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1. EINLEITUNG

Die vorliegende Arbeit beschreibt die Konstruktion einer Auflésung von
ebenen Kurvensingularititen in beliebiger Charakteristik. Die Darstellung ist
vollstaindig und detailliert — sie setzt nur die elementaren Grundkenntnisse
der algebraischen Geometrie und kommutativen Algebra voraus. Priagnant
formuliert lautet die zu beweisende Aussage wie folgt.

SATZ. Jede singulire ebene algebraische Kurve ist der Schatten einer
glatten algebraischen Kurve unter einer geeigneten Projektion.

ABBILDUNG 1

Die Schleife als Schatten einer glatten Kurve

Die Aussage des Satzes gilt auch fiir singulire Kurven in hoher dimen-
sionalen Mannigfaltigkeiten, also solche, die nicht notwendig in eine zwei-
dimensionale Flache eingebettet sind. Wir werden uns indessen auf ebene
Kurven beschrinken. Der Beweis des allgemeinen Falles mit der in dieser
Arbeit besprochenen Methode wiirde groferen technischen Aufwand erfordern.

Seit Mitte des neunzehnten Jahrhunderts ist die Auflosung der Singu-
laritiaten algebraischer Varietiten ein zentrales Thema der algebraischen Geo-
metric. Kronecker, Max Noether, Dedekind, Riemann, Weber, Picard, Jung,

. sowie die Geometer der italienischen Schule — Enricues, Chisini, Bertini,
Del Pezzo, Levi, ... — beweisen wiederholt und mit dhnlichen Methoden
die Existenz von Auflosungen ebener algebraischer Kurven iiber C. Siehe
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[Za, Sg, Abl, Lp, Hal] fiir Details iiber die historische Entwicklung. Die
Arbeiten lassen vielfach die heutzutage selbstverstindliche Prézision der Be-
griffe und Argumente vermissen. Grundlegendes Hilfsmittel war (und ist auch
heute noch) die Explosion (Aufblasung) des umgebenden Raumes (der Ebene
oder einer zweidimensionalen Mannigfaltigkeit) durch den lokalen Ubergang
zum Mobiusband (“Wendeltreppe”). Durch Kontraktion des Nullschnittes des
Mobiusbandes auf einen Punkt erhélt man eine Projektionsabbildung auf die
Ebene, siche Abbildung 2.

ABBILDUNG 2

Explosion eines Punktes in der Ebene

Das Hochziehen der gegebenen Kurve (wobei der singuldre Punkt gerade
die Projektion des Nullschnittes sein soll) von der Ebene auf das Mobiusband
soll die Singularitit der Kurve entflechten. Geometrisch ist das einsichtig fiir
gewOhnliche Doppelpunkte, d.h., transversale Selbstschnitte der Kurve, deren
Zweige durch das Hochziehen getrennt werden, sieche Abbildung 3.

Bei Spitzen bendtigt man bereits eine algebraische Uberlegung, um zu
sehen, dal das Urbild der Kurve “weniger singuldr” als die Ausgangs-
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ABBILDUNG 3
Hochziehen der Schleife

singularitit ist. Fiir die einfachste Spitze mit Gleichung x* = y* erhilt man
in einem Transformations-Schritt eine glatte Kurve, siche Abbildung 4. Bei
komplizierteren Kurven sind mehrere Iterationen dieses Prozesses notwendig.
Der Satz iiber die Existenz von Auflsungen von ebenen Kurven besagt, daB
immer endlich viele Transformationen geniigen, um auf diese Weise eine glatte
Kurve zu erhalten.

Oben beschriebene Transformation der Ebene zum Mobiusband und das
Hochziehen der eingebetteten Kurve nennt man die “Explosion des Null-
punktes in der Ebene” und den Ubergang von der Kurve zu ihrer “strikt
Transformierten”. Diese Transformation war den algebraischen Geometern
des neunzehnten Jahrhunderts geldufig. Sie ist heutzutage auch unter den
Namen “Punktaufblasung”, “quadratische Transformation”, “Hopf-Abbildung”
oder “sigma-Prozess” bekannt. Dulac verwendet sie zur Vereinfachung und
Klassifikation von (singulidren) Differentialgleichungen [Dul].

Mit Zariski findet um 1940 in der Auflosungsprcblematik eine starke
und sehr erfolgreiche Algebraisierung statt. Von nun an werden algebra-
ische Varietiten iiber beliebigen Korpern oder iiber dem Ring der ganzen
Zahlen betrachtet. Zariski erkennt bereits, dal der Fall positiver Charakteristik
wesentlich vertrackter ist, ebenso wie die arithmetische Situation. Schon zu
Zeiten Zariski’s war der Fall von Kurven in positiver Charakteristik als gelost
betrachtet worden. Sein Schiiler Abhyankar beweist in einer spektakuldren und
technisch anspruchsvollen Arbeit Mitte der fiinfziger Jahre die Existenz von
Auflosungen fiir Flichen in Charakteristik p > 0 [Ab3]
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ABBILDUNG 4

Auflosung der Spitze

Die in der Literatur vorliegenden Beweise der Kurvenauflosung lassen sich
im wesentlichen in zwei Typen einteilen.

(1) AUFLOSUNG DURCH NORMALISIERUNG :

Der Koordinatenring R der (nicht notwendig ebenen) irreduziblen Kurve
C wird in seinen Funktionenkorper K eingebettet. Man zeigt, da3 der ganze
Abschluss R von R in K wieder der Koordinatenring einer Kurve C ist.
Diese Kurve C, die Normalisierung von C, erweist sich als glatte Kurve.
Die Inklusion R C R induziert die gewiinschte Projektionsabbildung C—C.
Literatur: Zariski-Samuel [ZS, vol. I, p. 93], Mumford [Mu, III1.8], Shafarevich
[Sh, IL5].

Vorteil: Man erhdlt die Auflosung in einem Schritt. Charakteristik-
unabhéngig. War es urspriinglich mithsam, die Normalisierung zu berechnen,
so gibt es heute dafiir in Computeralgebra-Systeme integrierte Algorithmen.

Nachteil :  Man verliert die Einbettung der Kurve. Die gleiche Methode
via Normalisierung funktioniert fiir Flichen nur unter Hinzunahme von
Explosionen von Punkten, und versagt vollkommen in Dimension > 3 [BL].



310 H. HAUSER UND G. REGENSBURGER

(2) AUFLOSUNG DURCH FOLGE VON PUNKTEXPLOSIONIEN DES UMGEBENDEN
RAUMES :

Hier besteht das zentrale Problem darin, zu zeigen, dal man in endlich
vielen Schritten eine glatte Kurve erhilt. Dazu kann man drei verschiedene
Argumente verwenden.

(2a) Verwendung der Normalisierung: Die Normalisierung der Kurve
faktorisiert iber jede Explosion der Kurve, und da die Ringerweiterung R C R
endlich ist, muss die Folge der Explosionen stationidr werden. Das bedeutet,
dal die in hinreichend vielen Schritten erhaltene Kurve glatt ist. Literatur:
Campillo [Cp, Thm. 1.5.10].

Vorteil :  Sehr elegantes und schnelles Argument. Funktioniert auch fiir
Raumkurven. Charakteristikunabhéngig.

Nachteil :  Argument versagt in hoherer Dimension. Keine Aussage lber
die mindestens notwendige Anzahl von Explosionen.

(2b) Induktion iiber das arithmetische Geschlecht : Fiir ebene (projektive)
Kurven wird das arithmetische Geschlecht definiert als

1 1
Sd=1d-2) - §pjr,,<r,, ~ 1),

wobei d der Grad der Kurve ist, die Summe {iiber alle singuldren Punkte p
der Kurve lduft, und r, die Multiplizitit der Kurve in p bezeichnet. Das
Geschlecht fillt unter Explosion in einem singuldren Punkt der Kurve. Da
das Geschlecht nicht negativ werden kann, muss nach endlich vielen Schritten
die Kurve glatt geworden sein. Die Argumentation geht auf Bertini zuriick.
Literatur: Fulton [Fu, chap. 7], Hartshorne [Hs, Thm. 3.9, chap. V].

Vorteil :  Induktionsinvariante kann direkt definiert werden. Charakteris-
tikunabhingig.

Nachteil :  Funktioniert nicht fiir Raumkurven. Verwendet wesentlich die
Theorie der Flichen. Argument versagt in hoherer Dimension.

(2¢) Induktion iiber Ordnung und Steigung des Newton-Polygons: Jedem
singuldren Punkt der Kurve wird ein Paar von Zahlen zugeordnet. Die
erste Komponente ist die Ordnung der Taylorentwicklung des definierenden
Polynoms im Punkt (Multiplizitit), die zweite die Steigung eines genau
spezifizierten Segments des Newton-Polygons des Polynoms. Das Paar wird
beziiglich der lexikographischen Ordnung betrachtet. Es féllt unter jeder
Explosion, solange der Punkt singuldr ist. Da die lexikographische Ordnung
eine Wohlordnung ist, sind nach endlich vielen Explosionen alle Punkte regulér.
Literatur: Brieskorn-Knoérrer [BK] in Charakteristik Null, Abhyankar [Ab2]
und Orbanz [Or] in beliebiger Charakteristik.
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Vorteil :  Sehr explizit und elementar. Charakteristikunabhingig. Funk-
tioniert mit entsprechenden Erweiterungen auch in héherer Dimension, aller-
dings bis jetzt nur in Charakteristik Null. Beinhaltet bereits die zentrale Idee,
eine Induktion lber die Dimension des umgebenden Raumes zu verwenden.

Nachteil :  Etwas rechnerisch. Keine tiefere Einsicht in die Geometrie
der Singularititen. Funktioniert in beliebiger Charakteristik nicht direkt fiir
Raumkurven.

Es gibt weitere Beweise fiir die Kurvenauflosung, siehe etwa Casas
[Cs, sec.3.7] fiir eine etwas andere Induktionsinvariante in Charakteristik O,
oder Oka [Ok] und Goldin-Teissier [GT] fiir einen Zugang {iber torische
Modifikationen.

Die vorliegende Arbeit beweist die Auflosung von ebenen Kurvensingu-
larititen durch Induktion iiber das Paar (Ordnung, Steigung) wie in (2¢). Eine
dhnlich explizite Darstellung, allerdings beschrinkt auf den Fall der Charak-
teristik Null, findet sich im Buch von Brieskorn-Knorrer, das sich gut als
begleitende Lektiire zu diesem Artikel eignet. Die Darstellung von Abhyankar
in [Ab2] ist sehr suggestiv, wenn auch im Detail nicht ganz leicht nachzuvoll-
ziehen. Wir empfehlen auch den Artikel von Orbanz [Or] als Ergénzung und
Abrundung.

Hier ist eine prizise Version des Satzes, mit dessen Beweis wir uns
beschiftigen wollen.

SATZ. Sei C C M eine algebraische Kurve, die in eine zwei-dimensionale
glatte algebraische Varietdt M eingebettet ist, wobei M und C iiber einem
algebraisch abgeschlossenen Korper beliebiger Charakteristik definiert seien.
Zu jedem Punkt a von C ldsst sich in natiirlicher Weise ein Paar von Zahlen
(r,s) € N? konstruieren, das fiir singuliire a unter der Punktexplosion von M
in a in jedem Punkt ' der strikt Transformierten C' von C beziiglich der
lexikographischen Ordnung auf N* fallt,

(r/7 S/) <Jex (r7 S)a

wobei (r',s') das dem Punkt a' zugeordnete Paar bezeichnet. Dabei hingt
(r,s) nur von der Isomorphieklasse der Vervollstindigung des lokalen Ringes
von C in a ab.

Die Iteration von Explosionen in den singuliren Punkten von C und ihren
strikt Transformierten liefert also nach endlich vielen Schritten eine glatte
Kurve.
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Als erstes miissen natiirlich die verwendeten Begriffe definiert und erldutert
werden. Als Erleichterung fiir den Leser schicken wir dem Text einige Beispiele
voraus. Im Hauptteil entwickeln wir die wesentlichen Ideen und Konzepte,
im Anhang werden die notwendigen Definitionen und Hilfsmittel aus der
kommutativen Algebra bereitgestellt.

Die Auflésung von Kurvensingularititen ist ein wichtiges Resultat der
algebraischen Geometrie. Die Beweistechnik beruht, ausgehend von geometri-
schen Uberlegungen, auf Begriffen und Sitzen der kommutativen Algebra,
die jeder Studierende einmal in realiter angewandt gesehen haben sollte. Die
verwendete Induktion iiber ein lexikographisch geordnetes Paar von Inva-
rianten ist ein Musterbeispiel fiir elegante und okonomische Beweisfiihrung.
Schlussendlich ist der Kurvenfall als Vorldufer des Falles beliebiger Dimen-
sion eine ausgezeichnete Vorbereitung, um Hironaka’s Beweis der Auflosung
von beliebigen Varietiten in Charakteristik Null zu verstehen. Siehe dazu die
Originalarbeit von Hironaka [Hi] und die nachfolgenden Weiterentwicklun-
gen, bzw. Vereinfachungen seines Beweises durch Aroca, Vicente, Villamayor,
Encinas, Bierstone-Milman und Hauser [AHV1, AHV2, Vil, Vi2, EV, BM,
EH, Ha2].

Gleichzeitig ist ein tiefes Verstdndnis des Kurvenfalls in positiver Charak-
teristik die Voraussetzung dafiir, das bislang noch immer 1ungeldste Problem der
Auflosung algebraischer Varietiten beliebiger Dimension in positiver Charak-
teristik p > 0 anzugehen. Siehe [Ha3] fiir die Auflosung von Flachen in
beliebiger Charakteristik und [Ha4, Ha5] fiir eine Beschreibung der auftre-
tenden Probleme in Dimension > 3.

Wir beschreiben nun kurz das in dieser Arbeit verfolgte und klassisch
vielfach verwendete Beweisschema. Eine Kurve hat nur endlich viele Singu-
laritdten, also gentigt es, jede einzeln zu betrachten und aufzuldsen. Wir konnen
uns hiermit auf lokale Uberlegungen beschrinken. Unter Explosion geht ein
singuldarer Punkt der Kurve in hochstens endlich viele singuldre Punkte der
transformierten Kurve iiber. Wieder geniigt es, einen herauszugreifen. Damit er-
halten wir einen Homomorphismus der zugehorigen lokalen Koordinatenringe
als hauptsichliches Objekt unserer Untersuchungen.

Unsere Kurve ist nach Voraussetzung in eine glatte zwveidimensionale alge-
braische Varietdt M eingebettet. Diese Flache M erlaubt im allgemeinen keine
Uberdeckung durch offene Teilmengen, die isomorph z. offenen Teilmengen
des affinen Raumes A? sind. Damit konnen wir bei den lokalen Untersuchun-
gen der Kurve a priori nicht voraussetzen, daf die Kurve in den A* eingebettet
ist, also dort durch eine polynomiale Gleichung in zwei Variablen definiert
1st.
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Eine wesentliche Vereinfachung stellt nun der Ubergang zu den Vervoll-
stindigungen der lokalen Ringe dar. Damit konnen wir im Ring der formalen
Potenzreihen arbeiten. Dies erleichtert die Konstruktion der Invarianten. Die
Vervollstindigung des lokalen Koordinatenringes der Kurve ist ein Faktorring
des formalen Potenzreihenrings in zwei Variablen nach einem Hauptideal.
Dieses wird von einer formalen Potenzreihe erzeugt. Zur Vereinfachung der
Darstellung werden wir stets annehmen, da dieses Ideal durch ein Polynom
erzeugt wird, daB also die Kurve lokal in den A” eingebettet ist. Im allgemeinen
Fall sind die durchzufiihrenden Konstruktionen sehr dhnlich, unsere Annahme
stellt also keine wesentliche Einschrinkung dar.

Jedem solchen Faktorring wollen wir ein Paar von Zahlen zuordnen, und
zwar so, da das Paar unter Explosion lexikographisch féllt. Dazu ist es
natiirlich notwendig, das Paar intrinsisch zu wihlen, d.h., unabhingig von der
Wahl von Koordinaten oder anderen Hilfsmitteln.

Die erste Komponente des Paares wird die Ordnung der Taylorentwicklung
der die Kurve definierenden Gleichung im singulidren Punkt sein. Klarerweise
ist sie intrinsisch. Die zweite Komponente wird durch die Wahl von lokalen
Koordinaten und die Betrachtung des Newton-Polygons der Kurve eingefiihrt.
Sie wird definiert als ein (geeignetes) Vielfaches der Steigung eines ausge-
zeichneten Segments des Newton-Polygons. Um diese Steigung koordinaten-
unabhéngig zu machen, wird ihr Supremum iiber alle Koordinaten als Invariante
genommen. Man erhilt ein Paar von Zahlen (r,s) in N (bis auf Multiplikation
mit einer fixen positiven Zahl, die etwaige Nenner bereinigt). Dieses Paar
heiit die lokale Auflosungsinvariante der Kurve im betrachteten Punkt.

Dem Verhalten dieses Paares unter Explosion gilt nun unser Hauptaugen-
merk. Es ist leicht zu zeigen, da} die erste Komponente, die Ordnung, unter
Explosion nicht steigen kann, wenn man von der Kurve zu ihrer strikt Trans-
formierten iibergeht. Damit kann man sich, per Induktion iiber die Ordnung,
im weiteren auf jene Punkte der strikt Transformierten beschrinken, wo diese
Ordnung gleich bleibt (ist sie gefallen, ist auch das Paar (r,s) lexikographisch
gefallen). Die Konstanz der Ordnung der Kurve unter der Explosion erlaubt
prizise Riickschliisse tiber die Form und Verdnderung des Newton-Polygons der
lokalen definierenden Gleichung vor und nach der Explosion. Dies geschieht
wie folgt. Sei a ein singuldrer Punkt von C, und sei a’ ein Punkt der strikt
Transformierten von C, in dem die Ordnung gleich geblieben ist.

Der Ubergang zur Vervollstindigung der lokalen Ringe erméglicht es
zunichst, das oben definierte Supremum der ausgewdhlten Steigung durch
einen formalen Koordinatenwechsel bei a vor der Explosion als Maximum zu
realisieren (dies ist i.a. im lokalen Ring selbst nicht moglich). Die Konstanz
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der Ordnung der lokalen Gleichung impliziert nun, daB dieses Maximum in
Koordinaten angenommen wird, beziiglich derer die Koo:dinatentransformation
der Explosion beim Ubergang von a zu ' einer monomialen Substitution
der Variablen entspricht. Insbesondere folgt dann, daB die in @’ induzierten
Koordinaten wieder das Maximum der Steigung realisieren. Nun ist es ein
Leichtes, die Verdnderung der Steigung am Newton-Polygon abzulesen. Und
in der Tat, die maximale Steigung fillt, wenn die Ordnurg gleich geblieben ist.
Damit ist der Induktionsschritt vollstandig durchgefiihrt: Das der Singularitit
zugeordnete Paar von Zahlen fillt unter Explosion,

(r/, S/) lex (r, S) .

Da N? mit der lexikographischen Ordnung wohlgzordnet ist, also jede
absteigende Folge stationir wird, konnen wir Induktion iiber unsere Invariante
anwenden. Nach endlich vielen Explosionen erreicht in jedem Punkt die
lokale Auflosungsinvariante ihr Minimum. Dies tritt ein, wenn die Ordnung
der Taylorentwicklung der definierenden Gleichung auf 1 gesunken ist (in
welchem Fall die maximale Steigung irrelevant ist). Das heilt aber gerade,
da} die Kurve im betrachteten Punkt glatt ist. Genau das war zu zeigen.

2. BEISPIELE

Wir diskutieren die wesentlichen Punkte der Konstruktion der Auflosungs-
invariante an den folgenden drei Beispielen. Sei

for =y +7".
Die Variablensubstitution
(0,2 = (¥z,2)

in f entspricht der Explosion des Nullpunktes in A* (betrachtet in einer
affinen Karte). Wir erhalten als total Transformierte /* von f

[ =fo0 =y +7*.

Wir kénnen aus f* das irrelevante Monom z* faktorisieren (dieses entspricht
der exzeptionellen Komponente) und erhalten das Polyriom

fo9=y +z,
die strikt Transformierte von f in der betrachteten Karte. Die Ordnung von
/' im Nullpunkt dieser Karte ist

ordg f'=1<3=ordy f,
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also hat sich die Singularitit von f verbessert (jeweils im Nullpunkt der
Karten). Wir sind sogar nach einer Explosion bei einer reguldren (einer Kurve
mit Ordnung 1) angelangt.
Sei nun
f=y+7.
Dann ist
fF=foz0=y2+7 und fO,0=y +z".

Also gilt fiir die Ordnung

ordy f' =ordy f = 3.

Trotzdem hat sich die Situation verbessert, denn wir wissen vom vorherigen
Beispiel, daB wir nach einer weiteren Explosion eine regulidre Kurve erhalten.
Um dies auch anhand unserer Auflosungsinvariante zu sehen, betrachten wir
die zweite Komponente der Invariante, die “Steigung” des Newton-Polygons.
Die genaue Definition des Newton-Polygons und der zweiten Komponente
der Invariante geben wir in den folgenden Abschnitten. In den Beispielen
entspricht sie dem (kleinsten) Exponenten der Terme, die nur die Variable
z enthalten (da das Newton-Polygon nur aus zwei Ecken besteht), also z’
und z*. Wir sehen, daB

stg, [/ =4<T=stg, [

Damit ist
(ordg f', stgy f) <iex (0rdg [, stgy f),

und die Auflésungsinvariante ist (im Ursprung der betrachteten Karte) gefallen.
Wir betrachten nun ein Beispiel, in dem die Definition und die Beobachtung
der Auflosungsinvariante

(r,s) = (ord, f,stg, )
etwas subtiler ist. Sei
0=y 4+ +y +72.

Als Grundkorper wihlen wir einen Korper der Charakteristik 3. Analoge
Beispiele gibt es fiir jede beliebige Charakteristik.
Wie zuvor berechnen wir die total und strikt Transformierte von f, also

0,0 =f0z,0) =y + 2+ +77

und
fo,0=y+2+y*+7.
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Die Ordnung von f’ im Nullpunkt ist gefallen
ordy /' =3 <5 =ordy f,

und die Singularitit von f hat sich verbessert. Wir explodieren nochmals den
Nullpunkt. Eine analoge Rechnung wie vorher liefert als strikt Transformierte

F 0=y + 14710+ 4,

mit ordy /”/ = 0. Im Nullpunkt der betrachteten Karte ist die Ordnung wieder
gefallen (die Kurve V(f”') enthilt nicht diesen Punkt). Hingegen gibt es einen
Punkt in dieser Karte, ndmlich a = (1,0), in dem die Ordnung von f” nicht
gefallen ist. In der Tat, die Translation y — y—1 liefert die Taylorentwicklung

f"o—1,20=y>+y2710 =704+
mit
ord, " = 3.

Wir sind hier gezwungen, die zweite Komponente stg, f der Invariante zu
betrachten. Wir sehen

stgy /' =3 und stg, ' =4,

Unsere Auflosungsinvariante ist (scheinbar) gestiegen. Doch Halt! Unsere
Berechnung der Steigung von f’ war zu naiv: Wechselt man etwa in f’ die
Koordinaten (was ja nicht verboten sein kann) vermoge

= 0-22,

so hat f’ die Taylorentwicklung
f/ :f,(y_Z,Z) :y3 +y9Z4 _Z13 +Z7

im Nullpunkt. Die Ordnung ist mit ordy /' = 3 unter diesem Koordinaten-
wechsel natiirlich unverdndert geblieben, aber die Steigung ist nun

stgy /=17

Dies zeigt, dall unsere Definition der Steigung koordinatenabhingig war. Damit
kann sie aber nicht aussagekriftig sein. Wir miissen als Mall der Komplexitiit
der Singularitit der Kurve ihrem Polynom f Invarianten zuordnen, die nicht
von der Wahl von Koordinaten abhéngen. Die Ordnung der Taylorentwicklung
tut dies von vornherein. Bei der Steigung bietet sich an (und bewihrt sich
a posteriori bestens), das Supremum aller koordinatenabhingigen Steigungen
zu wihlen (in der Vervollstindigung des lokalen Ringes). Sofern es existiert,
héngt es natiirlich nicht von den Koordinaten ab.
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In unserem Beispiel erkennen wir mit dieser Definition, daf3

stg /' =7
maximal ist (unter allen Koordinatenwechseln) und ebenso
stg, /' =4.

Zusammen sehen wir:

(ord, f",stg, f") <iex (ordy f,stgy f1).

Diese Ungleichung zeigt, daB die Singularitit beim Ubergang von f’ auf f”
in den betrachteten Punkten wirklich besser geworden ist.

Ein wichtiger Bestandteil des Auflosungsbeweises wird also das Studium
der Steigung eines Polynoms in einem Punkt unter Koordinatenwechseln sein,
sowie das Verhalten der maximalen Steigung unter Explosionen.

3. DAS NEWTON-POLYGON

Wir definieren in diesem Abschnitt das Newton-Polygon fiir eine Potenz-
reihe in zwei Variablen. Mit Hilfe dieses Polygons ordnen wir jeder Potenz-
reihe eine Zahl zu. Das Newton-Polygon ist aber von der Wahl des reguliren
Parametersystems abhédngig. Wir untersuchen daher im Abschnitt 4 das Verhal-
ten dieser Zahl bei Anwendung eines Automorphismus. Im Teil 5 definieren
wir schlieflich eine weitere Invariante neben der Ordnung und untersuchen
deren Eigenschaften.

Sei k ein Korper. Bezeichne im folgenden R den formalen Potenzreihenring
in zwei Variablen iiber k. Mit m bezeichnen wir das maximale Ideal von R.
Sei y = (y,2) ein reguldres Parametersystem von R. Wir kennzeichnen durch
den Index y, daB eine Definition von der Wahl des Parametersystems abhingt.
Seien f € R, f # 0, und

BD  f=f0,D =) cay™z™ = coy® mit a=(ar,a)€N].
@ «

Die Menge
Ay(f) = {a € N} mit ¢, # 0}

nennen wir den Trédger von f. Der Rand der konvexen Menge

conv( U {a + RZZO}) - R220
a€Ay(f)
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zerfillt in zwei Halbgeraden und einen kompakten Streckenzug. Diesen
Streckenzug nennt man das Newton-Polygon von f. Die endliche Menge
der Ecken des Newton-Polygons bezeichnen wir mit NPy(f). Das Newton-
Polygon von f besteht genau dann aus nur einem Punkt, wenn f = y®'z%%¢
mit e € R invertierbar.

ABBILDUNG 5
Das Newton-Polygon von f =y’ + 372 +y3z* 4+ y*20 +y%7/

BEISPIEL 3.1. Das Newton-Polygon von f =y’ + y"z2 + 324 +y*20 4+ y?77
und dessen Konstruktion ist in Abbildung 5 zu sehen. Die Menge der Ecken,
NPy(f) ’ iSt {(77 0)7 (3) 4)7 (27 7)} °

Aus der Definition des Triagers und der Multiplikation zweier Potenzreihen
folgt unmittelbar fiir f,g € R mit f,g # 0
(3.2) Ay(f9) C Ay(f) + Ay(9).

Seien f,e € R, f # 0 und e invertierbar. Im allgemeinen ist nicht jedes
Element des Tragers von f im Triager von fe enthalten. Zum Beispiel ist
(y +yz)(1 — ) =y — yz*. Es gilt aber folgendes Lemma.

LEMMA 3.2. Wenn 6 € NPy(f), dann ist § € Ay(fe).

Beweis. Wenn f auch invertierbar ist, gilt die Aussage trivialerweise.
Seien f wie in (3.1) mit ord f > 1,
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g = Zdﬂwyﬁ und
B

fe=) by', mith,= )  cadg.
Y

a+p=y

Angenommen bs = 0. Dann gibe es, da csdy # 0, ein ¢, #0 mit o # 6
und o < &y, az < 0. Also ein Widerspruch zur Annahme, da3 6 eine Ecke
des Newton-Polygons von f ist. [

Mit diesem Lemma, (3.2) und der Definition des Newton-Polygons folgt:

LEMMA 3.3. Seien f,e € R, f #0 und e invertierbar. Dann ist

NP, (/) = NPy(f ¢).

Seien f € m, f # 0, wie in (3.1) und r = ordf. Die Steigung von f
beziiglich y wird definiert als

stgyf:inf{ mit o € NPy (f), a#(r,O)} € Qo U {00},

r — Qg
wobei inf@ = co. Wenn a € NPy(f), a # (r,0), dann ist (O, %) die
Projektion von (aq,a;) durch (r,0) auf die a;-Achse der Schnittpunkt der

Geraden
(8%)

[ = {(ﬁl,/ﬁz) mit Bi+ By = 2 }

r— o r— Qi

durch (r,0) und («a;,ay) mit der «a,-Achse. Also ist s = stgy f das Minus
r-fache der Steigung des steilsten Segments des Newton-Polygons von f.
Siehe Abbildung 6.

LEMMA 3.4. Seien fem, f#0 und r = ord f. Dann gilt :
(i) stg,f € {i]—’ € Qso mit p und q teilerfremd und 1 < g < r}U{oco}.
1) r< stgyf < 0.

(111) stgyf = r genau dann, wenn es ein o € NPy(f), a # (r,0), mit
o) +ay =r, gibt.

(iv) stg,f > r genau dann, wenn die Initialform f, von [ gleich cy" mit
c #0 ist.

(v) stg,f = oo genau dann, wenn f = y"e mit e € R invertierbar.

Beweis. Klar. []
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(I',())

ABBILDUNG 6
Die Steigung

Seien f € m, f # 0, wie in (3.1), r =ordf und 7 € R mit 7 > r. Wir
schreiben

D 4
F, = 5 Y, Summe iiber o mit ;al + ap =t bzw.
(8%

t
Fs, = anyo‘, Summe {iber o mit ~a + a2 > 1.

«

Dann bestehen F, bzw. F-, aus allen Termen von f deren Exponenten auf
bzw. oberhalb der Geraden durch (r,0) und (0,7) liegen.
Sei s = stg, f < oo. Dann konnen wir f* zerlegen in

(3.3) f=F,+ Fs.
Wenn r < s, dann besteht F; nach Definition von s neben c¢y” aus noch

mindestens einem Term.

LEMMA 3.5. Sei umgekehrt r <t € R so, daf3
f — FT + F>[ .
Wenn es in F, einen Term c,y™'z™* mit o # (r,0) gibt, dann ist stg, f = t.

Beweis. Sei a € Ay(f), oy <r. Aus Loy +ap > 1 folgt

ro
722t.
r —



AUFLOSUNG VON KURVENSINGULARITATEN 321

Nach Voraussetzung gibt es ein o € NPy(f) mit fal +ap =t, dh.,

ron

r—oq.

Damit ist stg, f=17. [

4. KOORDINATENWECHSEL

Es bezeichne G = Auti(R) die Gruppe der k-Algebrenautomorphismen
des formalen Potenzreihenringes R in zwei Variablen. Um die Beziehung
zwischen stg, f und stg, ¢(f) = stg,-.,f fiir ein ¢ € G zu untersuchen,
verwenden wir die Moglichkeit der GauB-Bruhat Zerlegung ¢ = ulp von ¢
mit u € U, [ € L und p € P, siche Abschnitt A.2.

Sei zundchst ¥ € U. Dann ist

uy = u(y) = ay + yhy , mit ordh; > 1, a #0,

4.1
@b uy = u(z) =by+cz+hy, mit ordhy > 2, ¢ #0.

Das Newton-Polygon von f ist im allgemeinen nicht gleich dem Newton-
Polygon von u(f). Betrachte zum Beispiel f =z und « den zu & = (y,y+2)
gehorigen Substitutionshomomorphismus, d. h., u(f) =f(y,y+2 =y +z.

LEMMA 4.1. Seien f =y*1z** mit a #0, und u € U. Dann gilt (siehe
Abbildung 7) (a1, an) € Ay(u(f)) und

Ay(u(f)) C{B € N§ mit By — a1 > ap — 3 und Py > o}
= conv({(a; + a2,0) + R3} U {(a1,00) + R D).

Beweis. Es ist

u(f) = ui'uy? = (ay + yh)*' ((cz + by) + hp)™

o
— dy(xlzozg +ya1 deykz(xz—k _'_y(x;h
k=1

mit d #0 und ordk > «,. Daraus folgt die Behauptung. [
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5]
5L
4
3+ : . ;
(al,a2)
1+

(5]

ABBILDUNG 7

Koordinatenwechsel : Ayu(y®1z*2)

LEMMA 4.2. Seien fem, f#0, r=ord f und u € U. Dann gilt :

(1) Wenn stgyf > r, dann ist NPy(f) = NPy(u(f)).
(i) stg, f = stgy u(f).

Beweis. Zu (1): Da stgyf > r, ist mit Lemma 3.4 (r,0) € Ay(/f). Mit der
vorherigen Behauptung und der Definition des Newton-Polygons folgt daraus
NPy(f) = NPy(u(/)).

Zu (ii): Sei stg,f = r. Nach Lemma 3.4 gibt es ein a € NPy(f),
a # (r,0), mit oy + ap = r. Wenn es zwei solche o € NPy(f) gibt, dann

betrachten wir das mit der kleineren «,-Koordinate. Nach der vorherigen
Behauptung ist dann o € NPy(u(f)) und damit stgy u(jf) = stgy f=r. ]

Sei nun / € L. Dann ist

L=Iy)=y+g¢g, mitgekl[[z]], ordg>1,
42) ll lEy) y+g g € k[[z]] g
2 - Z _ Z P

Wenn wir stg, /' und stg, I(f) vergleichen, konnen wir im allgemeinen nichts
aussagen, wie folgendes Beispiel belegt:

BEISPIEL 4.3. Sei l(y) =y+z.
© Mit f = y*+27 ist i(f) = Y +2yz+22+2, also 2 = stg, I(f) < stg, [ = 3.
© Mit f =y +yz ist [(f) = y* +3yz+22%, also 2 = stg, [(f) = stg, [ = 2.
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e Mit f=y*—2yz+22+22=@-2>+2 ist f) = y*+73, also
3 =stg, I(f) > stg, f = 2.
o Mit f=)?—2yz+ 2 =(y—2)* ist I(f) =y, also stg, I(f) = oc.

AuBerdem kann stg, /(f) von der Charakteristik von k abhidngen. Mit [
wie im vorherigen Beispiel und f = y? + 2% ist I(f) = y* + 2yz + 2z>. Wenn
chark = 2, dann ist stg, I(f) = oo, sonst stg, I(f) = 2.

Sei [ € L wie in (4.2). Wir werden nun den Zusammenhang zwischen

stgy f, stg,/(f) und m =ordg

untersuchen.

V5]

ABBILDUNG 8

Koordinatenwechsel : Ayl(y*1z°2)

LEMMA 4.4. Seien f = y*z*® mit « # 0 und | € L. Dann gilt (siehe
Abbildung 8) (ay, az),(0,ma; + az) € Ay(I(f)) und

Ay(I(f) C {B € N§ mit B — ar > m(ay — By) und B < ay}
C conv({ (malT—l—az’ 0) -+ Rzzo} U {(0, ma; + ) + R,Zzo}) .

Wenn chark = 0, dann ist auflerdem (o) — k,mk + an) € Ay(I(f)) fiir
k= 1,...,(11 — 1.
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Beweis. Es ist

Ocl—l

B oy o) « (0% « p— (0%

(4.3) Uf) =@+ g™z =y* ™ 4 g¥g ~+(§ : <k'>y k9k>z-.
k=1

Daraus folgt die Behauptung. [

Sei jetzt wieder f € m, f # 0 und bezeichne r = ord f, s = stg,f und
m=ordg.

e
Q2

s 6 7 8
(0,mr) (0,s)

ABBILDUNG 9

Koordinatenwechsel: Ayl(f) mit m < 2
r

LEMMA 4.5. Wenn m < 5, dann ist stgy I(f) = mr (siehe Abbildung 9).
r

Beweis. Sei zunichst stgyf < 00. Wir zerlegen f in (siehe (3.3))
S

f:Cyr+§ C(xyaa mit _al_*_CVZZS’Oé#(r?O)undC#O'
r

Aus a # (r,0) folgt fir ay > r, daB ma; + o, > mr. Wenn «; < r, dann
impliziert
148 %)

>8> mr
r —

wieder may + ap > mr. Mit der vorherigen Behauptung ist damit

Ay(lcy")) C AY(I(f) und {(r,0),(0,mr)} = NPy(I(/)),
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also stgy I(f) = mr.
Wenn stg, f = oo, dann ist

f=Ye, mite e R invertierbar.

Damit ist
I(f) =1")ey + g,2).

Daraus folgt mit dem vorherigen Lemma und Lemma 3.3 die Behauptung. []

0

(r,0)

10

ABBILDUNG 10

Koordinatenwechsel : Ay/(f) mit m > !
-

LEMMA 4.6. Wenn m > f, dann ist stg,f = stgy I(f) (siehe Abbil-
r
dung 10).

Beweis. Wir zerlegen f wie in (3.3) in
f = FA‘ + F>S «

Die Exponenten « der Terme c¢,y*'z** von F-, erfiillen nach Definition
s
-+ > 8.
,

Mit Lemma 4.4 und der Voraussetzung gilt diese Ungleichung auch fiir die
Exponenten der Terme von /(Fs;). Fiir einen Term c,y*'z* von F, erkennt
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man mit dem gleichen Argument, dafl /(c,y*'z*?) aus c,y*'z** und Termen

besteht, deren Exponenten wieder die obigen Ungleichung erfiillen. Also ist
l(.f):FS+F/>s'

Mit Lemma 3.5 gilt dann stg, I(f) = stg, f. [

LEMMA 4.7. Wenn m # =, dann ist stg, 1(f) < stg,f.
r
Beweis. Klar mit den zwei vorherigen Lemmata. [

Satz 4.8. Seien f € m, f # 0, mit s = stg, f << oo, r = ord f und
f=F,+ Fs, wie in (3.3). Dann sind dquivalent :
1. Es gibt ein | € L mit stg, I(f) > stg, f.

2. 2 €N und Fy=c (y—dz%)r, mit ¢,d € k, ¢,d # 0.
r
Beweis. Sei - € N und
r

Fo=¢ (y — dzf)r :
Sei [ der zu I = (y+dzr,z) gehorige Einsetzungshomomorphismus. Dann ist
If) =UF) + U(Fs) =cy +1(Fsy).

Mit Lemma (4.4) sieht man, daB I(F-,) = F. . Daraus folgt entweder
NPy(I(f)) = {(r,0)}, also stg, I(f) = oo, oder

148 %)

> 5, fir o € NPy (f), a # (1,0).
r — o

Damit gilt wieder stg, I(f) > stg, f.
Sei nun umgekehrt / € L mit stg, I(f) > stg, f. Seien I(y) =y +g und

g = Zaizi € zkllz]], mit m=ordg.
i=m

Aus Lemma 4.7 folgt ¥ — m e N. Wie zuvor ist I(Fss) = FL,. Weiters ist
r
(siche (4.3))

(Fy) = Fy(y+g,2) = F(y + amzmaz) + Gy

und damit
l(f) = Fs(y + amZm: )+ H>s .
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Weil
F(y+an",z) = F.,

und nach Voraussetzung stg, /(f) > stg (f), muBl dann
Fs(y+ amzr,2) = ¢y, mitc#0

gelten. Also ist
Fp,d=c(y—anzr) . O

Sei p die Vertauschung von y und z. Dann ergibt sich mit Lemma 3.4:

LEMMA 4.9. Seien f €em, f#0 und r = ord f. Dann gilt :

(1) stgyp(f) = r genau dann, wenn es ein o € NPy(f), a # (0,r), mit
o)+ apy =r, gibt.

(ii) stgy p(f) > r genau dann, wenn die Initialform f, von f gleich cz' mit
c#0 ist.

(iif) stg, p(f) = 0o genau dann, wenn f = 7'e mit e € R invertierbar.

5. DIE MAXIMALE STEIGUNG

Seien f € m, f #0 und G = Auty(R). Setze

S(f) = {stgy ¢(f) mit ¢ € G}

= {stg,f mit y = (y,z) reguldres Parametersystem von R} .

Wir definieren
stg f = supS(f),

als das Supremum {iber alle koordinatenabhiingigen Steigungen, vgl. [Ab1] (in
[BK] folgt aus maximalem Kontakt die Maximalitit der Steigung). Offenbar
ist stg f invariant bei einem Wechsel des Parametersystems. Nach Satz A.7
(GauB-Bruhat Zerlegung) konnen wir jedes ¢ € G schreiben als Produkt
w=ulp mit ue U, €L und p € P. Mit Lemma 4.2 ist dann

stg, ©(f) = stgy ulp(f) = stg, u™ " (ulp(f)) = stg, Ip(f).

Also ist
S(f) = {stg, Ip(f) mit [ € L und p € P}.
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Wenn stg f < oo, dann erkennt man mit Lemma 3.4(i), da S(f) eine
endliche Menge ist. Also ist in diesem Fall das Supremum ein Maximum,
d.h., es gibt ein / € L so, daB3 nach einer eventuellen Vertauschung p € P
der Variablen die Gleichung stg, Ip(f) = stg f gilt. Insbesondere gibt es ein
reguldres Parametersystem y = (¥,Z) von R mit

stggf =stg f,  mit f = f(5,2).
Wir sagen dann, das Parametersystem § = (9,2) realisiert stg f. Unmittelbar
aus Lemma 3.3 folgt:

LEMMA 5.1. Seien f € m, f # 0 und e € R invertierbar. Dann ist
stg f =stg fe.

Wir kommen nun zum Fall stgf = oo. Aus dem WeierstraBschen
Vorbereitungssatz folgt:

LEMMA 5.2. Sei f € R mit ord f = 1. Dann ist stg f = oo.

Satz 5.3. Sei [ = f(y,2) €m, f#0 mit r =ord f <stg,f. Dann ist
stg f = oo genau dann, wenn es ein | € L gibt so, dafi stgy I(f) = oo.

Beweis. Sei also stg f = co. Wir konstruieren das gesuchte / € L mit
stgy [(f) = oo induktiv. Sei s; = stgy f. Falls sy = oo ist, sind wir fertig.
Sonst folgt aus der Voraussetzung, daB es ein /; € L und ein p; € P gibt mit
s1 < stg, Lipi(f). Angenommen p; ist nicht die Identitit. Da f. = c¢y” mit
cek, ¢ # 0 ist, wire dann aber stg, /ip1(f) = r wegen Lemma 3.4. Also

ist p; die Identitdt. Mit Satz 4.8 folgt daher

s .
m1:7l€N und f=c(y —a1?") + Fsy,, mitc,a €k, c,a; #0.

Wie im Beweis zu Satz 4.8 erkennt man, daf3

s; < 8§ 1= stgyf(y +a;7",2).
Wenn s, = oo ist, sind wir am Ziel, sonst beginnen wir wieder von neuem.
Entweder sind wir nach endlich vielen Schritten fertig, oder wir haben fiir
jedes n € N ein a, € k und ein s, € N mit 5, < 5o < --- < 5, und
m, = s,/r € N so, daB

n
fO+ ) a2 =cy +B,

i=1

) . Sntl
B, = E chy“'z™, mit ﬂa] +ay > s, a# (r,0) und ¢ #0.
r



AUFLOSUNG VON KURVENSINGULARITATEN 329

Die Summe B, zerlegen wir in
B, = ern + D, ’
C,= Zcﬁy“‘_rz”‘z , mit oy > r und
D, = ch’;y"“zo‘2 , mit o < r.

Aus den beiden Ungleichungen fiir die Exponenten der Terme von D,
folgt wegen s, — oo, dafl die Ordnung von D, beliebig grol wird. Sei
g=>Y i~ az". Wir erhalten fiir n € N

fO+9,0=f0+> a"+ Y a"72)
i=1

i=n+1

=fO+ > @™ ) +hy, mit ordhy, > My .

=1

Damit konvergiert C, in R und mit C = lim C,, ist

fO+g,200=c+yC.

Fir den Automorphismus / € L gegeben durch (y,z) — (v + g,z) ist dann

stgy I(f) = oo.
Die umgekehrte Implikation ist trivial.  []

KOROLLAR 5.4. Sei f=f(y,z) €m, f#0. Dann gibt es ein | € L und
ein p € P so, dafy stg f = stgy Ip(f).

Beweis. Seien stg f = oo und stg,/ = ord f = r. Dann gibt es
ein [y € L und ein py € P mit stgy lopo(f) > r, und wir konnen den
vorherigen Satz anwenden. Wenn stg f endlich ist, so haben wir uns schon
zu Beginn des Abschnittes iiberlegt, da} es ein / € L und ein p € P gibt mit

stg f = stgy p(f). [

Insbesondere bedeutet dieses Korollar, da3 es fiir jede Potenzreihe f € R
ein regulidres Parametersystem y = (y,z) von R gibt, das stg f realisiert, also
so, daf

stgy f =stg f, mit f=f(y,2).

Eine zum ersten Teil des Beweises von Satz 5.3 analoge Argumentation
zeigt auch folgenden Satz.
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SATZ 5.5. Sei f=f(y,z) € m, f#0 mit stg f < oo. Dann gibt es ein
Polynom

n
g=>Y a7" € zklz]
=1

und ein p € P so, daf$ stg f = stg, Ip(f) mit 1= (y+ g,2).

6. DIE AUFLOSUNGSINVARIANTE

Wir fassen im folgenden durch die Taylorentwickluag von Polynomen im
Nullpunkt den Polynomring k[y,z] als Unterring von k[[y,z]] auf. Damit
konnen wir die Begriffe bzw. Ergebnisse von Abschnitt 5 auch auf Polynome
anwenden. Sei f € k[y,z] \ k. Wenn r = ord f > 1, dann setzen wir

stgo f = stg f,

und stg, f = oo, wenn ord f = 0. Fiir einen beliebigen Punkt a = (a1, a;) €
A? definieren wir

stg, f = stgyf, mit f(y,2) =+ a1,z +a).

LEMMA 6.1. Sei a € A%. Dann gilt :
(i) Wenn a ein regulirer Punkt von f ist, dann ist st3, f = oo.

(ii) Wenn a ein singuldrer Punkt von f ist, dann ist stg,f € S, mit
r =ord, f und

8 ={s= P € Qw0 mit r <s, p und q teilerfremd, 1 < g <r}U{oo}.
q

Beweis. Die erste Aussage folgt aus Lemma 5.2, die zweite aus
Lemma 3.4. []

Seien S, mit r > 2 wie oben und S; = Sy = {oc}. Wir betrachten die
Menge

I = U{F}XSrCN()X(QZ()U{OO})

r€Ng

mit der lexikographischen Ordnung <. Fiir einen Punkt @ € A2 ist dann
die Auflosungsinvariante von f in a definiert als das Paar

inv, f = (ord, f,stg, f) € 1.
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Offensichtlich ist <, eine totale Ordnung mit kleinstem Element (0, c0).
Wir zeigen, dal <, eine Wohlordnung auf I ist. Sei dazu J C I nicht-
leer. Seien p;:J — Ny die Projektion auf die erste Komponente und
r = min{p;(J)} C No. Wenn r = 0 bzw. r = 1, dann ist (0,00) bzw.
(1,00) das kleinste Element von J. Sei also r > 2. Setze K =JN{r} xS,
und

fi K= NU{0}, (r,s)—rls.

Die Abbildung ist injektiv und erhilt die Ordnung. Die Behauptung folgt.

7. AUFGELOSTE PUNKTE

Wir betrachten nun die lokal definierende Gleichung von singuldren Punkten
einer ebenen Kurve. Der Einfachheit halber beschranken wir uns auf den
affinen Fall. Im allgemeinen Fall ist die Gleichung der Kurve nach Vervoll-
stindigung im betrachteten Punkt durch eine formale Potenzreihe gegeben.
Die Argumentation ist dann #hnlich. Sei also f € k[y, z] \ k das definierende
Polynom einer algebraischen Kurve in A?. Mit V(f) = {a € A% mit f(a) = 0}
bezeichnen wir die Nullstellenmenge von f.

Wir nennen den Nullpunkt einen aufgelésten Punkt von f, wenn f(0) # 0,
oder wenn es Polynome ¢, 4 € k[y,z] mit ordgg = 1 und ordy 2 = 0 und ein
n € N gibt so, da3

(7.1) f=gh.

Einen beliebigen Punkt a = (a1, a2) € A’ nennen wir einen aufgeldsten Punkt
von f, wenn der Nullpunkt von f = f(y + a;,z+ a») aufgeldst ist.
Sei f =c¢ flb' -+~ fb die Primfaktorzerlegung von f in k[x,y]. Bezeichne

Jrea = f1- )

die Reduktion von f; f.q ist eindeutig bis auf einen konstanten Faktor und
hat die gleiche Nullstellenmenge wie f. Sei a € V(f). Dann ist a genau dann
ein aufgeloster Punkt von f, wenn a ein reguldrer Punkt von f.q ist. Also ist

{a € A* mit a nicht aufgelSster Punkt von f} = Sing(fieq) .

Da eine reduzierte ebene Kurve nur endlich viele singulire Punkte hat, folgt
nun:

SATZ7.1. Seien k ein algebraisch abgeschlossener Kérper und f € kly,z]\k.
Dann ist die Menge der nicht aufgelésten Punkte von f endlich.
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Sei a € V(f). Wir wollen im folgenden beweisen, da a genau dann ein
aufgeloster Punkt von f ist, wenn stg, f = oo, siehe Satz 7.6. Nach einer
Translation in A? konnen wir uns auf den Nullpunkt beschréinken.

SATZ 7.2. Seien k ein algebraisch abgeschlossener Korper und f € kly, z]
irreduzibel. Dann ist f € k[[y,z]] reduziert.

Beweis. Angenommen, f ist als Potenzreihe nicht reduziert. Dann ist
f=g*h, mit g,h€kl[y,z]] und ordg > 1.

Fiir ord f = 0 und ord f = 1 folgt daraus ein Widerspruch. Sei also ord f > 2.
Angenommen 0, f # 0. Dann sind 0, f und f teilerfremd in k[y,z], weil f
irreduzibel und degd,f < degf — 1 ist. Weiters ist ordd,f > 1. Mit der
Produktregel folgt

Oy f = 0y(g*h) = g(g Oyh + 2h dyg) .

Daher ist g ein echter gemeinsamer Teiler von f und 9, f in k[[y,z]]. Das
ist aber ein Widerspruch zu Korollar A.5. Also ist 0, f = 0. Analog dazu
schlieBt man, da} auch 0.f = 0 ist. Aber 0,f = 0,f = 0 impliziert f € k,
wenn chark = 0. Widerspruch.

Wenn chark = p > 0, dann bedeutet das Verschwinden der partiellen
Ableitungen, daB f nur aus Termen der Form c,y?*'z”** besteht. Indem
man die Identitit (a + b)? = a” + b? fiir einen Korper der Charakteristik p
anwendet und beniitzt, dall es in einem algebraisch abgeschlossenen Korper
insbesondere auch p-te Wurzeln gibt, erkennt man, daf3

p
f= anypoquaz — (Z dayouzaz) ., mit dﬁ =c,.

Dies ist ein Widerspruch zur Irreduzibilitiat von f. L[]

Ein Korper k heilit perfekt, wenn chark = 0 oder wenn fiir chark = p
jedes Element in k eine p-te Wurzel besitzt. Neben algebraisch abgeschlosse-
nen Korpern sind zum Beispiel auch alle endlichen Korper perfekt. Im Beweis
zum vorherigen Satz verwenden wir nur diese Eigenschaft von k. Damit sind
Satz 7.2, Lemma 7.4 und Satz 7.6 auch fiir perfekte Kdrper giiltig.

Wir erinnern hier kurz an ein Ergebnis von Abschnitt 5 und leiten einige ein-
fache Folgerungen daraus ab, die wir im folgenden bendtigen. Seien R wieder
der formale Potenzreihenring in zwei Variablen iiber einem Korper £ und
y = (v, 2) ein reguldres Parametersystem von R. Seien weiters m das maximale
Ideal von R und G = Auti(R) die Gruppe der k-Algebrenautomorphismen.
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Sei f=f(y,2) €R, f#0, mit r=ord f > 1 und stgf = co. Dann gibt
es nach Korollar 5.4 und Lemma 3.4 (v) ein ¢ € G mit

©(f) =)yYeé, mité e R invertierbar.
Sei g = ¢~ !(y) € R. Dann ist ¢ irreduzibel, weil ordg =1, und
(7.2) f=4¢ge, mitg,eeR, girreduzibel und e invertierbar.

Wir verwenden weiters, dal R ein faktorieller Ring ist.

LEMMA 7.3.  Seien k ein Korper und f € R, f # 0, mit stg f < co und
r=ord f > 1. Dann ist stgf" < oo fiir n € N.

Beweis. Angenommen stg f” = oo. Dann ist /" = g™e mit g = ¢~ !(y)
und ¢ wie oben. Aus der Eindeutigkeit der Primfaktorzerlegung folgt f = ¢" é.
Also ist

o(f) =y'¢, mite €R invertierbar
und damit stg f = oco. Widerspruch.  []
LEMMA 7.4. Seien k ein algebraisch abgeschlossener Koérper und

S € kly, z] irreduzibel mit ord f > 2 (d.h., O ist ein singuliirer Punkt von f).
Dann ist stg, f < co.

Beweis. Indirekt. Sei stg, f = co. Da ord f > 2 folgt mit (7.2), daB f
als Potenzreihe nicht reduziert ist. Widerspruch zu Satz 7.2. [

LEMMA 7.5. Seien k ein Korper und fi, o € kly,z] teilerfremd mit
f1, o € m. Dann ist stgy(fi o) < co.

Beweis. Angenommen stg,(fi f2) = co. Mit (7.2) ist dann
fiff=4ge, mitg,e€R, g irreduzibel und e invertierbar.

Aus der Eindeutigkeit der Primfaktorzerlegung in R folgt, daB ¢ ein echter
Teiler von f; und f, in R ist. Das ist ein Widerspruch zu Korollar A.5. [

SATZ7.6. Seien k ein algebraisch abgeschlossener Korper und f € k[y, z]\k.
Dann sind dquivalent :

1. O ist ein aufgeloster Punkt von f.

2. stgy f= 0.
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Beweis. Sei zunichst 0 ein aufgeldster Punkt von /. Wenn O ¢ V(f) ist,
dann ist stg, f = oo nach Definition der Steigung. Sei also 0 € V(f). Dann
ist f = g"h wie in (7.1). Nach Lemma 5.2 ist stg, g = oo. Also gibt es ein
¢ € G mit p(g) = yé mit € € R invertierbar. Fiir dieses ¢ ist dann

o(f) = ¢(g"h) = y'e, mit e € R invertierbar.

Damit ist stg, f = oo.
Sei umgekehrt stg, / = oco. Wenn ord f = 0 ist, dann ist 0 nach Definition
ein aufgeldster Punkt von f. Sei also ord f > 1. Sei

f=eftg)

die Primfaktorzerlegung von f. Angenommen es gibt i.j € {l,...,r}, i #],
mit ord f; > 1 und ordf; > 1. Dann kénnen wir f schreiben als f = fifih
mit £,/ € kly,z] teilerfremd, f;, i € m und h € k[y,z] mit ordh = 0. Mit
Lemma 5.1 ist dann aber stg, f = stgo(f} ]3) = o00. Das ist ein Widerspruch
zu Lemma 7.5. Also gibt es genau ein i € {l,...,r} mit ord f; > 1.
Angenommen es gilt ord f; > 1. Nach Voraussetzung und Lemma 5.1 gilt
stg, f = stg, f2 = oo. Nach Lemma 7.4 und Lemma 7.3 ist aber stg, o < co.
Widerspruch. Also ist ord f; = 1 und damit O ein aufgeloster Punkt von f. [

8. EXPLOSION EINES PUNKTES

Wir erklidren zunichst, was wir unter der Explosion des Nullpunktes im
A? verstehen. Durch eine Translation ist dann die Explosion eines beliebigen
Punktes definiert.

Sei k ein algebraisch abgeschlossener Korper. Bezeichne k[y,z] den affinen
Koordinatenring von A” und (a,b) € k* die Punkte ven A*. Wir betrachten
zwei weitere affine Riume U; = A? bzw. U, = A?. Seien

712 U — A%, (a,b) — (ab,b),
7a: Uy — A2, (a,b) — (a,ab).

Die zu 7; bzw. 7, gehorigen Abbildungen 7; bzw. m auf [y, z] sind dann

Ty kb), Z] — k[yaZL f(yaz) Hf(yza 2:)7
T kb’,Z] — kLYaZ]a f(yaz) Hf(yhyz)

Wir definieren die offenen Mengen
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Ui = {(a,b) € Uy mit a # 0} = U \ V(y),
Uy = {(a,b) € U, mit b # 0} = U, \ V()
und die Abbildungen
}_112: U12 - U2la (a7b) = (Clb, 1/0),

h213 U21 — U|2, ((l,b) — (l/b,ab)

Dann ist
(8.1) hi2hoy =1d und hy b, =1d,
und wir haben folgendes kommutatives Diagramm: :
hi
Up < - > Uy
N ha1 N
U, U,
771\‘ ﬁz
A2

Bezeichne 7 = U, LI U, die topologische Summe von U; und U,. Das
heil3t 7" ist als Menge die disjunkte Vereinigung der beiden Mengen U; und
U, und eine Teilmenge von T ist offen genau dann, wenn ihr Durchschnitt
mit U; bzw. U, offen ist. Wir setzen Uy = U, bzw. U,, = U, und

(82) il]] = Id: UH — U11 bzw. }_122 =1d: U22 — U22.

Damit kénnen wir eine Aquivalenzrelation ~ auf 7 definieren. Wir sagen t
und u aus T sind dquivalent, wenn ¢t € Uy, u € U; und u = f_zij(t) fiir ein
i bzw. ein j aus {1,2}. Mit (8.1) und (8.2) erkennt man, daB ~ tatsichlich
eine Aquivalenzrelation ist.

Wir schreiben nun W' = T'/~ fiir den Quotientenraum (d.h., die Menge
der Aquivalenzklassen versehen mit der Quotiententopologie) und p: T — W’
fiir die kanonische Abbildung. Dann ist W’ eine regulidre Varietdt, die, wie
man sagt, durch das Zusammenkleben von U; und U, entsteht. Wir nennen
W' die Explosion des Nullpunktes von A’. Uber die kanonische Abbildung
koénnen wir U; bzw. U, mit den in W’ offenen Mengen p(U;) bzw. p(U,)
identifizieren. Es ist W' = p(U;) U p(U>).

Die Abbildung 7: W' — A? mit

(W) = T (w), wenn w € U,
| m(w), wenn w € U,

ist wohldefiniert, da das obige Diagramm kommutativ ist.
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LEMMA 8.1. Fiir #: W' — A und E = 7'(0) gilt:
i) ENU, =V(z) bzw. ENU, = V(y).
(i) E~P'.
(iii) 7: W'\ E — A%\ {0} ist ein Isomorphismus.

Beweis. Die Behauptung (i) ist klar nach Definition von 7.
Zu (ii): Man priift leicht nach, daB die Abbildung 5: E — P' mit

3e) = (a:1), wenne=(a,0)cENU,
P (1:b), wenne=(0,b) € ENUs,

wohldefiniert und bijektiv ist.

Zu (iii): Sei w € (W \ E)yNU,. Dann ist w = (a,b) mit b # 0. Also ist
7(w) = (ab,b) € A%\ {0}. Analog schlieBt man fiir w € (W' \ E) N U,. Wir
definieren @: A%\ {0} — W'\ E durch

5(w) = (a/b,b) € U\ E, wenn w € A%\ V(2),
P = (a,b/a) € Uy \ E, wenn w € A*\ V(y).

Die Abbildung ist wohldefiniert, denn fiir ein (a,b) € A*\ V(yz) ist
hix(a/b,b) = ((a/b)b,1/(a/b)) = (a,L/a) .
Weiters sind @7 = Id auf W'\ E bzw. 7@ = Id auf A%\ {0}. [J

Wir nennen E den exzeptionellen Divisor von 7: W' — A%,

9. TOTAL UND STRIKT TRANSFORMIZRTE

Seien f € kly,z] \ k,

und 0 € C = V(f),d.h., r =ord f > 1. Wir iiberlegen uns, wie das Urbild von
C unter 7 aussieht. Dazu berechnen wir 7~ '(C) in U; bzw. U,. Bezeichne

=02 =m(f) =f0z,2)

bzw. f5 = m(f) = f(y,yz). Wir flihren alle folgenden Uberlegungen nur fiir
/i und U, aus und schreiben f* fiir f;*. Fiir f;' und U, gelten die analogen
Aussagen. Es gilt
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O NU, = {a=(a1,a) € Uy mit 7(a) = (a1a2,a;) € C}
= {a € Uy mit f(a1ay,a>) = 0} = V().

Man nennt 7~ '(C) C W' die total Transformierte von C bzw. f* die total
Transformierte von f in U;. Wir konnen f* zerlegen in

0.1) [ =102 =) oyt

— Zr anyalzal+az—o — er/(y, Z) — erl )
Dann ist
V() =V =V UV =ENU)U V().

Wir nennen f’ bzw. V(f') die strikt Transformierte von f bzw. V(f) in U, .
Um die Primfaktoren von f’ zu untersuchen, iiberlegen wir uns zunichst, dafl
S’ nicht durch z teilbar ist. Wir schreiben

J=Ftfpr 4+ fa, mitd=degf

als Summe von homogenen Polynomen. Dann ist

ff=f02,2) = 02,2 + fit102,2) + - + fuyz,2)
=70, D+ 2, D)+ -+ Ty, 1) = 27

mit f.(y,1) # 0, also teilt z nicht f’. Aus dieser Darstellung der strikt
Transformierten von f folgt das nidchste Lemma.

LEMMA 9.1. Es gilt
EnU)NV)=V@E@N V() ={t0) mit f,(t,1) = 0}.

Insbesondere ist diese Menge endlich.

LEMMA 9.2. Sei f # cz mit ¢ € k\ O und f irreduzibel bzw. reduziert.
Dann ist auch f' irreduzibel bzw. reduziert.

Beweis. Angenommen f’ ist reduzibel, d.h.,
f'=gh, mitg heklyzl\k.
Wenn wir nun y/z fiir y einsetzen, ist mit (9.1)

=790/, h(y/z,2).
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Indem wir diese Gleichung mit einer geniigend hohen Potenz von z multi-
plizieren, ist

Z'f =7gh, mitneNyund g,h € k[v,z].

Da § und & jeweils einen Primfaktor ungleich z besitzen (sonst wire f’
durch z teilbar), folgt ein Widerspruch zur Irreduzibilitit von f. Eine dhnliche
Argumentation zeigt auch, daf die Reduziertheit von f die Reduziertheit von
f' impliziert.  []

Sei @ = (¢,0) € ENU,. Uns interessiert die Invariante inv, f’ von f’ im
Punkt a’. Nach Definition ist

inva’f/ = iIlV() f/(y + 1, Z-) = il’lVo U(]L')
mit
v: kly, z] — kly, z]
dem zu ¥ = (y + t,z) gehorigen Einsetzungshomomcrphismus (v ist nur

auf dem Polynomring definiert !). Wir verwenden im nédchsten Abschnitt dazu
folgende Uberlegung. Sei

w: kly,z] = kly,z], mitw=(y+1z,2).

LEMMA 9.3. In dieser Situation ist
kly, 2] —Y> kly, zl

™ ™

kb)7 Z] T k[ya Z]
kommutativ, und es gilt

Lo+t =v(f)=wlf) =f+12
(vgl. Lemma 10.7).

Beweis. Das obige Diagramm kommutiert, denn

v (y) = v(y2) = yz + 1tz = m(y + 12) = mw(y)
und
vm(2) = z = mw(z) .

Aus der Kommutativitat (und da ord w(f) = r) folgt dann
Zo(f) = v(@f) = vm(f) = muw(f) =Jw() . O
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10. DIE INVARIANTE FALLT UNTER EXPLOSION

In diesem Abschnitt zeigen wir, da die Auflosungsinvariante einer Kurve
unter Explosion fillt.

SATZ 10.1.  Seien k ein algebraisch abgeschlossener Korper, f € kly, z]\ k
und a € A% ein nicht aufgeloster Punkt von f. Wir betrachten die Explosion
des Punktes a € A%. Dann ist die Invariante der strikt Transformierten f' von
[ in jedem Punkt o' des exzeptionellen Divisors kleiner als die Invariante von
f im Punkt a,

invg f' <inv, f, fiird €E.

Nach einer Translation in A2 kénnen wir annehmen, daB a der Nullpunkt
ist. Sei
ad=(t0cENU,.

Bezeichne I, den zu I, = (y + 1z,z) gehdrigen Substitutionshomomorphismus.
Dann ist mit Lemma 9.3

(10.1) invy f' = invo L(f)' = (ordo Li(f)', stge L(f)) -

Wir konnen also, um die Invariante von f’ in jedem Punkt von ENU; zu
untersuchen, auch ordg /,(f)" bzw. stg, /,(f) fiir # € k betrachten. Wir werden
dies im folgenden gleich fiir beliebige Potenzreihen tun. Um die Invariante in
Jedem Punkt des exzeptionellen Divisors zu kennen, miissen wir auch invg /5
in U, untersuchen.

Wir verallgemeinern in diesem Abschnitt unter anderem den Begriff der
total und strikt Transformierten fiir Potenzreihen und verwenden wieder
folgende Bezeichnungen. Sei R ein Potenzreihenring in zwei Variablen iiber
einem Korper £ und y = (y,z) ein reguldres Parametersystem von R. Sei
JER mit f#0, r=o0rdf > 1 und

(10.2) [=f00 =) cay™z®,

Sei weiters m1: R — R bzw. m: R — R die zu 7y = (yz,2) bzw. T = (y,y2)
gehorigen Substitutionshomomorphismen. Bezeichne

f* _ 7Tl(f) = f(yz,2) = anya1za|+az

«

=) eyt = (0 = If

[0
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und

5B =m(f)=f0.y)=Y1.

LEMMA 10.2. Es gilt:

() Ay(f") = {(an, 1 + a — 1) mit (o, 2) € Ay(f)}.
(i) ord f' < ord f = r.

Beweis. Zu (ii): Sei a € Ay(f) mit a; + ap = r, dann ist
o +(ap +a—r)<r.

Also ist ord f' <r. [

LEMMA 10.3. Sei stg f = ord f = r. Dann sind

ord[(f) < ord f, fiirt€k
und ord f; < ord f.

Beweis. Fiir jedes ¢t € k gibt es ein o € Ay([/(f)) mit oy +ay = r
und « # (r,0) (sonst wire stg f > stgy I,(f) > r). Fir dieses « ist dann
ap + () +ay —r) = ay < r. Also folgt, da (a1, a1 + as —r) € Ay(f'), die
Behauptung.

AuBerdem gibt es einen Term c,y*'z** von f mit a; + o, = r und
a # (0,r) (sonst wire stg f > stg, p(f) > r mit p der Vertauschung von y
und z), und damit ist auch ordf; <r. LI

LEMMA 10.4. Seien stgf > ordf = r und y = (y,2) ein reguliires
Parametersystem von R so, daf stgy f > r. Dann sind

ordl(f) =0, firtek,t#0,
und ord f; = 0.

Beweis. Wie im Beweis zu Lemma 4.5 erkennt man, da3 in [,(f) der
Koeffizient von 7" nicht Null ist. Also ist ord,(f) = (0. Da f, =¢y", ¢ #0,
ist auch ord(f;) =0. []

LEMMA 10.5. ord f* < ord f =r genau dann, wenn stg,f < 2ord f.

Beweis. Angenommen s = stg, f > 2r. Sei a € Ay(f). Dann ist

Ky
-y +oar > s
r
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und damit
200 +ap > 2r bzw. oy + () +ar — 1) > 1.

Also folgt mit Lemma 10.2, daB ord /' > r. Wenn stg, f < 2r, dann gibt es
ein o € NPy(f), a # (r,0), mit

ro
2 < 2r.

r— g

Fir dieses « ist dann a; + (o +ap —7) < r, also ist ordf' <r. []

Wir erinnern an eine Notation von Abschnitt 3, die wir im folgenden
verwenden. Seien f wie in (10.2) und 7 € R, ¢t > r = ord f. Dann schreiben
wir

Lt
F, = Z caY”, Summe iiber o mit ! + ap =t bzw.

o

_
Fsi =Y cay®, Summe iiber @ mit Carta >t

LEMMA 10.6. Sei oo > stg,f > 2ord f. Dann ist
stgy f' :‘stgyf —ord f
(siehe Abbildung 11).

Beweis. Seien r =ord f, s = stg, f und 5" = s—r. Nach dem vorherigen
Lemma und Lemma 10.2 ist » = ord f’. Wir zerlegen f in

f:Fs‘{"F>..v~
Sei c,y®'z*? ein beliebiger Term von Fy; mit « # (r,0). Dann ist
roon
=5

r —

und deshalb
(g +ar —r) roon p
— —r=85—-r=5.
r — r —

Also ist

/
7a1+(a1+a2—r):s'.

Fiir einen Term c,y*'z* von F-, mit a; < r ist

148%)

> S,
F—

und damit folgt wie zuvor
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/
s
7a1+(a1+a2—r)>s’.

Wenn «; > r ist, dann gilt diese Ungleichung trivialerweise. Also kdnnen wir
f! zerlegen in
/
f/ :F:/ +F>S' .

Mit Lemma 3.5 folgt die Behauptung.  []

ABBILDUNG 11
Die Steigung fallt: stg, f’ = stg, f —ord f

LEMMA 10.7. Sei [ der zu | = (y + g,2) gehdrige Substitutions-
homomorphismus mit g € zkl[z]]. Sei m der zu m = (y + zg,2) gehorige
Substitutionshomomorphismus. Dann ist folgendes Diagramm kommutativ,

R

™ ™

R = R
und es gilt

I(f") =m(f).

Beweis. Nachrechnen, analog zum Beweis von Lemma 9.3. [
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LEMMA 10.8. Seien oo > stg f > 2ord f und y = (y,2) ein reguldres
Parametersystem von R so, daf} stg,f = stgf. Dann wird stg /' durch
y = (v,z2) realisiert, d.h.,

stg f = stg, f'.

Beweis. Angenommen stgf’ > stg, f' = s'. Dann gibt es ein /€ L’ und
ein p € P’ mit stg, Ip(f') > s'. Wenn s > r = ord f, dann ist p die Identitit.
Wenn s’ = r und p die Vertauschung von y und z ist, dann folgt, da f'
y-allgemein der Ordnung r ist, mit Satz 4.8, daf}

p(f)=c(y+dz) +Fs,, mitc,dek, c,d#0.

Also ist

fl=cd(y+d ') +Fs,.
Wir konnen daher annehmen, dal p die Identitét ist. Mit m wie im vorherigen
Lemma folgt

If) =m(f) .
Dann ist stg, m(f) > 2r. Sonst wére nach Lemma 10.5
ord(f") = ord I(f') = ordm(f) < r.
Mit Lemma 10.6 folgt dann
stgf —r =15 <stg, I(f') = stg,m(f) =stg,m(f) —r <stgf—r,
also ein Widerspruch.  []

SATZ 10.9. Seien f € R, f#0, r=ord f > 1. Sei co > stg f > 2ord f.
Dann ist
stg /' =stg f —ord f.

Beweis. Klar nach dem vorherigen Lemma und Lemma 10.6. L]

Wir wenden die Ergebnisse dieses Abschnitts auf ebene Kurven an und
beweisen den Satz vom Beginn dieses Abschnitts.

Beweis von Satz 10.1. Seien also k ein algebraisch abgeschlossener
Korper, f € k[y,z] \ k, r = ordg f > 1 und O ein nicht aufgeldster Punkt
von f.

Wenn stg, f = ordy f ist, dann ist mit (10.1) und Lemma 10.3

invy f <invy f, fird €e ENU,;.

Weiters gilt invg f; < invg f.
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Sei nun stg, f > ordg f. Da nach Annahme der Nullpunkt ein nicht
aufgeloster Punkt ist, folgt stg, f < oo mit Satz 7.6. Daher konnen wir
mit Satz 5.5 annehmen, da3 nach einem polynomialen Koordinatenwechsel
stg, f = stg, f gilt. Lemma 10.4 zeigt, dall es geniigt, invy /' und invy f zu
vergleichen. Wir unterscheiden zwei Fille :

1) Wenn stg,f < 2ordg f ist, dann ist nach Lemma 10.5 ord ' < ord f und

damit invo f/ < il’lV() f
2) Wenn stg, f > 2ordy f, dann ist ord f* = ord f und mit dem vorherigen

Satz stg, f' = stg, f — ordy f < stg,f. Es gilt wieder invof’ < invgf.
Also haben wir auch fiir den Fall stg,f > ordy f gezeigt, dal

inve f/ <invg f, fird €E

gilt. [

11. BEWEIS DES HAUPTSATZES

Zum Abschluf} zeigen wir, wie mit den bisherigen Ergebnissen bewiesen
werden kann, daf durch eine endliche Folge von Explosionen von Punkten die
singuldren (bzw. nicht aufgelosten) Punkte einer ebenen algebraischen Kurve
aufgelost werden konnen.

Seien k ein algebraisch abgeschlossener Korper unc f € k[y,z] \ k. Nach
Satz 7.1 gibt es nur endlich viele nicht aufgeloste Punkte von f. Sei a ein nicht
aufgeloster Punkt von f. Wir explodieren den Punkt a in A%. Lemma 9.1
besagt, daB in nur endlich vielen Punkten des exzeptionellen Divisors die
Ordnung der strikt Transformierten von f groBer als Null ist. Sei a' € E
ein solcher Punkt. Wenn ' ein aufgeloster Punkt der strikt Transformierten
ist, dann sind wir fertig. Sonst ist nach Satz 10.1 die Invariante der strikt
Transformierten in &' kleiner als die Invariante von f im Nullpunkt. Durch
Induktion iiber die Invariante (vgl. Abschnitt 6) folgt die Behauptung. C]
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A. APPENDIX

A.1 POTENZREIHENRINGE

Wir stellen einige Definitionen und Resultate iiber Polynome und formale
Potenzreihen zusammen, die im Hauptteil der Arbeit verwendet werden.
Beweise und weitere Details finden sich beispielsweise in [AM], [La], [Ru],
[SS] oder [ZS].

Im folgenden bezeichnen k[x] bzw. k[[x]] den Polynomring bzw. formalen
Potenzreihenring in n Unbestimmten x|, ..., x, liber einem gegebenen Korper
k. Wir fassen k[x] als Unterring von k[[x]] auf. Fiir f € k[[x]] ungleich O sei
ord f die Ordnung (der Untergrad) von f im Nullpunkt. Wir setzen ord 0 = oc.

Der Potenzreihenring k[[x]] ist ein faktorieller, noetherscher, lokaler Ring
mit maximalem Ideal

m = {f € k[[x]] mit ord f > 1}.

Die davon induzierte m-adische Topologie auf k[[x]] wird durch die Null-
umgebungsbasis m” = {f € k[[x]], ord f > r} definiert. Damit wird k[[x]]
eine vollstandige, topologische k-Algebra.

Nach dem Weierstralschen Vorbereitungssatz 1a6t sich jedes g € k[[x]]
mit ord g(0,...,0,x,) = m < oo (d.h., g ist x,-allgemein der Ordnung m)
eindeutig schreiben als g = up mit p € k[[x;,...,x,—1]l[x,] polynomial und
normiert in x, vom Grad m und u € k[[x]] invertierbar, also u(0) # 0.

Jeder k-Algebrenautomorphismus ¢ von k[[x]] stabilisiert das maximale
Ideal m und ist ein Substitutionshomomorphismus

f"—>f0¢:f(991a---a%0n), mitgo_,-zgo(xj)Em,
wobei der Vektor » = (y1,...,p,) eine invertierbare Funktionalmatrix
(0;,(0)) € GL,(k) hat. Wir nennen ¢ den zu ¢ = (p1,...,p,) gehorigen

Substitutionshomomorphismus. Mit d¢p bezeichnen wir den durch

do(x) = Z Oipj0)x;, firj=1,...,n,
i=1
definierten linearen Substitutionshomomorphismus.

Sei ¢ ein k-Algebrenautomorphismus von k[[x]] mit dy = Id. Dann
konnen wir den zu ¢ inversen Substitutionshomomorphismus 1 wie folgt
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konstruieren. Wir schreiben ¢; = x; + h; mit ordh; > 2 fir j=1,...,n. Wir
mdchten g; mit ordg; > 2 finden so, daB fiir ¢ mit ¢; = x; + g; gilt
xj = (Y o )(x;) = (x; + hy) = x; + g; + ¥(h))
=xi+g +hxi+g1,....,x,+¢gy,, firj=1,....n.

Seien g = (g1,..-,90), h = (hy,...,h,) und x = (xq,...,x,). Dann lautet
die obige Gleichung

X=x+g+hx+g), mithlx+g)="x+g),...,hL(x+g).
Anders ausgedriickt muf3 also g ein Fixpunkt der stetigen Abbildung
F:m?® k[[x]]" — m? - k[[x]]", g — —h(x + g)
sein. Wir definieren rekursiv die Folge (_q’)ieN0 in m? - k[[x]]* durch
@ =0 und ¢t =F(g)=—hx+g).
Die Folge (¢')ien, konvergiert und mit g = limg' € m? - k[[x]]" gilt dann
—h(x+ g) = F(g) = F(lim¢') = lim F(¢") = limg' = ¢.

Also ist g der gesuchte Fixpunkt.

Wir untersuchen im folgenden, wann zwei teilerfremde Polynome auch als
Potenzreihen teilerfremd sind. Dazu betrachten wir zunichst die Lokalisierung
k|x]wm des Polynomrings k[x] im (maximalen) Ideal m = (xi,...,x,). Die
Lokalisierung k[x], ist ein lokaler, noetherscher, faktorieller Ring. Das
maximale Ideal von k[x],, bezeichnen wir mit m. Wir fassen k[x] als Unterring
von k[x]y auf, indem wir f mit f/1 identifizieren.

Die Elemente aus k[x] \ m haben Ordnung Null und sind deshalb
als Potenzreihen invertierbar. Wir konnen daher den Ring k[x], in den
Potenzreihenring k[[x]] durch die wohldefinierte und injektive Abbildung

kXl — A[[x]], 5 — fg!

einbetten. Also haben wir folgende Inklusion von Ringen
klx] C klx]ym C k[|x]].

Sei ¢ C k[x]y ein Ideal. Mit ¢ = k[[x]]c bezeichner wir die Erweiterung
des Ideals ¢ in A[[x]]. Fiir das maximale Ideal m C k[x],, ist m das maximale
Ideal von k[[x]]. Weiters gilt

m" Nklx]lm =m", firreN.
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Der nichste Satz gibt Auskunft iiber die Beziehungen zwischen beliebigen
Idealen ¢ von k[x],, und deren Erweiterung ¢ in k[[x]] und Kontraktion
TNk[x]m in k[x]w . Fiir den Beweis brauchen wir folgende Behauptung, siche
zum Beispiel [Sh, Vol. 1, S.284].

LEMMA A.l. Seien A ein noetherscher Ring, a C A ein Ideal so, daf

jedes Element von 1+ a invertierbar ist. Dann ist (), ,(b+a") = b fiir jedes
Ideal b C A.

SATZ A.2. Sei ¢ C k[x]ym ein Ideal. Dann ist ¢ N k[x]m = ¢.

Beweis. Es geniigt die Inklusion ¢ N k[x],, C ¢ zu zeigen. Sei ¢ =
(c1,...,cm) ein Erzeugendensystem von c¢. Sei ¢ € ¢ N k[x],. Dann ist
c=> ¢y mit ; € k[[x]]. Sei n € N. Wir kénnen +; schreiben als

v = d; + 5,‘, mit d; € k[x] C k[x]m und 6; € m.
Mit d = > ¢;d; € ¢ ist dann
c—dem Nklxlm =m".

Also ist
c € ﬂ(c+mr): ¢,

r>0
wobei das letzte Gleichheitszeichen aus dem vorherigen Lemma folgt, zusam-

men mit der Tatsache, daf} in einem lokalen Ring jedes Element von 1 +m
invertierbar ist.  []

KOROLLAR A.3. Seien ¢,d € k[x]y, . Aus ¢ | d in k[[x]] folgt ¢ | d in kx| .
Beweis. Aus ¢ |d in k[[x]] folgt mit dem vorherigen Satz
d € () Nklxlm = (¢).
Also ¢ |d in klx]ym. [

SATZ A4, Seien c,d € k|x|w. Wenn ¢ und d teilerfremd in k[x]y sind,
dann sind sie auch teilerfremd in k[[x]].

Beweis. Angenommen, ¢ und d sind nicht teilerfremd in k[[x]]. Sei «
ein grofter gemeinsamer Teiler von ¢ und d in k[[x]] (« ist nach Annahme
ein echter Teiler von ¢ bzw. d). Dann koénnen wir ¢ und d schreiben als
¢ =ay und d = «d mit v, € k[[x]] teilerfremd. Also ist ¢ —dy = 0.
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Fir r € N zerlegen wir v und § in v = s, +0, und § = ¢, + 7. mit
Sryty € klx] C k[x];w und o,,7, € m". Dann ist

cty —ds, € (c,d)ym” N k[x]m = (¢, d)m”,

wobei das letzte Gleichheitszeichen mit Satz A.2 folgt. Daher gibt es
ur, v, €m’ so, daB ct, — ds, = cv, + du,. Also ist

C(tr - /UI’) — d(sr + Mr) )

und damit (kiirzen)
Y& — ) = 5(5}" +u,).

Da « und ¢ teilerfremd in k[[x]] sind, ist (s, +u,) durch v in k[[x]] teilbar,
d.h.,
(s +u) = Ay, mit \ € k[[x]].

Sei r =ordy + 1. Dann ist
ord(s, + u,) = ord(s,) = ord(s, + o,) = ord(7),

weil v =5, +0, und u, € m", o, € m". Also ist ord A\ = 0, d.h., ) ist
invertierbar. Daher (s, + u,) | v in k[[x]]. Da v ein Teiler von ¢ in k[[x]]
ist, folgt daraus mit Korollar A.3, daBl (s, + u,) | ¢ in k[x], d.h.,

c=-e(s, +u), mitec€klx]y.
Aber c(t, — v,) = d(s, + u,), und deshalb ist (kiirzen) 2(t, — v,) = d. Weil ¢
und d teilerfremd in k[x],, sind, ist e invertierbar in &[x],,. Damit ist

(€)= (s +u) = () in K[[x]].

Dann kann aber « kein echter Teiler von v in k[[x]] sein. Widerspruch. [

KOROLLAR A.5. Seien f,g € kix] und f,g € m. Wenn f und g teilerfremd
in k|x] sind, dann sind sie auch teilerfremd in k[[x]].

Beweis. Die Behauptung folgt aus dem vorherigen Satz und der Tatsache,
daB zwei teilerfremde Polynome f, g € m auch in k[x],, teilerfremd sind. [

A.2  GAUSS-BRUHAT ZERLEGUNG

Sei k ein Korper. Bezeichne im folgenden R den formalen Potenzrei-
henring in zwei Variablen iiber k und G = Auty(R) die Gruppe der k-
Algebrenautomorphismen. Eine Matrix A € GL,(k) kann man bekanntlich
zerlegen in A = PLU mit U eine obere (upper) Dreiecksmatrix, L eine
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untere (lower) Dreiecksmatrix mit Einsen in der Hauptdiagonale und P eine
Permutationsmatrix (GauBalgorithmus mit elementaren Zeilenoperationen und
Zeilenvertauschungen). Wir mochten nun analog dazu ein ¢ € G schreiben
als ¢ = plu. Dabei sollen / und u aus geeigneten Untergruppen von G und
p eine eventuelle Vertauschung der Variablen sein.

Sei y = (v,2) ein reguldres Parametersystem von R. Wir identifizieren
wieder ein ¢ € G mit dem zu

¢ = (p1,92), mit p1(y,2) = @), P2(¥,2) = ¥(2),

gehorigen Substitutionshomomorphismus. Das Einselement von G bezeichnen
wir mit Id. Wir definieren

L={p € G mit g, —y € zkl[z]] und ¢; =z},
U= {p € G mit p; —y € YR},
P={Id, p}, mitp=(z,y).

Diese Definition héngt natiirlich von der Wahl des reguldren Parametersystems
ab. Wir werden im folgenden zeigen, dal L bzw. U Untergruppen von G
sind (P ist offensichtlich eine). Durch Nachrechnen sieht man, da L und U
beziiglich Komposition abgeschlossen sind. Weiters ist fiir / € L bzw. u € U
die zu dl bzw. du gehorige Matrix eine unipotente untere Dreiecksmatrix
bzw. eine obere Dreiecksmatrix. Der durch dl induzierte lineare Substitutions-
homorphismus bildet also y auf y 4+ az mit @ € kK und z auf z ab. Damit
ist er wieder in L. Analog dazu ist auch der von du induzierte Substitutions-
homomorphismus wieder in U.

Seien [ € L mit [ = (y+ ¢(2),2) und m der zu m = (y — g(z),z) gehorige
Einsetzungshomomorphismus. Dann ist

Im=ml=1d,

also /7! = m € L. Damit ist L eine Untergruppe von G. Mit folgender
Behauptung ist auch U eine Untergruppe.

LEMMA A.6. Sei uc U. Dann ist u=' € U.

Beweis. Da der von du induzierte lineare Substitutionshomomorphismus
wieder in U ist, konnen wir 0.B.d.A. annehmen, dal du = Id. Sei also
= (y+ hy,z+ hy) mit ord(h;)) > 2, i = 1,2, und h; = yf(y,z). Nach
Abschnitt A.1 ist der zu u inverse Substitutionshomomorphismus gegeben
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durch @' = (y + g1,z + g2), wobei ¢ = (g1,¢2) = Img’ mit ¢° = 0 und
g1 = F(g"). Dabei ist
F:m’-R* > m?. R,
(91,92) = =h(y+ g1,2+ g2), mit h = (hy, ).

Durch Induktion iiber i folgt, daB ¢! = yfi(y,z) fiir i > 1, und damit die
Behauptung. Der Fall i =1 ist klar. Sei also ¢! = yfi(y,z). Dann ist

g =m0zt g) =0+ g)fo+ gl 4 gh)
=0+ 0NfO+gz+ ) =y T (2. O

Sei ¢ € G mit p = (¢, v2). Wir schreiben

©1 :a}’+b2+h1a
w2 =cy+dz+hy,

mit a,b,c,d € k und ordh; > 2 fiir i = 1,2. Die zu dy gehdrige Matrix

a c
=5 0)

ist invertierbar. Sei p die Vertauschung von y und z, d.h., p = (z,y). Die
zu d(pp) = dpdp bzw. d(pyp) = dpdp gehdrige Matrix ist die Matrix A mit
vertauschten Spalten bzw. Zeilen. Da A invertierbar ist, gibt es immer ein
p € P so, daB (py), = (pp)(y) = ay+ bz+ h; mit a, b € k, a # 0 und
ord(f;) > 2 (d.h., (py); ist y-allgemein der Ordnung |). Analog gibt es ein
p € P mit (pp); =ay—+ bz+ h; mit a, b, h; wie zuvor.

Fiir eine allgemeinere Version des folgenden Satzes ir: beliebiger Dimension
siche [Ha6)].

SATZ A.7. Mit den Bezeichnungen wie oben gilt
G =PLU = ULP = PUL = LUP.

Beweis. Sei ¢ € G. Wir zeigen zundchst G = PLU. Sei p € P
so, daBB (py), y-allgemein der Ordnung 1 ist. Nach dem WeierstraBschen
Vorbereitungssatz gibt es dann ein g € zk[[z]] und eine Einheit ¢ € R so, daB3

(P = (pe)(y) = (y + gle.
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Sei [ der zu [ = (y + g,z) gehorige Substitutionshomomorphismus. Dann ist
[ €L und

(I 'pe)y) = 7N + 9(2)e(, 2))
= — 9(2) + g(@))(e(y — 9(2),2)) = ye(y — g9(2), 2)-

Damit ist ["'pp =u € U und ¢ = p~'lu, also G = PLU. Durch Inversion
folgt daraus G = ULP.

Sei nun p € P so, daB (¢~ !'p); y-allgemein der Ordnung 1 ist. Wie zuvor

finden wir dann ein / so, daB [~'¢~'p=u € U. Dann ist ' = lup~' und
damit ¢ = pu~'/~', also G=PUL. []
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