p G G zu untersuchen,
verwenden wir die Möglichkeit der Gauß-Bruhat Zerlegung p ulp von p
mit u G U, / Gl und p G P, siehe Abschnitt A.2.

Sei zunächst w G £/. Dann ist

zu «(y) <ry + y/zi mit ord/zi > 1, a ^ 0
(4.1)

z/2 «(z) by + cz + /z2, mit ordh2 > 2 c ^ 0

Das Newton-Polygon von / ist im allgemeinen nicht gleich dem Newton-

Polygon von u(f). Betrachte zum Beispiel f — z und u den zu ü — (v, y + z)

gehörigen Substitutionshomomorphismus, d. h., u(f) /(y. y + z) y + z.

Lemma 4.1. Sezczz / y01^2 mzY ce 7^ 0, z/zzd zz G U. Dann g//z (siehe

Abbildung 7) (01,02) G Ay(zz(/)) zmd

Ay(w(/)) C {jö G Nq mit ß\ — 01 > 02 — ß2 und ß\ > 01}

conv({(oi + 02,0) + R>0} U {(01, 02) + R>o}) •

Beweis. Es ist

u(f) u<ß zzf (ay + yhß^ ((cz + by) + h2)a2

«2

dya'zai +ya>
k= 1

mit d ^ 0 und ord h > a2. Daraus folgt die Behauptung.



322 H. HAUSER UND G. REGENSBURGER

a2

Abbildung 7

Koordinatenwechsel : Ayu(ya 1 za2

Lemma 4.2. Seien / Gm,//0, r ord / aad a g U. Dann gd/y

(i) W?nn stgy/ > r, dann fst NPy(/) NPy(n(/)).
(ii) stgy/ stgyn(/).

Beweis. Zu (i) : Da stgy/ > r, ist mit Lemma 3.4 (r.O) G Ay(/). Mit der

vorherigen Behauptung und der Definition des Newton-Polygons folgt daraus

NPy(/) NPy («(/)).
Zu (ii): Sei stgy/ r. Nach Lemma 3.4 gibt es ein a G NPy(/),

a / (r,0), mit au -f a2 r. Wenn es zwei solche a G NPy(/) gibt, dann

betrachten wir das mit der kleineren a\ -Koordinate. Nach der vorherigen
Behauptung ist dann a G NPy(n(/)) und damit stgy u{f) stgy/ — r.

Sei nun / Gl. Dann ist

h /(y) y + g > mit g G £[[z]], ord# > 1

k Kz) z
Wenn wir stgy/ und stgy /(/) vergleichen, können wir im allgemeinen nichts

aussagen, wie folgendes Beispiel belegt:

Beispiel 4.3. Sei l(y) y + z.

• Mit/ y2+z3 ist 1(f) y2+2yz+z2+z3, also 2 ;stgy 1(f) < stgy/ 3.

• Mit / y2 + yz ist /(/) y2 + 3yz + 2z2, also 2 stgy /(/) stgy/ 2.
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Mit / y2 - 2yz + z2 + z3 (y - z)2 + z3 ist 1(f) — y1 + z3, also

3 stgy Kf) > stgy/ 2.

Mit / y2 - 2yz + z2 (y - z)2 ist 1(f) y2, also stgy 1(f) — oo.

Außerdem kann stgy/(/) von der Charakteristik von /: abhängen. Mit l
wie im vorherigen Beispiel und / y2 + z2 ist /(/) j2 -f 2yz + 2z2. Wenn

char/: 2, dann ist stgy 1(f) oo, sonst stgy 1(f) 2.

Sei / G L wie in (4.2). Wir werden nun den Zusammenhang zwischen

stgy/, stgy 1(f) und m ordg

untersuchen.

(0,ma1+a2) a2

Abbildung 8

KoordinatenWechsel : Àyl(ya 1 zai

Lemma 4.4. Seien f yaiza2 mit a f 0 und l G L. Dann gilt (siehe

Abbildung 8) (a\, 02), (0, mcti +02)^ Ay(/(/)) zmd

Ay(/(/)) C {ß G Nq ra/J ßi — > m(a\ — ß\) und ß\ < 01}

C conv({ ^ — 0^ + R>0} U {(0, ma\ + 02) + R>oD •

Wenn char& 0, dann ist außerdem (a\ — k,mk + 02) £ Ay(1(f)) für
k— 1,..., OL\ — 1.
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Beweis. Es ist

(4.3) 1(f) (y+ g)a'za2+ ga<^ Z°2 •

Daraus folgt die Behauptung.

Sei jetzt wieder / G m, / / 0 und bezeichne r ord/, s stgy/ und

m ord g.

Abbildung 9

Koordinatenwechsel: Ay/(./') mit m < -

LEMMA 4.5. Wfew? m < -, dann ist stg /(/) mr (siehe Abbildung 9).
r y

Beweis. Sei zunächst stgy/ < oo. Wir zerlegen / in (siehe (3.3))

f — Cyr + ^ caya, mit -a\ + a2 > s, a / (r, 0) und c ^ 0

a

Aus g 7^ (r,0) folgt für gj > r, daß mcti + G2 > mr. Wenn aj < r, dann

impliziert
rot 2 > .v > mr

r — Gi

wieder mGi + G2 > mr. Mit der vorherigen Behauptung ist damit

Ay(/(c/)) C Ay(/(/)) und {(r, 0), (0, mr)} NP,(/(/)),
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also stgy 1(f) — mr.
Wenn stgy/ oo, dann ist

/ yre mit e G R invertierbar.

Damit ist

1(f) — Kyr)e(y + g,z)

Daraus folgt mit dem vorherigen Lemma und Lemma 3.3 die Behauptung.

$
Lemma 4.6. Wenn m > -, dann ist stgy/ stgy/(/) (siehe Abbildung

10).

Beweis. Wir zerlegen / wie in (3.3) in

/ Fs + F>s.

Die Exponenten a der Terme cayaiza2 von F>s erfüllen nach Definition

— OL 1 + OL2 S

r
Mit Lemma 4.4 und der Voraussetzung gilt diese Ungleichung auch für die

Exponenten der Terme von l(F>s). Für einen Term cayaizai von Fs erkennt
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man mit dem gleichen Argument, daß l(caya[za2) aus cayaiza2 und Termen

besteht, deren Exponenten wieder die obigen Ungleichung erfüllen. Also ist

Kf) Fs+F'>s.

Mit Lemma 3.5 gilt dann stgy /(/) stgy/.

s
Lemma 4.7. Wenn m - dann ist stgy/(/) < stgy/.

Beweis. Klar mit den zwei vorherigen Lemmata.

SATZ 4.8. Seien f G m, / ^ 0, mit s — stgy/ < oo, r ord/ und

f Fs + F>s wie in (3.3). Dann sind äquivalent :

1. Es gibt ein / G L mit stgy 1(f) Stgy/-

2. - G N und Fs — c (y — dz> Y, mit c,d G k, c, <7 ^ 0.
r v 7

$
Beweis. Sei - G N und

r

Fs c (y —dz'Y

Sei / der zu 7 (j + dz~r ,z) gehörige Einsetzungshomomorphismus. Dann ist

1(f) l(Fs) + /(L>,) c/ + l(F>s).

Mit Lemma (4.4) sieht man, daß l(F>s) F'>s. Daraus folgt entweder

NPy(/(/)) {(r, 0)}, also stgy 1(f) oo, oder

rOLl
> s, für à G NPy (/), et ^ (r. 0).

v — et]

Damit gilt wieder stgy /(/) > Stgy/-
Sei nun umgekehrt / G L mit stgy /(/) > stgy/. Seien /(j) y + g und

oo

g ^ atz1 G zk[[z]], mit m ord g
i=m

y
Aus Lemma 4.7 folgt - m G N. Wie zuvor ist l(F>s) — F'>s. Weiters ist

(siehe (4.3))

l(Fs) Fs(y F g,z) Fs(y + amz!n,z) + G>s

und damit

1(f) /AÖ7 + amY\ Z) + H>s
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Weil

Fs(y + amzm, z) F's,

und nach Voraussetzung stgy /(/) > stgy(/), muß dann

Fs(y + amv, z) cf mit c ^ 0

gelten. Also ist

Fs(y,z) c(y- amz})r

Sei p die Vertauschung von y und z. Dann ergibt sich mit Lemma 3.4:

Lemma 4.9. Seien / Gm,//0 r ord f. Dann gilt :

(i) stgyp{f) r we/in es efiz u G NPy(/), o 7^ (0,r), mit

oi + G2 r, gibt.

(ii) stg /?(/) > r genau dann, wenn die Initialform fr von f gleich czr mit
c^O ist.

(iii) stgyp{f) 00 genau dann, wenn f zre mit e G R invertierbar.

5. Die maximale Steigung

Seien / Gtn,//0 und G Aut^(/?). Setze

£(/) {stgy <p(/) mit p G G}

{stgy/ mit y (y, z) reguläres Parametersystem von

Wir definieren

stg/ supS(/),

als das Supremum über alle koordinatenabhängigen Steigungen, vgl. [Abi] (in
[BK] folgt aus maximalem Kontakt die Maximalität der Steigung). Offenbar
ist stg/ invariant bei einem Wechsel des Parametersystems. Nach Satz A.7
(Gauß-Bruhat Zerlegung) können wir jedes p G G schreiben als Produkt

p ulp mit u G U, l G L und p G P. Mit Lemma 4.2 ist dann

Stgy Vif)Stgy Ulp(f)=S Stgy U~\ulp(f)) Stgy

Also ist

S(f){stgy lp(f) mit I e L und p e P}
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Wenn stg/ < oo, dann erkennt man mit Lemma 3.4 (i), daß S(f) eine

endliche Menge ist. Also ist in diesem Fall das Supremum ein Maximum,
d.h., es gibt ein / G L so, daß nach einer eventuellen Vertauschung p G P
der Variablen die Gleichung stgy lp(f stg / gilt. Insbesondere gibt es ein

reguläres Parametersystem y (y, 2) von R mit

stgy/ stg /, mit / f(y, 2).

Wir sagen dann, das Parametersystem y (y,2) realisiert stg/. Unmittelbar
aus Lemma 3.3 folgt:

LEMMA 5.1. Seien f G m, / 7^ 0 zmd e e R invertierbar. Dann ist

stg/ stg/e.

Wir kommen nun zum Fall stg / oo. Aus dem WeierStraßsehen

Vorbereitungssatz folgt :

LEMMA 5.2. Sei f G R mit ord/ 1. Dann ist stg / oo.

Satz 5.3. Sei f — /(y,z) G m, / 0 razY r ord/ < stgy/. Dann ist

stg / oo genau dann, wenn es ein I G L gzY^ so, daß stgy /(/) oo.

Beweis. Sei also stg / oo. Wir konstruieren das gesuchte / G L mit

stgy /(/) oo induktiv. Sei m stgy/. Falls m — oo ist, sind wir fertig.
Sonst folgt aus der Voraussetzung, daß es ein l\ G L und ein p\ G P gibt mit
s | < stgy /1/z i (/). Angenommen p\ ist nicht die Identität. Da /- cyr mit

c G k, c / 0 ist, wäre dann aber stgy /i/zi(/) r wegen Lemma 3.4. Also
ist p\ die Identität. Mit Satz 4.8 folgt daher

m\ — G N und / c(y — a\zmi)r + F>Sl mit c, a\ G k c, «i / 0
r

Wie im Beweis zu Satz 4.8 erkennt man, daß

< 52 := stgy f(y + axinx, z).

Wenn s^ oo ist, sind wir am Ziel, sonst beginnen wir wieder von neuem.

Entweder sind wir nach endlich vielen Schritten fertig, oder wir haben für

jedes n G N ein an G k und ein sn G N mit s\ < S2 < • • < sn und

mn — sn/r G N so, daß

n

f(y+ y aiz"", z) c/ +
;=i

Z?„ YWÏ» mit —/o:i + «2 > «n+i, « (f,0) und c ^ 0
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Die Summe Bn zerlegen wir in

Bn — yrCn + Dn

CnY.C"aya'~rZa2mit «1 > '• und

Dn J2caya,za\mit

Aus den beiden Ungleichungen für die Exponenten der Terme von Dn

folgt wegen sn oo, daß die Ordnung von Dn beliebig groß wird. Sei

g YIÏïL a
aiZmi - Wir erhalten für n £ N

n oo

f(y + 9,z) =f(y+ atz"" + ^ a

i= 1 i=n+1
n

=f(y + y2 a,z"" + h"- mit ord h" m"+1 •

i= 1

Damit konvergiert Cn in R und mit C lim Cn ist

f(y + 9,z) cyr+yrC.

Für den Automorphismus l L gegeben durch (y. z) ^ (v + g, ist dann

stg,/(/) oo.
Die umgekehrte Implikation ist trivial.

Korollar 5.4. Sei f =/(y, z) GtnJ/O. Dann gibt es ein l G L und
ein p G P so, daß stg / stgy lp(f).

Beweis. Seien stg/ oo und stgyf ord/ r. Dann gibt es

ein Iq G L und ein p0 e P mit stgy loPo(f) > r •>
und wir können den

vorherigen Satz anwenden. Wenn stg/ endlich ist, so haben wir uns schon

zu Beginn des Abschnittes überlegt, daß es ein / G L und ein p e P gibt mit
Stg /= Stgy lp(f).

Insbesondere bedeutet dieses Korollar, daß es für jede Potenzreihe / G R

ein reguläres Parametersystem y — (y, z) von R gibt, das stg / realisiert, also

so, daß

stgyf stg /, mit / - f(y, z).

Eine zum ersten Teil des Beweises von Satz 5.3 analoge Argumentation
zeigt auch folgenden Satz.
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Satz 5.5. Sei f /(v.z) Gm,/ /0 mit stg/ < oo. Dann gibt es ein

Polynom
n

9 ^2 aiZmezk[z\
/= 1

und ein p G P so, daß stg / stgy lp{f) mit 1 (y + g,z).

6. Die Auflösungsinvariante

Wir fassen im folgenden durch die Taylorentwickluig von Polynomen im
Nullpunkt den Polynomring k\y,z] als Unterring von &[[y, z]] auf. Damit
können wir die Begriffe bzw. Ergebnisse von Abschnitt 5 auch auf Polynome
anwenden. Sei / G k\y,z] \ k. Wenn r ord / > 1, dann setzen wir

stg0/ stg/,

und stg0/ oo, wenn ord/ 0. Für einen beliebigen Punkt a — (a1,^2) G

A2 definieren wir

stgfl / stg0/, mit /(y, z) /(y + au z. + a2) •

LEMMA 6.1. Sei a G A2. Dann gilt:
(i) a ein regulärer Punkt von f ist, dann ist stgö / — 00.

(ii) Wenn a ein singulärer Punkt von f ist, dann ist stgaf G Sr mit

r ordfl / und

Sr — {s — - e Q>o mit r < s, p und q teilerfremd, 1 < q < r} U {00}
G

Beweis. Die erste Aussage folgt aus Lemma 5.2, die zweite aus

Lemma 3.4.

Seien Sr mit r > 2 wie oben und S\ {oc}. Wir betrachten die

Menge

IU W x c No x (Q>o U {.x})
re No

mit der lexikographischen Ordnung <iex. Für einen Punkt ß G A2 ist dann

die Auflösungsinvariante von f in a definiert als das Paar

invfl / (ordfl /, stgfl /) G /.
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Offensichtlich ist <iex eine totale Ordnung mit kleinstem Element (0, 00).
Wir zeigen, daß <iex eine Wohlordnung auf I ist. Sei dazu J C / nichtleer.

Seien p\\ J -ä No die Projektion auf die erste Komponente und

r min{/?i(7)} C No. Wenn r 0 bzw. r — 1, dann ist (0,00) bzw.

(1, 00) das kleinste Element von J. Sei also r > 2. Setze K J f] {.r} x Sr

und

/: K —N U {00}, (r, s) i-A r\s

Die Abbildung ist injektiv und erhält die Ordnung. Die Behauptung folgt.

7. Aufgelöste Punkte

Wir betrachten nun die lokal definierende Gleichung von singulären Punkten
einer ebenen Kurve. Der Einfachheit halber beschränken wir uns auf den

affinen Fall. Im allgemeinen Fall ist die Gleichung der Kurve nach
Vervollständigung im betrachteten Punkt durch eine formale Potenzreihe gegeben.
Die Argumentation ist dann ähnlich. Sei also / G k[y, z] \ k das definierende

Polynom einer algebraischen Kurve in A2. Mit V(f) {a G A2 mit f(a) 0}
bezeichnen wir die Nullstellenmenge von /.

Wir nennen den Nullpunkt einen aufgelösten Punkt von /, wenn /(0) / 0,
oder wenn es Polynome g, h G k\y, z] mit ord0 g 1 und ord0 h — 0 und ein
n G N gibt so, daß

(7.1) f gnh.

Einen beliebigen Punkt a (<21,02) G A2 nennen wir einen aufgelösten Punkt
von /, wenn der Nullpunkt von / f(y -f a\, z + ß2) aufgelöst ist.

Sei / cf^ • • -frbr die Primfaktorzerlegung von / in &[x,y]. Bezeichne

/red — f\ ' ' 'fr
die Reduktion von / ; /red ist eindeutig bis auf einen konstanten Faktor und
hat die gleiche Nullstellenmenge wie /. Sei a G V(f). Dann ist a genau dann
ein aufgelöster Punkt von /, wenn a ein regulärer Punkt von /rec1 ist. Also ist

{a G A2 mit a nicht aufgelöster Punkt von /} Sing(/reci).

Da eine reduzierte ebene Kurve nur endlich viele singuläre Punkte hat, folgt
nun :

SATZ 7.1. Seien k ein algebraisch abgeschlossener Körper undf G &[y, z]\k.
Dann ist die Menge der nicht aufgelösten Punkte von f endlich.
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Sei a G V(f). Wir wollen im folgenden beweisen, daß a genau dann ein

aufgelöster Punkt von / ist, wenn stgaf oo, siehe Satz 7.6. Nach einer

Translation in A2 können wir uns auf den Nullpunkt beschränken.

Satz 7.2. Seien k ein algebraisch abgeschlossener Körper und f G k[y, z]

irreduzibel. Dann ist f G &[[y, z\] reduziert.

Beweis. Angenommen, / ist als Potenzreihe nicht reduziert. Dann ist

/ g2h, mit ^,/îG ^[|j,z]] und ord g > 1

Für ord f — 0 und ord / 1 folgt daraus ein Widerspruch. Sei also ord f > 2.

Angenommen dyf / 0. Dann sind dyf und / teilerfremd in k[y, z], weil /
irreduzibel und deg dyf < deg/ — 1 ist. Weiters ist ord dyf > 1. Mit der

Produktregel folgt

dyfdy(g2h) gdyh + 2h

Daher ist g ein echter gemeinsamer Teiler von / und dyf in k[\y, z]]. Das

ist aber ein Widerspruch zu Korollar A.5. Also ist dyf 0. Analog dazu

schließt man, daß auch dzf 0 ist. Aber dyf dzf — 0 impliziert / G k,
wenn char k 0. Widerspruch.

Wenn char& p > 0, dann bedeutet das Verschwinden der partiellen
Ableitungen, daß / nur aus Termen der Form caypaizpa2 besteht. Indem

man die Identität (a + b)p ap + bp für einen Körper der Charakteristik p
anwendet und benützt, daß es in einem algebraisch abgeschlossenen Körper
insbesondere auch p-te Wurzeln gibt, erkennt man, daß

/ J2c»ypa'zpa2(E^U'z"2)", mit </;; <•„.

Dies ist ein Widerspruch zur Irreduzibilität von /.

Ein Körper k heißt perfekt, wenn char& 0 oder wenn für char& p
jedes Element in k eine p-te Wurzel besitzt. Neben algebraisch abgeschlossenen

Körpern sind zum Beispiel auch alle endliehen Körper perfekt. Im Beweis

zum vorherigen Satz verwenden wir nur diese Eigenschaft von k. Damit sind

Satz 7.2, Lemma 7.4 und Satz 7.6 auch für perfekte Körper gültig.
Wir erinnern hier kurz an ein Ergebnis von Abschnitt 5 und leiten einige

einfache Folgerungen daraus ab, die wir im folgenden benötigen. Seien R wieder
der formale Potenzreihenring in zwei Variablen über einem Körper k und

y (y? f) ein reguläres Parametersystem von R. Seien weiters m das maximale

Ideal von R und G Autt(R) die Gruppe der &-Algebrenautomorphismen.
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Sei f f(y,z) GÄ,//0, mit r ordf > 1 und stg/ oo. Dann gibt
es nach Korollar 5.4 und Lemma 3.4 (v) ein ip G G mit

^P(f) — yr&-> mit ë e R invertierbar.

Sei g p~x(y) G R. Dann ist g irreduzibel, weil ord# 1, und

(7.2) / gre, mit g,e G R, g irreduzibel und e invertierbar.

Wir verwenden weiters, daß R ein faktorieller Ring ist.

LEMMA 7.3. Seien k ein Körper und f e R, f f 0, mit stg / < oo und
r ord/ > 1. Dann ist stg/n < oo für n G N.

Beweis. Angenommen stg/" oo. Dann ist fn — grne mit g p~xiy)
und p wie oben. Aus der Eindeutigkeit der Primfaktorzerlegung folgt f — gr ë.
Also ist

p(f) — yre', mit e' G R invertierbar

und damit stg / oo. Widerspruch.

Lemma 7.4. Seien k ein algebraisch abgeschlossener Körper und

f E k\y,z] irreduzibel mit ord / > 2 (d.h., 0 ist ein singulärer Punkt von f).
Dann ist stg0 / < oo.

Beweis. Indirekt. Sei stg0/ oo. Da ord/ > 2 folgt mit (7.2), daß /
als Potenzreihe nicht reduziert ist. Widerspruch zu Satz 7.2.

Lemma 7.5. Seien k ein Körper und /i,/2 G z] teilerfremd mit
/u/2 G m. Dawi w/ stg0(/i/2) < oo.

Beweis. Angenommen stg0(/i/2) oo. Mit (7.2) ist dann

hfl — 9re 5 mit g,e e R, g irreduzibel und invertierbar.

Aus der Eindeutigkeit der Primfaktorzerlegung in R folgt, daß g ein echter
Teiler von f\ und /2 in R ist. Das ist ein Widerspruch zu Korollar A.5. G

SATZ 7.6. Seien k ein algebraisch abgeschlossener Körper undf G k[y, z]\k.
Dann sind äquivalent :

1. 0 ist ein aufgelöster Punkt von f.
2. Stg0 f m OO.
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Beweis. Sei zunächst 0 ein aufgelöster Punkt von /. Wenn 0 £V(f) ist,

dann ist stg0/ oo nach Definition der Steigung. Sei also 0 G V{f). Dann

ist / gnh wie in (7.1). Nach Lemma 5.2 ist stg0g oo. Also gibt es ein

(p G G mit ip(g) — yë mit ë G R invertierbar. Für dieses ip ist dann

cp(f) (p(gnh) yne, mit e G R invertierbar.

Damit ist stg0 f — oo.
Sei umgekehrt stg0 / oo. Wenn ord f 0 ist, dann ist 0 nach Definition

ein aufgelöster Punkt von /. Sei also ord f > 1. Sei

/ cfxb< -/y

die Primfaktorzerlegung von /. Angenommen es gibt /. / G { 1,... ,r}, i ^j,
mit ord / > 1 und ord/ > 1. Dann können wir / schreiben als / fjjh
mit fijj G k[y,z\ teilerfremd, /,/• G m und h G k[y,z] mit ord h 0. Mit
Lemma 5.1 ist dann aber stg0/ stg0(fifj) oo. Das ist ein Widerspruch

zu Lemma 7.5. Also gibt es genau ein i G {1,..., r} mit ord/ > 1.

Angenommen es gilt ord / > 1. Nach Voraussetzung und Lemma 5.1 gilt
stg0 / stg0 ff1 — oo. Nach Lemma 7.4 und Lemma 7.3 ist aber stg0 ff' < oo.

Widerspruch. Also ist ord / 1 und damit 0 ein aufgelöster Punkt von /.

8. Explosion eines Punktes

Wir erklären zunächst, was wir unter der Explosion des Nullpunktes im
A2 verstehen. Durch eine Translation ist dann die Explosion eines beliebigen
Punktes definiert.

Sei k ein algebraisch abgeschlossener Körper. Bezeichne k\y1 z] den affinen

Koordinatenring von A2 und (a,b) G k2 die Punkte von A2. Wir betrachten

zwei weitere affine Räume U\ — A2 bzw. Ü2 — A2. Seien

: U\ -A A2 (<2, b) i—y (ab, b),

7r2 : U2 A2 j (a, b) ^ (a, ab).

Die zu 7Ti bzw. tt2 gehörigen Abbildungen 7ri bzw. 7T2 auf kfy, zl sind dann

7Ti : ^[y, z] -» A:[y, z], /(y, z) «->/(yz, z),

7T2 : ^[y, d -> z], /(y, z) *-+f(y,yz) •

Wir definieren die offenen Mengen
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Un {(a, b) e Ui mit ± 0} V(y),
U21{(a,b)£ mit b ^ 0} U2\

und die Abbildungen

h\2 •' Un U2u (ß,b) {ab, I/o),
h2\ : U21 I/12, (fl, &) ^ (1 /b,ab).

Dann ist

(8.1) h\2h2\ — Id und h2\h\2 Id,

und wir haben folgendes kommutatives Diagramm:
h 12

Ul2 < _
t/21

n /f-i n
£/i t/2

Bezeichne T t/j U U2 die topologische Summe von U\ und U2. Das
heißt T ist als Menge die disjunkte Vereinigung der beiden Mengen U\ und
U2 und eine Teilmenge von T ist offen genau dann, wenn ihr Durchschnitt
mit U\ bzw. U2 offen ist. Wir setzen Un U\ bzw. U22 U2 und

(8.2) h\\ Id: Un —> U\\ bzw. h22 Id: U22 —> U22

Damit können wir eine Äquivalenzrelation ~ auf T definieren. Wir sagen t
und u aus T sind äquivalent, wenn t G Uij, u G Uß und u hi:i{t) für ein
i bzw. ein j aus {1,2}. Mit (8.1) und (8.2) erkennt man, daß ~ tatsächlich
eine Äquivalenzrelation ist.

Wir schreiben nun Wf T/~ für den Quotientenraum (d.h., die Menge
der Äquivalenzklassen versehen mit der Quotiententopologie) und p : T —>• Wf
für die kanonische Abbildung. Dann ist W' eine reguläre Varietät, die, wie
man sagt, durch das Zusammenkleben von Ui und U2 entsteht. Wir nennen
W' die Explosion des Nullpunktes von A2. Über die kanonische Abbildung
können wir U\ bzw. U2 mit den in Wf offenen Mengen p(U\) bzw. p{U2)
identifizieren. Es ist Wf p(U\) Up(U2).

Die Abbildung it: W' —y A2 mit

#(w) J wenn

\ 7T2(ic), wenn w E U2

ist wohldefiniert, da das obige Diagramm kommutativ ist.
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Lemma 8.1. Für fr :W -4 A2 und E 7r_1(0) gi'fr:

(i) EFU\m V(z) bzw. E H U2 V(y).

(ii) Zs~ P1.

(iii) 7T : W7 \ E —^ A2 \ {0} ist ein Isomorphismus.

Beweis. Die Behauptung (i) ist klar nach Definition von it.
Zu (ii) : Man prüft leicht nach, daß die Abbildung p : E —> P1 mit

f (a : 1), wenn e (a, 0) G E n U\
^ \ (1 ; Z?), wenn e (0,b) e E H U2

wohldefiniert und bijektiv ist.

Zu (iii) : Sei u; G (W \£)flt/i. Dann ist w - (<2, Z>) mit /?/(). Also ist

7f(iü) (ab, b) e A2 \ {0}. Analog schließt man für w G (W7 \ E) H Z72. Wir
definieren <£: A2 \ {0} —) W7 \ E durch

f (a/b, Z?) G f/i \ E, wenn w e A2 \ V(z),
^ ^ \ (<2, b/ä) G U2 \ E, wenn wGA2\ V(y).

Die Abbildung ist wohldefiniert, denn für ein (a, Z?) G A2 \ V(yz) ist

h\2(a/b, b) (0a/b)b, \/(a/b)) (<2, Z?/a).

Weiters sind (pit Id auf W' \ E bzw. Up Id auf A2 \ {0}.

Wir nennen E den exzeptionellen Divisor von it: Wf -ï A2.

9. Total und strikt Transformierte

Seien / G k[y,z] \ k,

/ $>«/*'z«2
OL

und 0 G C V(f), d.h., r ord/ > 1. Wir überlegen uns, wie das Urbild von

C unter f aussieht. Dazu berechnen wir 7f-1(C) in U\ bzw. U2- Bezeichne

fi =f*(y,z) to (/) =f(yz,z)

bzw. /2* 7t2(/) =f(y,yz). Wir führen alle folgenden Überlegungen nur für

/* und Z7i aus und schreiben /* für /,*. Für /2* und U2 gelten die analogen

Aussagen. Es gilt
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7f (C) H Ui {a («i, 0^2) G C/1 mit 7fi(ß) (öiclu #2) G C}
{a G TA mit /(a^ «2) 0} V(/*).

Man nennt 7f_1(C) C W7 die total Transformierte von C bzw. /* die tota/
Transformierte von f in U\. Wir können /* zerlegen in

(9.1) r =f(yz,z)Y,c<*ya,za,+a2
OL

]T caya]za,+a2~°-z) zrf
OL

Dann ist

Vif) V(zrf) V(zr) U V(f') (EH Ux) U V(f').

Wir nennen f bzw. V{f) die strikt Transformierte von / bzw. V{f) in U\.
Um die Primfaktoren von f zu untersuchen, überlegen wir uns zunächst, daß

f nicht durch z teilbar ist. Wir schreiben

/ fr +./;+, H mit d ^ deg/

als Summe von homogenen Polynomen. Dann ist

/* =/(^, z) =/rCyz, z) +/r+i(yz, z) + • • • +/rf(yz, z)

Z(/r(y, 1) + ^r+lCy, 1) H h 1)) Zrf

mit /r(y, 1) f 0, also teilt z nicht f. Aus dieser Darstellung der strikt
Transformierten von / folgt das nächste Lemma.

Lemma 9.1. Es gilt

(EDU^n V(f) V(z) n V(f) {(*, 0) mit fr(t, 1) 0}

Insbesondere ist diese Menge endlich.

LEMMA 9.2. Sei f f cz mit c G k \ 0 und f irreduzibel bzw. reduziert.
Dann ist auch f irreduzibel bzw. reduziert.

Beweis. Angenommen f ist reduzibel, d.h.,

f'gh,mit g,C

Wenn wir nun y/z für y einsetzen, ist mit (9.1)

/ zrg(y/z, z)
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Indem wir diese Gleichung mit einer genügend hohen Potenz von z

multiplizieren, ist

fgh i mit ne No und g, h e k[j;3 z].

Da g und h jeweils einen Primfaktor ungleich z besitzen (sonst wäre ff
durch z teilbar), folgt ein Widerspruch zur Irreduzibilität von /. Eine ähnliche

Argumentation zeigt auch, daß die Reduziertheit von / die Reduziertheit von

f impliziert.

Sei a! — (f, 0) G E H U\. Uns interessiert die Invariante inva>f von f im
Punkt a!. Nach Definition ist

inva'/' inv0 f'(y+t,z) inv0 «(/')

mit
v : k[y, z] k{y, z]

dem zu v (y + Z1, z) gehörigen Einsetzungshomomcirphismus (v ist nur
auf dem Polynomring definiert Wir verwenden im nächsten Abschnitt dazu

folgende Überlegung. Sei

w : k[y, z] -» k\y, z], mit w (y + tz, z).

LEMMA 9.3. In dieser Situation ist

k\y,z]^+k\y,zl

TTl

k\y, z] k\y, z]

kommutativ, und es gilt

f'(y + h z) t>(/') w(/)' =/Cy + fc, z)'

(vg/. Lemma 10.7).

Beweis. Das obige Diagramm kommutiert, denn

vir\(y) u(yz) yz + fz 7T[(y + fz) 7T\ w(y)

und

E7Ti (z) Z 7Ti w{z) •

Aus der Kommutativität (und da ord w(f) r) folgt dann

Zrv(f') v(zrf') VTTi(f) TTiw(f) fw(f)'
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10. Die Invariante fällt unter Explosion

In diesem Abschnitt zeigen wir, daß die Auflösungsinvariante einer Kurve
unter Explosion fällt.

SATZ 10.1. Seien k ein algebraisch abgeschlossener Körper; / G k[y, z]\k
und a G A2 ein nicht aufgelöster Punkt von f. Wir betrachten die Explosion
des Punktes a G A2. Dann ist die Invariante der strikt Transformierten f von

f in jedem Punkt a' des exzeptionellen Divisors kleiner als die Invariante von

f im Punkt a,
inwa'f < invö /, für a' G E.

Nach einer Translation in A2 können wir annehmen, daß a der Nullpunkt
ist. Sei

a (f,0) G EH t/j
Bezeichne lt den zu ~lt (y + tz, z) gehörigen Substitutionshomomorphismus.
Dann ist mit Lemma 9.3

(10.1) inva'f inv0 Iff)' (ord0 Iff)', stg0 Iff)').
Wir können also, um die Invariante von f in jedem Punkt von EC\U\ zu
untersuchen, auch ord0 Iff)' bzw. stg0 Iff)' für t G k betrachten. Wir werden
dies im folgenden gleich für beliebige Potenzreihen tun. Um die Invariante in
jedem Punkt des exzeptionellen Divisors zu kennen, müssen wir auch invo /2
in U2 untersuchen.

Wir verallgemeinern in diesem Abschnitt unter anderem den Begriff der
total und strikt Transformierten für Potenzreihen und verwenden wieder
folgende Bezeichnungen. Sei R ein Potenzreihenring in zwei Variablen über
einem Körper k und y (y,z) ein reguläres Parametersystem von R. Sei

/ G R mit / / 0, r — ord / > 1 und

(10.2) /=/(yjZ) ^cQ ya'za2.
OL

Sei weiters ir\ : R -A R bzw. 7r2 : R —> R die zu tt\ (yz, z) bzw. 7t2 (y, yz)
gehörigen Substitutionshomomorphismen. Bezeichne

r Tri (/) =f{yz,z) ^cQyQlzai+a2
OL

zrY, z) -
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und

fi Kz(f)=f(y,yz)

Lemma 10.2. Es gilt:
(i) Ay(/7) {(Gl, Gl + G2 - r) mit (gi,g2) Ay(/)}.
(ii) ordf < ord f — r.

Beweis. Zu (ii) : Sei g G Ay(/) mit gi + g2 /*, dann ist

Gi + (gi + G2 — r) < r.

Also ist ord/7 < r. ö

Lemma 10.3. Sei stg/ ord / r. Dann sind

ord lt(f)' < ord /, für t G k

und ord/27 < ord/.

Beweis. Für jedes t e k gibt es ein a G Ay(///)) mit gi + G2 r
und g 7^ (r, 0) (sonst wäre stg/ > stgy///) > r). Für dieses g ist dann

Gi + (gi + G2 — r) — gi < r. Also folgt, da (gi, gi + G2 — r) G Ay(/7), die

Behauptung.
Außerdem gibt es einen Term cayaiza2 von / mit gj + G2 r und

a / (0,r) (sonst wäre stg / > stgy/?(/) > r mit p der Vertauschung von y
und -), und damit ist auch ord/27 < r.

LEMMA 10.4. Seien stg/ > ord/ r und y -= (_y,z) ein reguläres

Parametersystem von R so, daß stgy/ > r. Dann sind

ord 0 fiir t G k, t fi 0

und ord /27 0.

Beweis. Wie im Beweis zu Lemma 4.5 erkennt man, daß in ///) der

Koeffizient von f nicht Null ist. Also ist ord lt{f)' 0. Da fi cyr, c^0,
ist auch ord(/27) 0.

LEMMA 10.5. ordf < ord / r genau dann, wenn stg / < 2 ord /.
Beweis. Angenommen s stgy/ > 2r. Sei g G Ay(/). Dann ist

-Gi + G2 > s
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und damit

2a i + g2 > 2r bzw. a\ + (a\ + a2 - r) > r.
Also folgt mit Lemma 10.2, daß ord/' > r. Wenn stg / < 2r, dann gibt es
ein a G NPy(/), a ^ (r, 0), mit

r — ql\

Für dieses a ist dann ai + (a\ + a2 - r) < r, also ist ordf <r.

Wir erinnern an eine Notation von Abschnitt 3, die wir im folgenden
verwenden. Seien / wie in (10.2) und t G R, t > r ord/. Dann schreiben
wir

Lemma 10.6. 5W oc > stgy/ > 2ord/. Dawz Lv/

stgy/x stgy/ - ord/

Abbildung 11).

Beweis. Seien r ord/, s stgy/ und s' s-r. Nach dem vorherigen
Lemma und Lemma 10.2 ist r ordf'. Wir zerlegen / in

Summe über a mit -a\ + a2 t bzw.
r

Summe über a mit -a\ + a2 > t.
OL

f Fs + F>s

Sei cayaiza2 ein beliebiger Term von Fs mit a ^ (r,0). Dann ist

ra 2
.v

r — a i

und deshalb
r(a i + a2 - r) ra2— r — s — r — s

r — a i r — ai
Also ist

— ai + (ai + a2 — r) s'.
r

Für einen Term caya]za2 von F>s mit a\ < r ist

ra2
> s,r — ai

und damit folgt wie zuvor
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s'
— Q\ (G] -\~ 0L2 — V) S

r

Wenn a\ > r ist, dann gilt diese Ungleichung trivialerweise. Also können wir

f zerlegen in

f' F's,+F'>s,.

Mit Lemma 3.5 folgt die Behauptung.

Abbildung 11

Die Steigung fällt : stgy f stgy / - ord /

LEMMA 10.7. Sei l der zu l (y + g,z) gehörige
Substitutionshomomorphismus mit g G zk[[z]]. Sei m der zu in -- (y + zg,z) gehörige

Substitutionshomomorphismus. Dann ist folgendes Diagramm kommutativ,

und es gilt

Kf) m(f)'.

Beweis. Nachrechnen, analog zum Beweis von Lemma 9.3.
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Lemma 10.8. Seien oo > stg/ > 2ord/ und y (y,z) ein reguläres
Parametersystem von R so, daß stg / stg/. w/rJ stg/' dwrc/z

y (y, z) realisiert, d.h.,

stg/7 stgy/'

Beweis. Angenommen stgf > stg /' /. Dann gibt es ein / G L' und
ein p e Pf mit stgy Ip(f') > s'. Wenn sf > r ord /, dann ist p die Identität.
Wenn s1 r und p die Vertauschung von y und z ist, dann folgt, da f
y-allgemein der Ordnung r ist, mit Satz 4.8, daß

p(f') — c{y + dzf + F>r, mit c,d G k, c//0.
Also ist

f cdr(y + d 1

z)r Hb F>r •

Wir können daher annehmen, daß p die Identität ist. Mit m wie im vorherigen
Lemma folgt

/(/) m{f)'.
Dann ist stgym(f) > 2r. Sonst wäre nach Lemma 10.5

ord^) ord /(/') ord m(f)' < r.
Mit Lemma 10.6 folgt dann

stg f - r s'<stgy/(/') stgy mstgy stg/ -
also ein Widerspruch.

Satz 10.9. Seien /G/?,/^0, r — ord / > 1. Sei oo > stg / > 2ord/.
Dann ist

stg fstg/-ord/.
Beweis. Klar nach dem vorherigen Lemma und Lemma 10.6.

Wir wenden die Ergebnisse dieses Abschnitts auf ebene Kurven an und
beweisen den Satz vom Beginn dieses Abschnitts.

Beweis von Satz 10.1. Seien also k ein algebraisch abgeschlossener
Körper, / G &[y,z] \k, r — ordo/ > 1 und 0 ein nicht aufgelöster Punkt
von /.

Wenn stg0 / ord0 / ist, dann ist mit (10.1) und Lemma 10.3

invfl/ f' < inv0 /, für af G E D U\

Weiters gilt invo/2 < invo/.



344 H. HAUSER UND G. REGENSBURGER

Sei nun stg0/ > ordo/. Da nach Annahme der Nullpunkt ein nicht

aufgelöster Punkt ist, folgt stg0/ < oo mit Satz 7.6. Daher können wir
mit Satz 5.5 annehmen, daß nach einem polynomialen Koordinatenwechsel

stg0 / stgy/ gilt. Lemma 10.4 zeigt, daß es genügt, invo f und invo / zu

vergleichen. Wir unterscheiden zwei Fälle :

1) Wenn stg0/ < 2ordo / ist, dann ist nach Lemma 10.5 ordf < ord/ und

damit inv0 f < inv0 /.
2) Wenn stg0/ > 2 ordo /, dann ist ordf — ord / und mit dem vorherigen

Satz stg0/' stg0/- ord0/ < stg0/. Es gilt wieder inv0/' < inv0/.
Also haben wir auch für den Fall stg0/ > ordo / gezeigt, daß

inVfl//7 < invo /, für d G E

gilt.

11. Beweis des Hauptsatzes

Zum Abschluß zeigen wir, wie mit den bisherigen Ergebnissen bewiesen

werden kann, daß durch eine endliche Folge von Explosionen von Punkten die

singulären (bzw. nicht aufgelösten) Punkte einer ebenen algebraischen Kurve

aufgelöst werden können.

Seien k ein algebraisch abgeschlossener Körper unci / G k[y,z] \ k. Nach

Satz 7.1 gibt es nur endlich viele nicht aufgelöste Punkte von /. Sei a ein nicht

aufgelöster Punkt von /. Wir explodieren den Punkt a in A2. Lemma 9.1

besagt, daß in nur endlich vielen Punkten des exzeptionellen Divisors die

Ordnung der strikt Transformierten von / größer als Null ist. Sei a! G E
ein solcher Punkt. Wenn af ein aufgelöster Punkt der strikt Transformierten

ist, dann sind wir fertig. Sonst ist nach Satz 10.1 die; Invariante der strikt
Transformierten in a' kleiner als die Invariante von / im Nullpunkt. Durch

Induktion über die Invariante (vgl. Abschnitt 6) folgt die Behauptung. O
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A. Appendix

A. 1 Potenzreihenringe

Wir stellen einige Definitionen und Resultate über Polynome und formale

Potenzreihen zusammen, die im Hauptteil der Arbeit verwendet werden.

Beweise und weitere Details finden sich beispielsweise in [AM], [La], [Ru],

[SS] oder [ZS].

Im folgenden bezeichnen k[x\ bzw. k[[v]] den Polynomring bzw. formalen

Potenzreihenring in n Unbestimmten x\ xn über einem gegebenen Körper
k. Wir fassen k[x] als Unterring von k[[x]] auf. Für / G k[[x]] ungleich 0 sei

ord / die Ordnung (der Untergrad) von / im Nullpunkt. Wir setzen ordO oc.

Der Potenzreihenring k[[x]] ist ein faktorieller, noetherscher, lokaler Ring
mit maximalem Ideal

m {/ G k[[x]] mit ord / > 1}

Die davon induzierte m-adische Topologie auf k[[x]] wird durch die

Nullumgebungsbasis mr {/ G k[[x]], ord/ > r} definiert. Damit wird k[[x]]
eine vollständige, topologische k-Algebra.

Nach dem Weierstraßschen Vorbereitungssatz läßt sich jedes g G k[[x]]
mit ordg(0,... ,0,jc„) m < oo (d.h., g ist xn.-allgemein der Ordnung m)

eindeutig schreiben als g — up mit p G k[[xi,... ,x„_i]][x„] polynomial und

normiert in xn vom Grad m und u G k[[v]] invertierbar, also u(0) ^ 0.

Jeder k-Algebrenautomorphismus p von k[\x\] stabilisiert das maximale

Ideal m und ist ein Substitutionshomomorphismus

f^fop f(p1,..., (fn) mit ifj tp(xj) G m,

wobei der Vektor Tp — (^i,...,^w) eine invertierbare Funktionalmatrix

(dißji0)) G GL„(k) hat. Wir nennen ip den zu (p — (<ß\,...,ipn) gehörigen

Substitutionshomomorphismus. Mit dp bezeichnen wir den durch

n

dtp{Xj)^ diipjiO )xt,für
i= 1

definierten linearen Substitutionshomomorphismus.

Sei p ein ^-Algebrenautomorphismus von k[[x]] mit dp — Id. Dann

können wir den zu p inversen Substitutionshomomorphismus / wie folgt
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konstruieren. Wir schreiben ipj xj + hj mit ord hj >2 für j 1,..., n. Wir
möchten g-, mit ord gj > 2 finden so, daß für ip mit %pj x-, + gj gilt

xj (ip o ip)(Xj) ip(Xj + hj) xj + gj +
Xy + gj + /z/xi + £i, • • .,xn+ #„) „ für j 1,..., n.

Seien g gn), h (/zj,..., hn) und x fxi,..., xn). Dann lautet
die obige Gleichung

x x + g + h(x + g), mit /z(x + #) (/u(x + #),..., hn(x + g)).

Anders ausgedrückt muß also g ein Fixpunkt der stetigen Abbildung

F: m2 • k[[x]]n -t m2 • k[[x]f g h» -h(x + #)

sein. Wir definieren rekursiv die Folge (g')/EN0 in tu2 • k[[x]]" durch

g°0 und p'+l F(g') -A(x + p;).

Die Folge (g')iN„konvergiert und mit g lim g' e m2 • k[[x]]" gilt dann

—A(r + g)F(g) F(limg') lim limg'+l g.

Also ist g der gesuchte Fixpunkt.
Wir untersuchen im folgenden, wann zwei teilerfremde Polynome auch als

Potenzreihen teilerfremd sind. Dazu betrachten wir zunächst die Lokalisierung
&[x]m des Polynomrings k[x\ im (maximalen) Ideal m (x\ ,x„). Die
Lokalisierung k[x]m ist ein lokaler, noetherscher, faktorieller Ring. Das
maximale Ideal von k[x]m bezeichnen wir mit m. Wir fassen k[x] als Unterring
von k[x]m auf, indem wir / mit //I identifizieren.

Die Elemente aus k[x] \ m haben Ordnung Null und sind deshalb
als Potenzreihen invertierbar. Wir können daher den Ring in den

Potenzreihenring &[[v]] durch die wohldefinierte und injektive Abbildung

k[x\m->• k[[x]], y-¥fg~x
9

einbetten. Also haben wir folgende Inklusion von Ringen

k[x] C k[x]m C k[[x]].

Sei c C &[v]m ein Ideal. Mit 7 k[[x]]c bezeichnen wir die Erweiterung
des Ideals c in &[[#]], Für das maximale Ideal m C k\x\KX ist m das maximale
Ideal von /c[[x]]. Weiters gilt

mr D £[v]m mr, für r G N.
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Der nächste Satz gibt Auskunft über die Beziehungen zwischen beliebigen
Idealen c von k[x]m und deren Erweiterung in k[[v]] und Kontraktion

?nk[jc]m in k[x]m. Für den Beweis brauchen wir folgende Behauptung, siehe

zum Beispiel [Sh, Vol. 1, S.284].

LEMMA A.l. Seien A ein noetherscher Ring, a C A ein Ideal so, daß

jedes Element von 1 + a invertierbar ist. Dann ist Hr>o^ + cir) b jïir jedes

Ideal b C A.

Satz A.2. Sei c c k[v]m ein Ideal. Dann ist Tn k[x]m c.

Beweis. Es genügt die Inklusion Fi k[x]m C c zu zeigen. Sei c

(c'i,..., c,u) ein Erzeugendensystem von c. Sei c G înk[x]m. Dann ist

c mit 7i G &[[*]]• Sei n G N. Wir können 7/ schreiben als

7?- dj + Si, mit di G k[x\ C k[x]m und Sl G mr.

Mit d Y1 cidi G c ist dann

c — d G mr n k[x]m tnr.

Also ist

c G 1^1 (c mr) c,
r>0

wobei das letzte Gleichheitszeichen aus dem vorherigen Lemma folgt, zusammen

mit der Tatsache, daß in einem lokalen Ring jedes Element von 1 + m

invertierbar ist.

KOROLLAR A.3. Seien c,d G k[x]m. Aus c \ d in k[[x]] folgt c \ d in k[x]m.

Beweis. Aus c \ d in k[[x]] folgt mit dem vorherigen Satz

d G (c) PI k|X|m (c).

Also c I d in k[x]m.

SATZ A.4. Seien c,d G k[x]m. Wenn c und d teilerfremd in k[v]m sind,

dann sind sie auch teilerfremd in k[[x]].

Beweis. Angenommen, c und d sind nicht teilerfremd in k[[v]]. Sei a
ein größter gemeinsamer Teiler von c und d in k[[x]] (a ist nach Annahme

ein echter Teiler von c bzw. d). Dann können wir c und d schreiben als

c 07 und d aô mit 7,S G k[[v]] teilerfremd. Also ist cö — d7 0.
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Für re N zerlegen wir 7 und ö in 7 sr + ar und S tr + rr mit
sntr e k[x] C &[v]m und <7rjrr e mr. Dann ist

ctr - dsr e (c, J)mr D k[x]m (c, d)mr,

wobei das letzte Gleichheitszeichen mit Satz A.2 folgt. Daher gibt es

ur,vr e mr so, daß ctr - dsr — cvr + dur. Also ist

c(tr - Vr) d(sr + Ur)

und damit (kürzen)

7(tr ~ Vr) Ö(sr + Ur)

Da 7 und ö teilerfremd in k[[x]] sind, ist (sr + ur) durch 7 in kfM] teilbar,
d.h.,

(sr + ur) A7 mit A G k[[x]].
Sei r ord 7 + 1. Dann ist

ord(,sy + ur) ord(sr) ord(^r + ar) ord(7),

weil 7 sr + ar und ur G mr, 7 G in". Also ist ord À 0, d.h., À ist
invertierbar. Daher (sr + ur) \ 7 in k[[x]]. Da 7 ein Teiler von c in k[[x]]
ist, folgt daraus mit Korollar A.3, daß (sy + ur) \ c in k[x]m, d.h.,

c e(sr + ur), mit e G k[x]m

Aber c(tr — vr) d(sr + ur), und deshalb ist (kürzen) e(tr - vr) d. Weil c

und d teilerfremd in k[v]m sind, ist e invertierbar in k[x]m. Damit ist

(c) (sr -F ur) (7) in k[[x]].

Dann kann aber a kein echter Teiler von 7 in k[[x]] s(ün. Widerspruch.

KOROLLAR A.5. Seien k[x] undf^g G m. Wenn f und g teilerfremd
in k[x\ sind, dann sind sie auch teilerfremd in k[[jc]].

Beweis. Die Behauptung folgt aus dem vorherigen Satz und der Tatsache,
daß zwei teilerfremde Polynome /, g G m auch in k[x]m teilerfremd sind.

A.2 Gauss-Bruhat Zerlegung

Sei k ein Körper. Bezeichne im folgenden R den formalen Potenzreihenring

in zwei Variablen über k und G Autk(R) die Gruppe der k-
Algebrenautomorphismen. Eine Matrix A G GLn{k) kann man bekanntlich
zerlegen in A PLU mit U eine obere (upper) Dreiecksmatrix, L eine
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untere {lower) Dreiecksmatrix mit Einsen in der Hauptdiagonale und P eine

Permutationsmatrix (Gaußalgorithmus mit elementaren Zeilenoperationen und

Zeilenvertauschungen). Wir möchten nun analog dazu ein p G G schreiben

als p plu. Dabei sollen l und u aus geeigneten Untergruppen von G und

p eine eventuelle Vertauschung der Variablen sein.

Sei y (y,z) ein reguläres Parametersystem von R. Wir identifizieren
wieder ein p G G mit dem zu

<P (¥>1 ,<P2),mitIfi (y,z)

gehörigen Substitutionshomomorphismus. Das Einselement von G bezeichnen

wir mit Id. Wir definieren

L {ip e Gmit ipi - yz&[[z]] und

U{(pG Gmit <pi — ye yR}

^ {Id, p},mit^(z,y).

Diese Definition hängt natürlich von der Wahl des regulären Parametersystems
ab. Wir werden im folgenden zeigen, daß L bzw. U Untergruppen von G

sind (P ist offensichtlich eine). Durch Nachrechnen sieht man, daß L und U

bezüglich Komposition abgeschlossen sind. Weiters ist für / G L bzw. u G U
die zu dl bzw. du gehörige Matrix eine unipotente untere Dreiecksmatrix
bzw. eine obere Dreiecksmatrix. Der durch dl induzierte lineare Substitutions-

homorphismus bildet also y auf y + az mit a G k und z auf z ab. Damit
ist er wieder in L. Analog dazu ist auch der von du induzierte
Substitutionshomomorphismus wieder in U.

Seien / G L mit 7 (y + g(z), z) und m der zu m (y — g{z), z) gehörige

Einsetzungshomomorphismus. Dann ist

Im — ml Id,

also l~x — m G L. Damit ist L eine Untergruppe von G. Mit folgender
Behauptung ist auch U eine Untergruppe.

Lemma A.6. Sei u G U. Dann ist u~l G U.

Beweis. Da der von du induzierte lineare Substitutionshomomorphismus
wieder in U ist, können wir o.B.d.A. annehmen, daß du Id. Sei also

ü (y + h\, z + ^2) mh °rd(hj) > 2, i 1,2, und h\ yf(y,z). Nach

Abschnitt A.l ist der zu u inverse Substitutionshomomorphismus gegeben
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durch u
1

(y + gx, z + g2), wobei g (gug2) lim gl mit g° 0 und
gi+i _ F(gl). Dabei ist

F: m2 R2 -^m2 R2,

(g\, gi) «-» -A(y + gu z + g%), mit h {h\, h2).

Durch Induktion über i folgt, daß g\ yf(y,z) für i > 1, und damit die
Behauptung. Der Fall i — 1 ist klar. Sei also g\ \/'(v, z). Dann ist

gtl h{(y + g\,z + gl2) Cv + 0i)/(y + 0i,z + g2)

(y + y/(y, z))/(y + si, z + .^) j/+1 (y, z) •

Sei p G G mit (<^1,^2)- Wir schreiben

Lpx ay + bz + h\

^2 uy + dz + /z2

mit J G k und ord/z, >2 für i 1,2. Die zu gehörige Matrix

ist invertierbar. Sei p die Vertauschung von y und z, d.h., p (z. v). Die
zu d(pp) dpdp bzw. d(pp) dpdp gehörige Matrix ist die Matrix A mit
vertauschten Spalten bzw. Zeilen. Da A invertierbar ist, gibt es immer ein

p G P so, daß {pLp) 1 (pp)(y) ay + bz + h\ mit a, b G k, a / 0 und

ord(Äi) > 2 (d.h., (pp>)\ ist y-allgemein der Ordnung 1). Analog gibt es ein

p G P mit (Lpp) 1 ay + fe + h\ mit a, b, h\ wie zuvor.

Für eine allgemeinere Version des folgenden Satzes in beliebiger Dimension
siehe [Ha6].

Satz A.7. Mit den Bezeichnungen wie oben gilt

G PLU ULF PUL LUP.

Beweis. Sei ip G G. Wir zeigen zunächst G -= PLU. Sei p G P
so, daß {pp>) 1 .y-allgemein der Ordnung 1 ist. Nach dem WeierStraßsehen

Vorbereitungssatz gibt es dann ein g G zk[[z]] und eine Einheit e G R so, daß

(pp) \ (pip)(y) (y + g)e
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Sei / der zu / (y + g,z) gehörige Substitutionshomomorphismus. Dann ist

/ G L und

(l~lpip)(y) - l1

((y + //(r.))c(.v. z))

0 - g(z)+ - - z).

Damit ist l~lpp u G U und p p~llu, also G PLU. Durch Inversion

folgt daraus G ULF.

Sei nun p G P so, daß (p~lp)\ y-allgemein der Ordnung 1 ist. Wie zuvor
finden wir dann ein / so, daß l~~x p~xp u G U. Dann ist p~x — lup~{ und

damit <p pu~ll~l, also G — PUL.
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