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interpreting the former as elementary symmetric functions in certain roots of
G (or their squares).

Ehresmann [E] investigated the topology of complex Grassmann manifolds
(and other hermitian symmetric spaces) by studying the algebra of K -invariant
differential forms on them (K = U(N) for X = G(m, n)). This relies on the fact
that the invariant forms are harmonic for the natural hermitian structure on X,
which implies that the ring of all such forms is isomorphic to H*(X). Kostant
[K1] [K2] later found analogues of these results for arbitrary (generalized) flag
manifolds. The representation theory used to determine the K -invariant forms
in this program does not directly relate the multiplicities ¢y, In equations

(1) and (2). Note however that the cited works of E. Cartan and Ehresmann
were used by Chern in his fundamental paper on the characteristic classes of
complex manifolds [Chl]. More recently, Stoll [St] used fiber integration to
study the algebra of invariant forms on the Grassmannian, but his work does
not address the question posed in the Introduction.

Following [SGA6], [V] and [Be], the isomorphism between grR(G) and
Pol(g)® in §6 may be used to construct the Chern-Weil (or characteristic)
homomorphism in algebraic geometry. Let P — X be a principal G-bundle
over a smooth algebraic variety X and let CH*(X) denote the Chow group of
algebraic cycles on X modulo rational equivalence. The Grothendieck group
K(X) of vector bundles on X is a A-ring, with the \-operations induced by
exterior powers. According to [SGA6, Exp. XIV], the graded ring gr K(X)®R
is canonically isomorphic to the real Chow ring CHi(X) = CH*(X)®R. There
18 a natural A-ring homomorphism 7: R(G) — K(X), defined by sending a
representation G — GL(E) to the associated vector bundle P xg E over X.
The characteristic homomorphism is the induced map

gr(mr: Pol(g)’® — CHyi(X).
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