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CANTORIAN TABLEAUX AND PERMANENTS

by S. BRLEK *), M. MENDES FRANCE ), J. M. ROBSON and M. RUBEY ¥)

ABSTRACT. This article could be called “theme and variations” on Cantor’s
celebrated diagonal argument. Given a square n X n tableau T = (a/) on a finite
alphabet A, let L be the set of its row-words. The permanent Perm(7) is the set of
words a;(l)ai@) -+ - dy,, where 7 runs through the set of permutations of n elements.
Cantorian tableaux are those for which Perm(7) NL = &. Let s be the cardinality
of A. We show in particular that for large n, if s < (1 — ¢)n/logn then most of the
tableaux are non-Cantorian, whereas if s > (1 + €)n/logn then most of the tableaux
are Cantorian. We conclude our article by the study of infinite tableaux. Consider for
example the infinite tableau whose rows are the binary expansions of the real algebraic
numbers in the unit interval. We show that the permanent of this tableau contains
exactly the set of binary expansions of all the transcendental numbers in the unit
interval.

1. INTRODUCTION

We all know Cantor’s proof of the existence of transcendental numbers,
namely writing the expansions in a base s > 1 of the algebraic numbers in
the interval (0, 1) into a tableau and considering its diagonal. This diagonal
was used by Cantor in order to construct the expansion of a transcendental
number. We show in Theorem 10 that the diagonal of such a tableau is itself
the expansion of a transcendental number and has some additional properties.
Furthermore we show that by permuting the rows of the infinite tableau we
obtain essentially all the transcendental numbers. However, before this we
consider the natural analogue for finite tableaux. We call these Cantorian if
neither their diagonal nor that of any row permutation is equal to a row.

*) With the support of NSERC (Canada).
) Corresponding author.

) Research financed by EC’s THRP Programme, within the Research Training Network
“Algebraic Combinatorics in Europe”, grant HPRN-CT-2001-00272.
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2. DEFINITIONS

Let A= {aj,a,...,04}, s > 2 be a finite alphabet and let T be a square

n X n tableau
2 n

|
al al « .. al
ad & ... &
2 2 2 j
T = . . . . 3 al E A ¥
1 2 n
a}’l aﬂ al’l

Each row [; = ala} ---a} is considered as a word of length n. The sequence

of rows is denoted by L and the set of distinct row-words is denoted by L.
It contains at most n words.

n
t

The permanent of an n x n matrix (a/) defined on a ring is

1 2
Z Ar()dr@) " ‘a?r(n) )
wTES,

where the summation is over the set of permutations of the n elements. Very
naturally we define the permanent of the tableau T to be the set of words

)
Perm(T') = U Ar(1)r2) " 'a?r(n)'
TES,

This set contains in particular the diagonal word

n
n-

Diag(T) = ala3 - -a

Note that the permanents of two tableaux that differ onlv in the order of their
rows are the same. It may be useful to note that

Perm(7T) = {Diag(T") | T' a tableau obtained from T by permuting its rows}.
g g

Cantor’s famous diagonal argument is based on the comparison of the set of
rows of an infinite tableau with its diagonal [3]. Here, at least in the beginning
of the present article, we are mostly concerned with finite n x n tableaux and
their diagonals. The last section is dedicated to infinite tableaux.

DEFINITION. A tableau is Cantorian if none of its row-words appear in
Perm(T). In symbols

LNPerm(T) = .



CANTORIAN TABLEAUX AND PERMANENTS 289

Here are some examples on the two letter alphabet A = {a, b} :

(b 2)

The first one is clearly Cantorian. Verifying that the second one also is
Cantorian seems to be a formidable task, since Perm(7") consists of 6! = 720
words (not all distinct since 2% < 6!). In Section 3 we present a simple
condition which establishes that the tableau is Cantorian. On the other hand,
the third one is not since bbb € L N Perm(T).

Q & S Q& & Q
Q & Q & S Q
Q T T QR & &
SR Q &SR
Qo Q &R
QT Q Q&
SR
>t &
SR

REMARK. Note that the property of being Cantorian is invariant under
permutation of rows and permutation of columns, and, given any bijection
on the alphabet, replacing all entries of a column by their image under this
bijection. To illustrate the latter, consider the following two tableaux :

a a b b c a a a a a
a a b b c a a a a a
a a b b c and a a a a a
b b a a d b b b b b
b b a a d b b b b b

While it might be difficult to see whether the first of them is Cantorian or
not, it is clear that the second is in fact Cantorian. However, it differs from
the first one only by exchanging a’s and b’s in column three and four, and
writing a instead of ¢ and b instead of d in column five. Hence, both of
the two tableaux must be Cantorian.

How can we calculate a permanent ? There is actually an induction formula
which is similar to the one for determinants. Given an n X n tableau 7', let
T/ be the (n—1) x (n— 1) tableau obtained by deleting row i and column ;.
Let

Ins ™/ (a, Perm(T}))

denote the set of words obtained by inserting the letter « at the j-th place
of each word in Perm(7}).
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THEOREM 1. For all i € {1,2,...,n}

Perm(7) = U Ins ™ (af, Perm(T})) .
=1

Proof. The proof is obvious. [

COROLLARY 2. Let T be an n x n tableau over the alphabet A. Suppose
a letter — say a — occurs n* —n+ 1 times or more often in T. Then T is

non-Cantorian. More specifically
a' e LNPerm(T).
If a occurs only n*> —n times, the result need not be true.

Proof. 1f T contains no letter other than a the result is trivial. If not,
we argue by induction on n. If n = 1 the result is trivially true. Otherwise
let T be an n x n tableau which contains at least n> — n+ 1 occurrences of
the letter a. There is at least one row, say the i-th, which contains no letter
other than a. Since 7T contains at least one letter different from a, there is
a column j with at most n» — 1 occurrences of a. Thus T/ contains at least
n*—n+1-n—(n—2)=(n—-1*—(n—1)+1 occurrences of a. By hypothesis

"' € Perm(T/)
and therefore
a" € Ins™ (a, Perm(T})) .

By Theorem 1 we have that ¢" € Perm(T).

On the other hand, it is easy to see that the following n x n tableau with

n? —n occurrences of a is Cantorian:

a a ... a
a a ... a

(1)
a a a
b b b []

The problem remains to characterize n x n Cantorian tableaux. We shall
not be able to give a definite answer to this question. We shall however
provide a sufficient condition which implies that our first two examples are
indeed Cantorian.
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3. A SUFFICIENT CONDITION

Let £ be the set of all maps 0: A — A with no fixed points:
Va € A : o(a) # a. If ad’a’”--- is a finite or infinite word on A, we
define

olad/d” ) = ao(a)o(@)a@”) - .

Let @ = (01,0,...,0,) € 2". Recall that L = (I}, L, ...,1,) is the sequence
of row-words of the tableau T'. Define

oL = (0111702127 te anln)

and let oL denote the set of all distinct o;/;. Finally, let 67 be the n x n

tableau whose row-words are o1ly, 020, ...,0,l,, that is
oal oyad ... odl
ol =
o,,a}t Unafl ona,

THEOREM 3. Let o € 2". Then

(2) Perm(T)NGL = @
and
3) Perm(cT)NL = O .

Proof. (2) Suppose Perm(T) N6L # <. Thus there is a permutation
m €S, and an index i € {1,2,...,n} such that

1 2 1 2
Ar(dm@) " dnn = 0il) = 0i(a;)oia;) - - oild)

Let j be 7~ !i. Comparing the j-th letter on both sides we obtain al = Ji(a;j ),
which contradicts o; € X.

(3) Suppose now Perm(c7) N L # &. There is a permutation 7 and an
index i such that
12
id;

-art.

1 2
UW(I)(aﬂ(l))UW(Z)(aW(Z)) e 'Uw(n)(a'fr(n)) =da i

As above let j = 7~ !(i) and consider the j-th letter on both sides. We obtain
O-i(aij) - aij7

which again contradicts o; € .  []
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COROLLARY 4. If L =0L, then the tableau is Cantorian.

It is easy to see that Theorem 3 holds in fact — mutatis mutandis — for
fixed-point free relations o, i.e. relations with a ¢ o(a) for a € A. As a
corollary we obtain

COROLLARY 5. If for every row i there exists a row i such that a! #* al{
for all j, then the tableau is Cantorian.

Note that the only admissible map o € = on a two letter alphabet {a,b}
18 o(a) = b, o(b) = a. Thus, in this case the Corollaries 4 and 5 state the
same thing.

All our previous examples of Cantorian tableaux are of the type described
by the corollary above. There are, however, other Cantorian tableaux, as the
following examples show :

, or

SRR
ST QQ
ST Q Q
SCQ Q Q
SR Q
SR Q
SR Q
ST QR
ST Q9

The following fixed point theorem is another consequence of Theorem 3.
Before stating it we need to extend the concept of a permanent. Let
W = {wj,wy,...,wy} be a set of m distinct words of length n > m.
If m < n, repeating some of these words, we can obtain an n x n tableau T.
Ignoring permutations, there are actually (”1:11) ways to construct such a
tableau containing all the words of W. To each one of these T corresponds
a permanent Perm(7). We define Perm(W) as the union of all the (:;')

1
permanents.

COROLLARY 6. Let W = {wj,wa,...,wn} be a set of m < n words,
each of length n. Suppose that o: A — A is a map such that o(W) C W and
WNPerm(W) # &. Then there exists a letter o € A such that o(a) = a.

Proof. Obvious from Theorem 3 with @ = (o,0,...,0). [
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4. COUNTING CANTORIAN TABLEAUX

Let us denote by c(n,p) the number of Cantorian tableaux of size n x n
over the alphabet {a, b} having exactly p occurrences of b. Clearly c(n, p) has
a symmetric distribution with respect to p, that is to say, c(n,p) = c(n, > —p).
We also have the following computational evidence :

TABLE 1
c(n,p)
n\p|1]{2|3|4|5] 6 7 8 9 10 11 12 13 14
2 0141010
3 0/013]91]9 3 0 0 0
4 010|104 112|384 | 744 | 384 112 0 4 0
5 0({0|0]0]|5 0 0275} 1650 | 5960 | 14250 | 22100 | 22100

These numbers suggest the following result:

THEOREM 7. Let c(n,p) be the number of Cantorian tableaux over the
alphabet {a,b} with exactly p occurrences of the letter b. We have

0 forp<n,
forp=n2=>3,

0 forp=n+1andn>4,

O forp=n+2andn>S5.

c(n,p) =

REMARK. For p=n+3 and n > 3, the following tableau is Cantorian:

b b b
b ... b b b b

where all the entries which are not indicated are a’s. Hence, c(n,n 4+ 3) does
not vanish.

Proof. The n Cantorian tableaux for p = n are those obtained by
permuting the rows of the tableau displayed in (1) in the proof of Corollary 2.
We will show that there are no others by considering several cases.



294 S. BRLEK, M. MENDES FRANCE, J.M. ROBSON AND M. RUBEY

* If p < n, Corollary 2 applies and we are done.

If n < p < n+2 and if there is a row ", direct inspection of the
possible cases shows that the tableau is Cantorian if and only if p =n. Up
to permutation of rows and columns, the possible cases are

Y b ?
b b b b b b
b b
b b|’ b’ b’
b ... b b b ... b b b ... b b

where all the entries which are not indicated are a’s.

o If n <p <n+2 and there is no row b", but a row a" we claim that
a" is in the permanent of 7 : let i be the row with the greatest number of
b’s. Because there is a row without any b’s and the total number of b’s is
at least n, there are at least two letters b in this row. Since there is no row
b", this row contains at least one letter a, say in colurnn j.

Now we consider the tableau Tij . Clearly, a"~! is a row of T/ . Furthermore,
note that »"~' cannot be a row of T/ : this would be possible only if there
were two rows b"~! in T. Since the number of b’s in T is p, we would
have p > 2(n — 1), and hence n < p — n + 2, which contradicts the bounds
we assumed for n.

We proceed by induction on 7 : since T/ contains at most p — 2 letters
b, we have by hypothesis that a"~! is in the permanent of T/. Since
Ins ™/ (a, Perm(Tij )) is a subset of the permanent of 7. we are done.

e If n <p <n+2 and there is neither a row »", nor a row a", we have
to consider two subcases:

— There is a column j with at least two b’s, with one of them being the
only one in its row. Let i be one of the other rows having a b in column
j. Consider the tableau T/ . Clearly, it contains a row a"~'. Because T has
no row «a", the reduced tableau Tl-j cannot contain a row "~ ! : otherwise we
would have p > n—1+2+n—3 = 2n — 2, which contradicts the bounds
we assumed for n.

Now the statement established in the previous case applies to T/, and by
Theorem 1 we obtain that row i is in the permanent of 7', which contains
Ins ™/ (b,Perm(Ej)).
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— Otherwise, by permuting rows and columns, the tableau can be
represented as

b

“4) b ;
b b
b b

where all the entries which are not indicated are a’s. Clearly, this tableau is
non-Cantorian.  []

Let C(n,s) be the number of n x n Cantorian tableaux on an s-letter
alphabet. Computing C(n, s) is obviously quite cumbersome even for s = 2.
As a first improvement over simple-minded calculation of the permanent
followed by checking whether the intersection with the set of row-words is
nonempty, we have the following:

THEOREM 8. [t is possible to test whether a given tableau is Cantorian
or not in polynomial time.

Proof. To test whether a given n x n tableau T over any alphabet is
Cantorian or not, we proceed as follows: for each row k we transform the
tableau into a bipartite graph Gy, with each of the two parts having n vertices.
The n ‘top’ vertices {xj,x,,...,x,} correspond to the rows of the tableau, the
n ‘bottom’ vertices {yi,y2,...,y,} correspond to the columns of 7. There
is an edge connecting the ‘top’ vertex x; with the ‘bottom’ vertex y; if and
only if the entries in column j in row i/ and in row k are the same, i.e., if

al =dj.

If Gy contains a perfect matching, then the tableau T cannot be Cantorian.
Otherwise, we proceed with the next line of the tableau. If there is no perfect
matching for any of the rows of the tableau, it must be Cantorian.

Since it is possible to find a perfect matching in a given bipartite graph
in time O(n*°/y/logn), where n is the number of vertices of the graph —
see [2, Theorem 1] —, we see that this procedure is polynomial in time. []

For very small n, we can inspect all nx n tableaux and check whether they
are Cantorian. Since, even for a two letter alphabet, the number of tableaux is
o’ , this rapidly becomes unfeasible as a method for determining their number.
We have computed the number of Cantorian tableaux of sizes up to 11 over
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a two letter alphabet by an algorithm which uses the three Cantor-preserving
operations on tableaux (described in the Remark of Section 2) to divide the
Cantorian tableaux into a relatively manageable number of classes each of
easily computed cardinality. A forthcoming paper by the last two authors will
describe this algorithm in detail. The computation for size 11 took about a
week. The results can be found in Table 2.

5. ASYMPTOTICS

Consider the 16 tableaux of size 2 x 2 over the alphabet {a,b}. Direct
inspection shows that among them, only 4 are Cantorian. There are il
tableaux of size n x n. It is reasonable to guess that among them there is only
a small proportion of Cantorian tableaux. Let C(n) = (C(n,2) be the number
of Cantorian tableaux and N(n) the number of non-Cantorian tableaux over
{a,b}. We have the following explicit bounds:

1.2 . .
23" if n is even,

Nn)>2"—"  and  C(n) >
2271=1if nis odd.

In particular, the lower bound for C(n) is obtained as ‘ollows. Suppose n is
even. Choose arbitrarily the entries in the first n/2 rows of an nxn tableau T.
Complete 7' by adjoining n/2 rows obtained by interchanging the letters a
and b in the first n/2 rows of T. By Corollary 4 this tableau is necessarily
Cantorian, and there are 237" such tableaux. Obvious rodifications establish
the case where n is odd.

Therefore

1 log C log C

— < liminf e (’21) < lim sup o8 (’Z) <1

2 n—oco  log 2" n—oc log2"
The question arises whether the limit actually exists, and if so, what is its
value ? Here are a few values of the ratio

log C(n)
log 2"

— .5,.509,.673,.657, .675, .656, .651, .632, .626, .610

for respectively n =2,3,...,11, computed from Table 2 which displays the
values of the number C(n,s) of n x n Cantorian tableaux on an alphabet of
size s, for some values of n and s.
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TABLE 2
Number and proportion of Cantorian tableaux of size n on alphabets of size s

297

n\s 2 3 4 5 6
2 122 4.32 9.42 16 - 52 25 . 62
25-107" |~ 4.44-107"| 5.625-10"! 6.4-10"1 |~ 6.94.10"!
3 3.23 188 - 33 1863 - 43 9264 - 53 32075 - 63
~4.69-1072|~2.58-107! [~ 4.55-10"1|~593.10"" |~ 6.87- 107!
4 109 -2%| 100144 - 3¢
~2.66-1072|~ 1.88 - 107!
5 2765 - 25
~2.64.1073
6 324781 - 20
~3.02-10~%
7 37304106 - 27
~ 8.48 .10~
8 13896810621 - 28
~1.93.1077
9 5438767247337 - 2°
~1.15-107°
10 6889643951630251 - 210
~ 55610712
11 [8135113082369752094 - 2!
~627-1071

The proportion of Cantorian tableaux on a fixed s-letter alphabet tends
to 0 as the size of the tableaux increases, as is suggested by Table 2 and
established by the following theorem :

THEOREM 9. Let C(n,s) be the number of n x n Cantorian tableaux on
an alphabet of size s = s(n). If s < n/(logn+loglogn—+r,) where r, is any
sequence which grows without bound, then

. 2
lim C(n,s)/s"
n—o0

=0.

If on the other hand, s > n/(logn —loglogn — €) for any ¢ > 0, then

lim C(n,s)/s" = 1.
n— o0

Proof. A tableau T 1is certainly non-Cantorian if [, € Perm(7T). This
in turn is certainly the case if there is a permutation m € S,_; such that
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ar? = a7 for all i < n.If 7 consists of a single cycle, then the following
directed graph G has a (directed) Hamiltonian cycle: G = (V,E), where
V=1{1,2,....,n—1} and (i,)) € E if and only if ¢/ = a. Note that G
is derived from the graph G, in Section 4 by omitting vertices x, and y,,
directing all its edges from ‘top’ to ‘bottom’ and then identifying vertices x
and y; for i€ {1,2,....,n—1}.

This graph G for a randomly chosen n X n tableau is simply D,_, ;/,
a random directed graph on n — 1 vertices where each possible edge has
probability 1/s of occurring. The probability that such a graph is Hamiltonian
is well known to tend to 1 as n tends to infinity [6], as long as the alphabet
size s(n) grows with n but is bounded by s(n) < n/(logn + loglogn + r,)
where r, i1s any sequence which grows without bound.

On the other hand, if s(n) > n/(logn — loglogn — ¢) for ¢ > 0, then
Corollary 5 shows that the probability that a random tableau is Cantorian
tends to 1. Indeed, for any two rows i and j (i # j),

Pr[Vk: af = aj"‘] > (1 — (logn — loglogn — €)/n)"
> logn(l +€)/n (€ >0)
for n sufficiently large. Hence for a given i,
Pr[3jVk:af #dj]>1—(1—logn(l+¢€)/n)"
> 11— 0+eD (¢! > 0)

for n sufficiently large. We deduce that the expected number of i such that
1jVk: af # d* is less than n~<". Therefore the probability that there exists

such an i is less than n~¢ and thus tends to 0. [

6. INFINITE TABLEAUX

The definitions and results of the preceding sections extend naturally to
infinite tableaux 7 = (a/) with i,j € N. In particular tae permanent of T is
the set of infinite sequences

1 2 3
Perm(T) = U Ar)Ax )73y """ >
TESN

where Sy is the family of all bijections 7: N — N. In general, Perm(7T) is
an uncountable set.
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Consider an infinite tableau 7' over the alphabet A. The i-th row (i € N)
is
l; = a}a?a? cooeaAN

and the set of rows is denoted L as in the finite case. If o = (01,07,03,...) €
SN, where X is the set of maps A — A without fixpoints (see Section 3),
then Theorem 3 extended to the infinite case asserts that

Perm(7) NoL = & and Perm(cT)NL = .

If moreover L = &L, then T is Cantorian.

THEOREM 10. Let L be a countable subset of the unit interval such that
LDOQnNIO0,1]. Let T be the infinite tableau whose rows are the expansions
in base s > 2 of the numbers in L. Here we require that rational numbers
r/s? for r,q € N should appear twice in T, once with a tail of 0’s and once
with a tail of s — 1’s. Suppose that, if s >2, L+ 1/(s—1)=Lmod 1 and if
s=2, L=1—L. Then T is Cantorian: Perm(T) only contains numbers in
[0, 11\ L. Furthermore the s-expansion of each number in Perm(T) contains
each of the digits 0,1,...,s — 1 infinitely often. None of the digits occur
periodically.

REMARK. In fact, for s > 3 the theorem holds also if the tableau contains
only one of the two possible expansions of rational numbers r/s? for r,q € N,
i.e., the expansion having an infinite tail of 0’s.

Note that this does not work for s = 2. Rather, in this case the intersection
Perm(7) N L contains exactly the numbers whose expansions have an infinite
tail of 0’s. The statement that both digits O and 1 occur infinitely often for
numbers in Perm(7) is false in this setting.

Proof. Let l; = alaja}--- represent both the i-th row of T and the i-th
element of L. Assume that s > 3. In this case, we define

wili— L+ 1/(s—1)mod 1.

Clearly, 7 is a reordering of the rows. Moreover, since 1/(s—1)=.1111...,
it can be shown that the j-th digit of w (/) is always different from the j-th
digit of ;. For s =2 we define 7: [; — 1 — [;, which, taking into account
that a rational number with terminating expansion appears also with a tail of
ones, implies the same fact.
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By Corollary 5 we conclude that the tableau is Cantorian, i.e., Perm(7)
contains only expansions of numbers in [0, 1]\ L.

Next we prove that each of the s-digits 0,1,...,s — 1 occurs infinitely
often in every element of Perm(7). Suppose the digit 2 occurs only finitely
many times in

P= a7l'r(1)a721”(2) .
Define the map o: {0,1,...,s — 1} — {0,1,...,5s — 1} by o(b) = a for all
b # a and o(a) = ¢, where c¢ is any letter different from «. Then o € ¥ and
therefore Perm(G7) contains no numbers from L. Thus

o(p) = a(a;(l))a(ai(z)) T

is the s-expansion of a number in [0,1]\ L. But from some point on, p
contains no digit a, so that o(p) has an infinite tail ¢f a’s. This is absurd
since then o(p) € Q. The same map o shows that no s-digit of p can occur
periodically. [

REMARK. Theorem 9 asserts that given an alphabet A, with a fixed number
s of elements, the probability that an n x n tableau is Cantorian tends to 0 as
n increases. Therefore Theorem 10 should come as a surprise. Paradoxically,
the infinite tableau 7 described in Theorem 10 is Cantorian. This of course
is due to the rather stringent condition imposed on L !

THEOREM 11. [If T is as in the statement of Theorem 10 with s = 2 then
Perm(7) = [0, 1]\ L.

Proof. By Theorem 10 the tableau 7 is Cantorian, thus we have that
Perm(7) C [0, 1]\ L. The equality is established as follows: let x be a number
in [0,1]\ L. We show how to construct a permutation 7 € Sy such that

X = O.a;(])azr(z) s w
Writing x/ for the j-th digit of x we define
7(j) = min{i | a/ = x/ and V] < j:i# n()}.

First we show that 7(j) is well defined: since L contains Q there is an
infinity of rows i with a,-j = x/. On the other hand, there can be only a finite
number of rows i with i = w(/) for some j < j. Thus, the set of which we
take the minimum is indeed nonempty.

It is clear from the definition that 7 is one-to-one. Hence it remains to
show that for all i there is a j such that 7(j) = i. Note that there is an infinity
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of columns j with a,j — x/, because otherwise x+/; would be rational, where
l; =ala?---. This in turn cannot be the case, since /; is in L and x is not.

Suppose now that for all j we have n(j) # i. It follows that n(j) < i for
all columns j with al = x/. Since 7 is one-to-one this can be true for only

a finite number of columns, thus contradicting the assumption. []

By choosing the set of algebraic numbers in the unit interval for L, we
obtain the following corollary :

COROLLARY 12. [If the rows of T consist of all the algebraic numbers in
the unit interval represented in base 2, then Perm(T) is exactly the set of all
transcendental numbers in the unit interval.

The condition s = 2 was necessary in Theorem 11 and Corollary 12.
Indeed, for s > 3 there exist transcendental numbers with missing digits such

E S—n! )

n>0

as the Liouville numbers

Therefore, Theorem 10 shows that for s > 3, Perm(7) cannot contain all
transcendental numbers.

It is however true for all s > 2 that Perm(7) contains uncountably many
transcendental numbers. Indeed, suppose [; is the list of all the algebraic
numbers as above and # is a list of some countable set of transcendental
numbers. We show how to construct a permutation 7 such that

)
ArHGr@) " "

is different from every # : note that any /; and ¢ differ from each other in
infinitely many positions. Let i; be the first position where /; differs from
;. We choose m(1) =1i; and we set 7(j) =j— 1 for all 1 <j < i . Clearly
ai‘r(l) # 1. Now we proceed iteratively: when i, is known, we choose i
as the first position after i where [, 4, differs from #. ;. Then we define
(i + 1) = x4 and 7w(j) = j— 1 for all j such that i + 1 < j < Igt1 -

7w permutes each set {ix + 1,ix +2,...,iky1}, so it is indeed in Sy and
aik+1 tik+1
7(ix+1) k+1°

We can in fact show the stronger result that the set of real numbers not
contained in Perm(7") has measure 0. This is a consequence of the following
theorem.
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THEOREM 13. Let T be an infinite tableau containing the s-expansions of
a countable dense subset L of the unit interval. Then the measure of Perm(T)
is 1.

Proof. We will show that the probability that x ¢ Perm(7) is less than
¢ for any € > 0. Recall that the probability that an n node random directed
graph D, |/, (where each possible edge has probability 1/s of being present)
is Hamiltonian tends to 1 as n tends to infinity [6]. Define n; for i > 0 to be
the first n such that this probability is greater than 1 — ¢/2' and let Ny =0
and N; = Z;:] n;.

From the initial order of the rows [/ we construct a new order [
as follows: [ ., is the first /; not already present in /,[;,... [y . For
N;+2 < j < Ni41, elements in positions N; + 1,..., N4 of l]’. are chosen
randomly and independently and lj’ is chosen as the first /; with these elements
and not already present in /i, ,/0, ..., _;_1. Such an l; exists since L is dense.
Because [; is chosen at the latest in the j-th step, this defines a reordering
of the rows.

Now we consider the probability that x can be obtained as the diagonal of
a permutation of the rows /| fixing each of the sets {N;-+1,N;+2,...,Ni+1}.
Let ‘v be the vector consisting of digits N; + 1,N; +2,... ,Niy; of x. Let

‘B be the square Boolean matrix whose entry "Bj"f is true if and only if
‘M = "w*. We claim that ‘B has each entry true with probability 1/s
and that all these probabilities are independent: this is true for the first row
of B because x was chosen randomly, and for all other rows because the
corresponding elements of ‘M were random.

Now ‘B is the adjacency matrix of a graph D, 1/, and we know that
this graph has probability less than ¢/2' of not being Hamiltonian. If all the
graphs are Hamiltonian there is a permutation of the rows Z that consists of
a cycle on each of the sets {N;+ 1,N;+2,...,N;11} and produces x on the
diagonal. Hence

Prix ¢ Perm(T)] < Y /2 =e€. ]

i=1

A similar approach allows us to consider tableaux whose rows consist of
infinite sequences on a finite set {0, 1,...,s— 1}. Rational numbers would be
replaced by ultimately periodic sequences and algebraic numbers would then
be replaced by s-automatic sequences [1, 4, 5]. The results from Theorem 10
on remain valid with the obvious modifications.
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7. OUTLOOK

Following the remark after the definition of Cantorian tableaux in Section 2,
define an equivalence relation on the set of n x n tableaux as follows: let 7’
be equivalent to T, if it is obtained from 7 by a combination of permuting
rows or columns or replacing all entries of a column by their image under
any bijection on the alphabet. It might be interesting to count the number of
resulting equivalence classes.

Taking into account the situation for base 2 in Theorem 10, it might also
be interesting to consider those tableaux 7" where Perm(7)NL equals a given
set, or has a given cardinality.

Finally, we could have defined “bi-Cantorian” tableaux as those where
Perm(7') is disjoint both from the set of row-words and column-words. We
chose our initial definition guided by Cantor’s work. Needless to say it might
well be interesting to extend our discussion to bi-Cantorian tableaux. For
example, an argument very similar to the one given at the beginning of
Section 5 shows that there are at least 21"/2]° bi-Cantorian tableaux of size
n x n over the alphabet {a,b}.
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