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FONCTIONS CONDITIONNELLEMENT DE TYPE NEGATIF,
REPRESENTATIONS IRREDUCTIBLES ET PROPRIETE (T)

par Nicolas LOUVET, Yves STALDER et Alain VALETTE

ABSTRACT. This paper is devoted to conditionally negative definite functions on a
locally compact group G, and their relation to representation theory and 1-cohomology.
More precisely, we prove first that a normalized, conditionally negative definite function
¥ on G is indecomposable if and only if the orthogonal representation of G constructed
by GNS-construction is irreducible. Next we define conditionally negative definite
measures on G and we prove that a Radon measure dp absolutely continous with
respect to Haar measure dx is conditionally negative definite if and only if the
Radon-Nikodym derivative %{f is a conditionally negative definite function. We use
this to prove that, on a compactly generated group G, any normalized conditionally
negative definite function is the limit, uniformly on compact subsets of G, of convex
combinations of indecomposable normalized conditionally negative definite functions.
As a consequence, if a compactly generated group has the property that the reduced
1-cohomology is zero for every irreducible representation of G, then the same holds for
every unitary representation of G. This is related to a characterisation, by Y. Shalom
[Sha00], of Property (T) for compactly generated groups.

1. INTRODUCTION

Soit G un groupe topologique. Une fonction continue ?: G — R est
conditionnellement de type négatif si
(i) (g~") =1(g) pour tout g € G et
(i1) pour tout n € N, pour tous ¢g,...,g, € G et pour tous Aj,...,\, € R
tels que > >, A\, =0, on a
n n
DD ANug'g) <0.
i=1 j=I

Une fonction conditionnellement de type négatif v est normalisée si 1(e) =0
(ou e désigne 1’élément neutre de G).
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Pour obtenir des exemples, considérons une représentation orthogonale ,
fortement continue, de G dans un espace de Hilbert réel ‘H,. Une fonction
continue b: G — H, est un l-cocycle par rapport a 7 si

b(gh) = ©(g) b(h) + b(g) pour tous g,n1€ G.

La fonction ¥(g) = ||b(g)||* est alors conditionnellement de type négatif
normalisée. Il est bien connu (voir par exemple [HV89], § 5.b) que cet exemple
est général : en effet, une construction du type Gelfand-Naimark-Segal montre
que, si ¥: G — R est conditionnellement de type négatif normalisée, il existe
un triple (Hy, 7y, by) ol my est une représentation orthogonale, fortement
continue, de G sur I’espace de Hilbert réel H, , ou b, est un l-cocycle par
rapport a 7, tel que by(G) soit total dans H,,, et Y(g) = wa(g)ll2 pour
tout g € G. Le triple (H, my, by) est uniquement déterrnin€, a isomorphisme
orthogonal pres.

Notre premiere contribution consiste & examiner quand la représentation
est irréductible. Remarquons que 1’ensemble des fonctions conditionnellement
de type négatif normalisées sur G forme un cone que I'on note CL(G) (la
notation est due a Vershik et Karpushev [VK84], qui I’appellent “cOne de Lie”).
Nous disons que la fonction conditionnellement de type négatif normalisée
Y est indécomposable si 1 se trouve sur une génératrice extrémale du cOne
CL(G). Notre premier résultat, énoncé sans démonstration par A. Vershik et
S. Karpushev ([VK84], théoreme 1), est

THEOREME 1. (i) Soient v une fonction conditionneliement de type négatif
normalisée sur G et (Hy,my,by) le triple obtenu par construction GNS. Si
Y est indécomposable alors la représentation orthogonale T, est irréductible.

(i1) Soient ™ une représentation orthogonale et ) une fonction condition-
nellement de type négatif normalisée associée a m (c’est-a-dire une fonction
de la forme ) = Hb(.)H2 ot b est un I-cocycle par rapport a 7). Si la
représentation T est irréductible alors la fonction 1 es! indécomposable.

Ce résultat sera démontré a la section 2. Il y a un lien assez étroit
entre fonctions conditionnellement de type négatif et fonctions de type positif
sur G donné par le théoreme de Schonberg: la foncion ¢¥: G — R est
conditionnellement de type négatif si et seulement si la fonction e~'¥ est de
type positif sur G pour tout ¢ > 0 (voir [HV89], chapitre 5, théoréme 16). On
sait que, si G est un groupe localement compact, il existe une caractérisation
intégrale des fonctions de type positif sur G (voir [Dix96], proposition 13.4.4).
Il est intéressant, dans ce contexte, d’introduire la notion de mesure de type
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positif sur G (voir [Dix96], §13.7). A la section 3, nous faisons de méme
dans le cadre des fonctions conditionnellement de type négatif. Rappelons
qu’une mesure de Radon sur un espace localement compact est une mesure
borélienne, finie sur les compacts et intérieurement réguliére.

DEFINITION 1. Soit G un groupe localement compact, de mesure de
Haar (a gauche) dx, et de fonction modulaire A. Notons C.(G) I’espace des
fonctions continues a valeurs réelles et a support compact sur G. Une mesure
de Radon p sur G est conditionnellement de type négatif si

(i) pour tout £ € C(G): / FOdpx) = / FOHAG Y dux) et
G G

(i1) pour tout & € C.(G) avec / h(x)dx =0

G

/ / HOOh(xy) dx dpu(y) < 0.
GJG

Ceci nous permet de démontrer

THEOREME 2. Soit G un groupe localement compact. Soit 1 une mesure
de Radon sur G, absolument continue par rapport a la mesure de Haar dx.

On a les équivalences :

(1) la dérivée de Radon-Nikodym i o presque partout égale (par rapport
dx q D

a dx) a une fonction conditionnellement de type négatif;

(ii) p est une mesure conditionnellement de type négatif.
A la section 4, nous utilisons ce résultat pour démontrer

THEOREME 3. Soit G un groupe localement compact compactement
engendré. Le cone fermé (pour la topologie de la convergence uniforme sur
les compacts de G) engendré par les fonctions conditionnellement de type
négatif normalisées indécomposables, est le cone CL(G).

Pour expliquer comment nous appliquons ce résultat, nous introduisons
davantage de formalisme cohomologique. Soit 7 une représentation ortho-
gonale ou unitaire du groupe topologique G. On note Z!'(G,7) I’espace des
l-cocycles de G par rapport a . Un cocycle b € Z'(G, ) est un 1-cobord
s’il existe un vecteur £ € H, tel que b(g) = m(g) — £ pour tout g € G. On
note B'(G, ) ’espace des 1-cobords, et
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H'(G,7) =Z"(G,m)/B"(G,m)

le premier groupe de cohomologie de G a coefficients dans . Munissons
ZNG,m) de la topologie de la convergence uniforme sur les compacts de G,
et notons B'(G, ) ’adhérence de B'(G,w) dans Z'(G. ). On note

H'(G, ) = Z/(G,)/BYG, )

le premier groupe de cohomologie réduite de G a coefficients dans 7.
Les sections 5 et 6 sont destinées a montrer

THEOREME 4. Soit G un groupe localement compact et compactement
engendré. Si on a T-I—I(G, ) = O pour toute représentation unitaire irréductible
m du groupe G, alors ﬁ(G, p) = 0 pour toute représentation unitaire p du
groupe G.

Par un argument d’intégrale directe, A. Guichardet a démontré (voir
[Gui72], proposition 4 ou [Gui80], Ch 3, §2) le méme résultat en supposant
G séparable (mais pas nécessairement compactement engendré).

Notre derniére application concerne la propriété (T) de Kazhdan. Le théo-
reme de Delorme-Guichardet (voir [HV89], chapitre 4, théoréme 7) affirme
que, pour un groupe G localement compact o-compact, la propriété¢ (T) est
équivalente 2 1’annulation de H'(G,7) pour toute représentation unitaire 7
de G. Dans [VK84], Vershik et Karpushev ont demandé si, pour un groupe
localement compact compactement engendré, la propriété (T) est équivalente a
I’annulation de H'(G, o) pour toute représentation unitaire irréductible o de
G. (Des exemples simples montrent que I’hypothése de génération compacte
est nécessaire — voir [VK84], exemple 1.5.1.) Y. Shalom a donné une réponse
affirmative a cette question en démontrant (voir [Sha00], théoreme 0.2)

COROLLAIRE 1. Pour G localement compact compactement engendré, les
propriétés suivantes sont équivalentes :

(i) G a la propriété (T);
(i) HY(G,7) =0 pour toute représentation unitaire irréductible m de G ;
(111) E(G,w) = 0 pour toute représentation unitaire irréductible © de G ;

@iv) f-I—I(G m) = 0 pour toute représentation unitaire v de G.
; 4 P

Dans 1’énoncé original, Y. Shalom suppose le groupe G séparable en plus
de compactement engendré: pour la preuve de (iii) => (iv), il fait en effet
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appel au résultat de Guichardet cité plus haut. Notre théoreme 4 permet de
s’affranchir de I’hypothése de séparabilité dans le résultat de Shalom.

Notons que Vershik et Karpushev [VK84] ont montré que toute repré-
sentation irréductible 7 de G avec H'(G,7) # 0 est non-séparée de la
représentation triviale dans le dual 6. (Voir I’article [LouOl] du premier
auteur, pour des compléments et des généralisations de ce résultat.)

2. FONCTIONS CONDITIONNELLEMENT DE TYPE NEGATIF

Le but de cette section est de démontrer le théoreme 1, mentionné dans
I’introduction.

LEMME 1. Soit m une représentation orthogonale irréductible d’espace H.
Si A est un opérateur auto-adjoint sur H, commutant avec w(g) pour tout
g € G, alors A= \-Idy avec X € R.

Preuve. Voir le premier pas de la preuve du théoreme 1 dans [SVO02].

LEMME 2. Soit m une représentation orthogonale d’espace H et
b € ZNG,7) un cocycle d’image totale dans H. Si A est un opérateur
auto-adjoint sur H, commutant avec w(g) pour tout g € G et tel que
<Ab(g) ’ b(g)> =0 VgegG, alors A=0.

Preuve. Pour tous g,h € G

0= (Ab(g~'h) | b(g~'h))
= (A(n(g~b(h) + b(g™")) | m(g~Hbh) + b(g™"))
= (Ab(h) | b(h)) + (Am(g~"b(h) | bg™")
+(b(g™") | Am(g~ b)) + (Ab(g™") | blg™"))
= (Am(g~b(h) | b(g™")) + (b(g™") | Am(g™"b(h))
=2 (m(g~ HAb(h) | b(g™")) = 2(Ab(h) | 7(9)b(g™ "))
= —2(Ab(h) | b(g)) -

Comme les b(g) (g € G) engendrent un sous-espace dense dans 7, on en
tire d’abord Ab(h) =0 pour tout A € G, puis A=0. []
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PREUVE DU THEOREME 1

(i) Soit K un sous-espace fermé invariant de H, . Notons E le projecteur
orthogonal sur K. Il s’agit de montrer que £ = 0 ou E = 1. Comme
Emy(g) = my(g)E, on peut poser

b (g9) = E(by(9))
b (g9) = (1 = E)(by(9))

et bt,b~ € Z(G,7y). Les fonctions ¥*(g) = Hbi(g)H2 sont condition-
nellement de type négatif normalisées et, par le théoreme de Pythagore,
1 =T 4+~ . Comme 7 est sur une génératrice extrémale, on a T = \¢)
avec A > 0. Alors, Vg € G

(Eby(9) | by(9)) = (Eby(g) | Eby(9))
= ¢t (g) = M(g) = (Aby(9) | by(9))
Donc <(E — Nby(g) ‘ bw(g)> =0 Vg € G. Par le lemrae 2, on conclut que

E=MX\-id et comme F2=FE,ona E=0 ou E=1.

(ii) Soit m une représentation irréductible d’espace H et b € Z(G,7);
notons v = ||h(.)||>. Pour tous x,y € G, on a

D ty) = (bl | Y)Y = ([ + 6D — 2 (b) | b))

et donc

(bx) | b)) = = (1 + [bDWI® = wc™'y)

(V) + () — v 'y)

N = N —

Supposons que 1 s’écrive
Y=ty + 1 =0

ou 1 et 1, sont des fonctions conditionnellement de type négatif normalisées
et 1 €]0,1[. Notons (Hi,my,by) (resp. (Haz,m,by)) le triple GNS associé a
m (resp. m).
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Pour tout n € N, ay,...,a, € R et g;,...,9,€ G, on a

Z a; b(g;)
i—1

2 n
=" aa; (bgy) | blgp)

=1

1 n
=5 D aa; (Vg + (g) — g 9)
ij=1

t

= > > " aw; (hi(g) + ¥i(g) — ilg ' g)

Lj=1

(1

D S~ iy (a() + algy) — g 9p)

T

ij=1

2 2

=t

Z a; b2(g;)

i=1

+ (1 =1

> aibi(g)
i=1

Sur le sous-espace dense V de H formé des combinaisons linéaires finies
d’images du cocycle b, on définit les applications

Ti: Y aiblg) — V1Y aibi(g) € H,
i=1

i=1

et
Tyt ) aiblg) — VT—1) aiba(g) € Ha.
i=1 i=1

Le calcul ci-dessus montre d’abord que 7| et 7, sont bien définies, ensuite
que

(1) ITEN + 12607 = [le)?

pour tout £ € V. Cela entraine que les applications 77 et T, s’étendent en
des opérateurs continus

T,: H— H, et T): H— H,

qui vérifient I’égalité (1) pour tout £ € H.
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Pour tout n € N, a;,...,a, € R et g;,...,9,€G,on a

71@@(2}%@0)zﬂ(2%ﬂ@%—mm0
i=1 i=1

= \/;Z a; (bi1(gg9:) — b1(g9))

i=1

— /1 Z aim(9)bi(g:)
i=1

= m1(9) (Tl <Z aib(gi))>
=1

pour tout g € G. Ceci montre que I’opérateur T; entrelace les représentations
7 et m. On montre de méme que 1’opérateur T, entrelace les représentations
7w et m. On en déduit que les opérateurs auto-adjoints 71T;: H — H et
T5T,: H — H commutent avec la représentation irréductible . Le lemme 1
implique qu’il existe des nombres réels A; et A, tels que

T{ T] == Al qu.[ et TETZ = )\2 Ide

Comme les opérateurs TiT; et TiT, sont positifs, les nombres réels A; et
X, sont positifs et (1) implique A; + A, = 1.
On a alors pour tout g € G

b = [P = - Vit
= STk
= (Tibo) | Tibl9))
= (1{Tiblo) | blo))
= = (Ablg) | blo))
= btg) | blo))
= e = 2.

Un calcul similaire pour ¢, montre que Y, = 1—>‘j—t1/;, donc 1 est
indécomposable. [
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3. MESURES CONDITIONNELLEMENT DE TYPE NEGATIF

Pour une fonction f a valeurs réelles sur G, et s € G, on pose
G —R; t+— fEHAC

et
S G— R 1+— f(st).

Pour des fonctions intégrables f,g: G —» R, on note

Fr9:G—R: 1 (f*9)0) :/f(s)g(s“t)ds
G

le produit de convolution de f et g.
On note C.(G) I’ensemble des fonctions continues sur G, i support
compact et a valeurs réelles. Pour k € R, on pose

C.al(G) = {f € C0): [ fan= k} |
G

DEFINITION 2. Soit x4 une mesure de Radon sur G. On dit que o est
conditionnellement de type négatif si

(@) VfeClG) : p(f*)=pu(f); et

(b) Vf € Ceo(G) : pu(f**f)<0.

Cette définition est clairement équivalente a la définition donnée dans
Iintroduction. La suite de cette section est consacrée i la preuve du théoréme 2
de I’introduction.

Rappelons qu’une approximation de [I’identité de C.(G) est une suite
généralisée de fonctions (f;);c; dans C.,1(G) prenant des valeurs positives ou
nulles, vérifiant f* = f; et telles que supp(f) \, {e} pour i — co. Pour une
telle suite généralisée, on a

Iim fixh=nh et limhxfi=nh
1—00 1— 00

uniformément sur les compacts pour toute fonction 4 € CA(G).

PREUVE DU THEOREME 2

(1) = (i) Notons m(A) la mesure de Haar d’une partic mesurable
A de G et posons ) = %. On peut supposer que 1 est une fonction
conditionnellement de type négatif. Commengons par montrer (a); pour
feCA(G), on a:
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/ Fa ) MG du) = / Fa ) AT Y de
G G

= [ fovwas= [ s,
JG G

Pour (b), prenons f € C.o(G) et montrons que:

/ / FEOS0) By drdy < 0.
JGJIG

La partic K = supp(f) de G est compacte. Notons ||. ||, la norme uniforme
. . | . : . .
d’une fonction sur K. Soit n € N* et ¢ = . Il existe une fonction etagee

n
mesurable i: K — R telle que ||f —hl[y <e¢.
Posons

h,: G— R
1
hix) — —— | h(y)dy sixeK
e (x) m(K)K(y)y
0 sinon.

On a [, h,(x)dx =0 d’une part et

/ h(y)dy = / h(y) dy — / ) dy = / (h) — F)) dy
JK K K K

d’autre part, donc

/ h(y)cly\ < / () — F)| dy < m(K).
K K

Par suite

_t
m(K)

Hh' - hn“l{ =

1
/Kh(y) dy\ < (KD enm(K)=c¢.

Donc, on a ||f—hylly < 2, et méme || f—hll; < 2¢ puisque
f(x) = 0 = h,(x) pour x ¢ K. On peut écrire h, = Zf:l a;Xxy, ou les
V: sont des boréliens qui partitionnent K. Comme K est compact et ¢ est
uniformément continue sur K, on peut supposer que:

Vx,x' € V;; Vy,y €V, ¢ "¢(X_1y) — (™Y <e.

Par ailleurs, on a

k
Zaim(Vi) - / hy(x)dx=0.
i=1 G
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Choisissons g; € V; pour tout i € I. Comme la fonction 1) est conditionnelle-
ment de type négatif, on a

/ / ) () (6~ y) e dy
GJG

k
- Zaiaj/v /Vw(x_ly)dxdy

ij=1

k
= ooy / / (w(x"y) — (g gp) dxdy
Vi JV;
k

ij=1

+ 37 am(Vam(Vw(g ' g)
ij=1
k

<) il |04j‘/v‘ /V_\w(xly) — (g ' gp)| dxdy

ij=1
k
<e Y ol laylm(Vym(V;)

ij=1
= & |||k m(K)* .

Comme ¢ = L, on a ainsi montré que || f — g < 2 et
n n

[ [ @ oy v yyardy < L mky
GJG

En faisant varier n, on obtient une suite (%,), qui converge uniformément
~ . 2 » .
sur G. Par conséquent, la suite (||A,|;;) ~est bornée, disons par M. Donc

2
/ / FOLO) Gy drdy < tim LES g
GJG

n—r o0 n

(i1) = (1) PREMIER PAS (CONSTRUCTION GNS). Soit ’Hg I’espace de
Hilbert réel obtenu en séparant et complétant C.o(G) pour la forme bilinéaire

(flo),=- /G /Gf(X) gley) dxdpu(y) = —u(f" * 9).

Soit H,, I’espace de Hilbert affine obtenu en séparant et complétant C. ;(G)
pour I’écart

1f=glp=(f-glf-9),-

On voit que HZ est 'espace vectoriel sous-jacent a H,,.
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On peut définir une action affine de G sur H,, par (a(s) f) (x) = f(s~'x).
Sa partie linéaire est la représentation réguliere gauche de G dans ’H?,, I est
clair que o est isométrique. Pour montrer que « est une action affine, il reste
a voir que I'application G x H,, — H,, ; (s,f) — a(s)f est continue. Notons

qu’on peut se restreindre a la partie dense G x C. 1(G).

Soit ((si,/)), .; une suite généralisée dans G x C.1(G) qui converge vers
(5,/) € G x Cor(G). On a

[as)f — als) fil| < [[als)f — alsf]] + [[als:) f — als) fi]]
= |led(s)f — als) fIl + I1f = Jill -

On a bien str ||f—f|| — 0 quand i — oo et si on pose #; = s 's;,

lats)f = a@fI = llat)f — £
G

- _/G/ (F ") = f) (£ ) — f(xy) dedpa(y) -
G

Mais, lorsque i — oo, on a t; — e dans G, donc }f(tflxy) —f(xy)‘ — 0
uniformément sur les compacts de G x G, et donc ||a(s)f — a(s)f|| — 0.
Ainsi a(s;) f;i — a(s)f, ce qui montre que « est une action affine.

[— 00

DEUXIEME PAS (CONVERGENCE FAIBLE). Montrons qu’on peut trouver une
approximation de I’identité¢ qui converge faiblement vers un point 1 € H,,
c’est-a-dire

0

<f,'—n‘§>ﬂ—>0 pour tout £ € H, .

Soit W un voisinage compact de e. Posons
C = sup ess{|w(x)\ t X € W}.

Choisissons alors un voisinage V de e tel que V2 ¢ W et V = V7L,
Choisissons pour origine de I’espace de Hilbert H,, une fonction fy € C. 1(G)
prenant des valeurs positives et telle que supp fy C V. Considérons une
approximation de I’identité (f;);c; telle que supp f; C V pour tout i € /. La

suite généralisée (|| fi—fll /1,)1' est alors bornée, en effet
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I —follP = — /G /G i — O — o)) xy) dedy
e 3 B e _l
< /V /V i = @I =)0 [ dxdy

<c / / s+ ), + /o)) dedy
JV IV
=4C.

La derniere égalité a lieu car fG Je(x)dx =1 pour tout k € 1.

La suite généralisée (f; —fy); est donc contenue dans la boule de rayon
24/C de T’espace de Hilbert ’H?L. Comme cette boule est compacte pour
la topologie faible on peut extraire de (f —f)), une sous-suite généralisée
convergeant faiblement vers un élément ( € ’H% i.e.

<fi—fo—§i§>#—>0 pourtoutﬁeﬂg.

En notant n = fy + ¢ le translaté de f, par ¢ on obtient la convergence faible
de f; vers n.

TROISIEME PAS (CALCULS DE COCYCLES). Posons b;(s) = a(s)f; — f; pour
i€l et b(s) =als)y —n. On a b,b cZ(G,)\) o \ désigne la partie
linéaire de «.

Nous allons montrer que, a une constante additive pres, la fonction ¢ est
presque partout égale a la moitié du carré de la norme du cocycle (continu) b.

* Montrons que la suite généralisée (<b,-(s) — b(s) | §>u)i ¢ converge
vers O uniformément sur les compacts de G pour tout & € 7{2. (Ceci montre
en particulier que pour tout s € G on a b;(s) — b(s) faiblement.)

(2) (bi(s) = b(s) | €),, = () fi —fi = (alsn =) | €),,
a@)fi—an | &), ~(fi-n|€),
fi=n|AsHE), —(fi=n|€),

fimn | MshE-€),

e . N N

Fixons K un compact de G. L’ensemble L = {\(s Dé — € : s € K} est
compact dans 7—[2 pour la topologie normique. Comme on a montré au
deuxieéme pas que f, —n — O faiblement dans #° . le lemme suivant et (2)
concluent la preuve de notre assertion.
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LEMME 3. Soit ‘H un espace de Hilbert réel et (x;)ic; une suite généra-
lisée d’éléments de H telle que x; — O faiblement. Alors la suite généralisée
de fonctions

H—R; y+—><xi|y>

converge vers O uniformément sur les parties normiquement compactes de H.

La preuve de ce lemme est facile et laissée au lecteur.

* Montrons que, pour tout s € G, on a
3) (b(s) | by (5)), / (filsy) + fits™"y) = 2£i(») dp().
Pour g € C.0(G), on a

<mm\@M:—L[3mmﬁaM@mwwmmw>

/ Ji(x) g(xy) dx — / Sils™1x) glay) dx> dpu(y)
G G

Al
- /G ( /G (%) glxy) dx — /(, ﬁ(X)g(sw)dX> du(y)
Al

/fi(x“)g(x‘ly) Ax " dx
G
— / fix Y glsxy) A(x")dx> dpu(y)
G
:=/1«ﬁ**m00—(ﬁ**gxw)du0)
G

= / ((fi x DO = (fi ¥ 59 () dp(y) -
G

Comme la suite généralisée (f;); est une approximation de I’identité, en prenant
la limite pour i — oo, on obtient

(4) (b() | g),, = lim (bi(s) | g), /@@—mmmmw

pour tout s € G. Par conséquent, comme b;(s) € C.o((5) pour tous i € [ et
s € G, 1l vient:

(b | b)), /{awaMw ()i =) ()} dputy)

:/@wnﬂrM—%@me
G
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*  Considérons une fonction F € C.(G). On a
(5) /F(S)Hb(s)lllz, ds = /F(s).lim <b(s) | b,~(s)> ds
G ' G i—00 H
= lim /G F(s) (b(s) | b,-(s)>ﬂ ds.
Grace a (3), on a

(6) / F(s)(b(s) | bi(s)) , ds
G

= / F(s) / (filsy) + £iGs™1y) — 2£()) dp(y)ds
JG G

_ / ( / F(s)fi(sy) ds + / F(s).ﬁ(s_'y)ds> du@)
G G G

P / / F(s)fi(y) ds du(y)
GJG

_ / ((F* + )3) + (F +£))) du()
G

2 / F(s)ds / £0)du0).-
G G

La suite généralisée (f;); est une approximation de I’identité. Comme 1)
est bornée sur W, cela implique que la suite généralisée

( / fidpm); = ( f SO 0)dy),
& supp( ;)

est bornée. Quitte a passer a une sous-suite généralisée, on peut donc supposer
qu’elle converge, disons vers k € R. D’autre part, les suites (Fxf) et (F*xf;)
convergent uniformément sur tout compact vers F et F* respectivement. En
passant a la limite sous le signe intégral dans (6) et en comparant avec (5),
on obtient finalement

| Fo b ds = | 0+ F0) aut - 24( | Foyas.
5 G

Comme g est une mesure conditionnellement de type négatif, on a aussi

/F(s)||b(s)||i ds = Z/F(y)du(y) —2k( | F(s)ds).
G G

JG
Ainsi, pour toute fonction F € C.(G) on a

[ 2000y = [ FO(Ip6)I] +24) as.
G G



254 N. LOUVET, Y. STALDER ET A. VALETTE

Par conséquent,
1
) = SB[+ pp.

Comme le membre de droite est une fonction continue. il s’ensuit que 1 est
p.p. égale a une fonction continue. De plus, comme d’une part la fonction
s — ||b(s)||* est conditionnellement de type négatif, et que d’autre part les
constantes sont trivialement conditionnellement de type négatif, il s’ensuit que
1 est conditionnellement de type négatif.

4. LE CONE DES FONCTIONS CONDITIONNELLEMENT DE TYPE NEGATIF

Pour cette section, soit G un groupe localement compact, compactement
engendré par une partic Q (qu’on peut supposer voisinage du neutre et
symétrique). Le théoreme 3 serait une conséquence simple du théoreme de
Krein-Milman si le cone CL(G) était a base compacte. Ce n’est malheureuse-
ment pas le cas.

Les idées de notre preuve, a laquelle cette section est dévolue, proviennent
essentiellement de la section 3 de [VK84]. On commence par donner une idée
générale de la démonstration, avant les preuves des résultats partiels.

On considere d’abord un cone plus grand, le cone &(G) de toutes les
fonctions conditionnellement de type négatif et la partie

Co = {7,/) € CL(G) : (e) > 0 et / D(x) dx = 1}
Q2

otl dx désigne la mesure de Haar sur G telle que la mesure de Q* soit 1.
On remarque que C; est convexe. Par ailleurs, toutz fonction ¢ € CL(G)
non nulle possede un multiple positif dans Cy. Dans ce sens, la partie
Co N CL(G) est une base du cone CL(G).
On construit comme au lemme 3 de [VK84] une fonction majorant la
partic Cy. Plus précisément, on a

PROPOSITION 1. Il existe une fonction fy: G —~]1,4+oc] mesurable,
bornée sur les compacts de G et telle que Y(g) < folg) pour tous g € G,
Y € Cy.

On peut alors définir les espaces
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LiG) = {7: 6 > R: [ 17)f(o)]dg < +o0}:
G

h
L (G) = {h: G — R : sup ess F

- <+OO}.
0

Munis des normes

I/

?

o= [1F@A@Idg e, = supess| 7
G Jo
ces espaces sont isométriquement isomorphes a L'(G) et L>®(G) respective-
ment. La proposition 1 montre que Cy est inclus dans la boule unité fermée
de LJESO(G). Comme C; contient la base de CL(G) et la fonction constante
1, on a CL(G) C LX(G).
On peut munir L°(G) de la topologie faible-+ car c’est le dual de L} (G).
Plus précisément, on a un isomorphisme isométrique

T:LFX(G) — Li(G)*; hr— Ty
donné par:
(f) = /G g f(dg  (he LF(G), [feLyG).

L’intérét de la topologie faible-* pour nos travaux réside dans la proposition
suivante, donnée sans preuve dans [VK84].

PROPOSITION 2. La partie Cy est compacte pour la topologie faible-x.

L’étude de I’enveloppe convexe fermée des fonctions indécomposables
s’avere pour certains aspects plus facile avec la topologie faible-x qu’avec la
topologie de la convergence uniforme sur les compacts. On a

PROPOSITION 3. Toute fonction ¥ € Cy N CL(G) est dans [’enveloppe
convexe fermée (pour la topologie faible-+ ) des fonctions conditionnellement
de type négatif normalisées indécomposables.

Cette proposition sera démontrée a 1’aide du théoreme de Krein-Milman.
D’autre part Vershik et Karpushev ont démontré (voir [VK84], proposition 11):

PROPOSITION 4.  Sur Cy N CL(G), la topologie faible-x coincide avec la
topologie de la convergence uniforme sur les compacts.
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En admettant ces résultats, on peut maintenant démontrer le théoreme 3.
Les preuves des propositions seront données immédiatement apres.

Preuve du théoreme 3. Soit C le cone fermé (pour la topologie de la
convergence uniforme sur les compacts) engendré par les fonctions condi-
tionnellement de type négatif normalisées indécomposables. Comme le cone
CL(G) est clairement fermé pour cette topologie on a déja C C CL(G). Pour
montrer 'inclusion inverse, on prend v € CL(G). Quitte a remplacer ) par
AY (A > 0), on peut supposer que v € Cy N CL(G). Le résultat découle
immédiatement des propositions 3 et 4.  []

Preuve de la proposition 1 (en suivant la proposition 8 et le lemme 3 de
[VK84]). On commence par montrer que pour toute ¢ € CL(G) et pour tous
g,he G on a

(7) P(hg) + (g~ h) + 2(h) = Y(g).

Pour ce faire, considérons (H,mw,b) le triple GNS associé a ¥ et £ € ‘H
défini par:

¢ = b(g) — b(h) — b(h™").

Pour tous g,h € G, on a

1
(bg) | b)) = =3 (g™ ) — U(g) — (k)
et donc

0 < (€] &) =—v(g) + (™" +p(h) + (g~ "h) + Yhg) — Y(h*).

Comme (h™") = (h) et Y(h*) >0, il vient (7).

On va maintenant montrer que pour toute ¢y € Cy N CL(G), on a:

3+ sup,cp Al9)

m(Q)

3+ sup o Ag)
m(Q)

(8) Y(g) <

st g€ Q

9) wm<#( ) sige"\Q" ' (n>2).

Remarquons pour commencer que m(Q) > 0 car Q est un voisinage du neutre.
Pour obtenir (8), on integre 1’inégalité (7) sur Q:
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m(Q) (g) = / (g)dh
)
g/w@ww/ﬁ@%mmo/mmw
0] 0 )
—Ag [ wmydnt /

Qg~! g0

SC+A9) [ Pp(ydh=3+Ay).
Q2

M@M+2/¢MMh
0]

Donc
34+ SUp,co A(g)

m(Q)

Ensuite, (9) s’obtient a partir de (8) en utilisant la relation de cocycle sur b
et I'inégalité triangulaire.

P(g) <

On définit
Jo: G —]1,+o0[
par
34 sup,epAlg) |
i) = 1+ =S sigeQ
3 A
folg) = 1 +n2( ’ Sf{gf (g)> sige '\ Q" (n>2).

Remarquons que G = Un2 1 Q" ce qui implique que f) est bien définie. Il
est clair que fy est mesurable et bornée sur les compacts de G. Il reste a
montrer que ¥ (g) < fo(g) pour tous g € G, ) € Cp.

Pour ce faire, on écrit v = ¥y + 1¥(e) ou 1y € Cy N CL(G). Comme
0 <¥(e) <1, (8) et (9) impliquent exactement ce qu’on veut. []

Preuve de la proposition 2. Commengons par montrer que pour la topolo-
gie faible-x, Cp est fermé dans L°(G). Considérons une suite généralisée
(Y1)ier € Cyp qui converge vers une fonction v € L}(’)O(G) pour la topolo-
gie faible-x. Définissons les mesures p; et p par du(x) = ¥i(x)dx et
du(x) = ¥(x)dx. Les fonctions 1; sont conditionnellement de type négatif.
En particulier, elles sont continues, et donc essentiellement bornées sur les
compacts de G. Par le théoreme 2, les mesures p; sont conditionnellement

de type négatif. Comme C.(G) C L;(G), on a

/ F(9)dpug) —> /G f@)du(g)  pour f € CAG) ,
G
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car 1; — 1 au sens de la topologie faible-*. LLa mesure p est une mesure de
Radon conditionnellement de type négatif. Par conséquent, par le théoréme 2,
¥ est une fonction conditionnellement de type négatif. Par ailleurs, la conver-
gence faible-* 1; — ¢ implique que | 0 Y(x)dx = 1. Ainsi, ¥ € (.

Pour terminer, la boule unité fermée de LE°(G) est faible-* compacte et
contient Cy. Donc Cj est faible-* compacte. [

Afin de simplifier la preuve de la proposition 3, on commence par énoncer
un lemme qui décrit les points extrémaux de Cp.

LEMME 4. Les points extrémaux de Cy sont la fonction constante 1 et les
points extrémaux de CoNCL(G). De plus, les points extrémaux de CyNCL(G)
sont des fonctions indécomposables.

Preuve. Remarquons tout d’abord que toute fonction ¢ € (y vérifie
0 < ¢(e) <1 etque si e =1, alors ¢ est la fonction constante 1. On
commence par montrer la premiere assertion par double inclusion.

Soit 3 un point extrémal de Cy N CL(G). Si v = 1y + (1 — 1)), avec
t €10, 11, ¥1,¢y € Cy, alors 0 = Y(e) = rpi(e) + (1 — D) yYn(e). Comme
Yi(e) = 0, cela implique que ¥;(e) = 0 = Y»r(e), i.e. 1, € Co N CL(G).
Par hypothese, 1)) = 1 = 1¢),. On a montré que ¢ est un point extrémal dans
Co. D’autre part, écrivons 1 = iy + (1 — t)p» avec t €10, 1[, ¥, ¢n € Cy.
On a que ¥i(e) < 1 et Yy(e) < 1. Par conséquent Y1(e) =1 et yYn(e) =1,
d’ou ¥, =1 =1,. Donc 1 est un point extrémal dans Cy.

Pour montrer I’autre inclusion, considérons un point extrémal 1y dans Cj
et montrons que si 1 n’est pas normalisée, cela implique ¢ = 1. Supposons
donc 0 < 3(e) < 1. Il n’est pas possible que 0 < ¥(e) < 1, car on pourrait
écrire v = Y(e)- 1+ (1 — ¢(e)) (@’u -~ ¢(e)) (1 — w(e))*] . On constate que 1
et (’g’u - 7,/1(6)) (l — 111(6))_1 sont dans Cy et différentes de . Ceci contredit
le fait que % soit un point extrémal dans Cy. On doit donc avoir ¥(e) =1,
d’ou ¢ = 1.

Passons maintenant a la seconde assertion. Soit ¥ un point extrémal dans
Co N CL(G) et écrivons ¢ = 1y + (1 — ) avec t €10, 1[, ¥,y € CL(G).
On veut montrer que ¥; = My et ¥y = Ay avec A, Ay = 0.

Si ¥ =0 ou ¥, =0, c’est trivial. Dans le cas contraire, on peut poser

-1
Xi = (sz i(x) dx) i, de sorte que X1, x2 € Co N CIL(G) et:

Y= f( ¢1(X)dX> x1+{1 =0 (/ "lﬁz(X)dX) X2 -
Q2 QZ
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Or, par ailleurs:

r/ w1<x>dx+<1~t>/ wz<x>dx:/ P dx=1.
Jo? 2 0

Donc, on a écrit {» comme combinaison convexe d’éléments de Cy N CL(G).
Par hypothése, x| = ¢ = x2. On peut donc prendre \; = | o Yidx. [

Preuve de la proposition 3. Soit 1) € Cy N CL(G). La partie convexe Cy
est compacte pour la topologie faible-x. Par le théoreme de Krein-Milman
(théoreme 3.23 de [Rud91]) et le lemme 4, v est limite (au sens de la
topologie faible-*) d’une suite généralisée de combinaisons convexes

(Z pPyP + lt“)1>
Jjel

i=1
ol les 111,(’) sont des points extrémaux de Cy N CL(G). Il suffit pour conclure
de montrer que limje; u? = 0 car alors la suite généralisée

" /J('i)
/ j N j ]
) " APyP ot AV = —
JEl

i=1

est formée de combinaisons convexes de fonctions conditionnellement de type
négatif normalisées, indécomposables par le lemme 4, et converge vers .

Prenons donc & > 0 et montrons que pour j assez grand, on a uY < 4.
Soit V un voisinage compact de e tel que ¥(g) < g pour tout g € V. On
pose alors f = ﬁ Xv ou yy désigne la fonction caractéristique de V. Ainsi
feLi(G) et

1 4]
v =~ [ pemar< .

/G m(V) Jy 2

Par convergence faible-*, on obtient pour j assez grand

<6
G 2

/ () f(x) dx — (‘< | u%%?’)(x)ﬂﬂ’) f@)dx
T \i=1

et en combinant avec la précédente inégalité, il vient

/ (Z pP PP + u@) f)dx <.
G

i=1

Mais d’autre part, comme fG w,(/)(x)f(x) dx >0 et ff(x)dx = 1, on doit avoir

p? < / (Z u%@(x)w@) f(x)dx
G \i=1

d’otl on tire que ¥ < 6. [
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REMARQUE. La formule de Levy-Khinchin fournit une représentation inté-
grale des fonctions conditionnellement de type négatif sur la droite réelle. Dans
I’appendice 1 de [LiOs77], on trouvera une preuve de cete formule, également
basée sur le théoreme de Krein-Milman.

5. REPRESENTATIONS IRR]::DUCTIBLES ORTHOGONALES ET UNITAIRES
Le but de cette section est de démontrer

PROPOSITION 5.  Soit G un groupe topologique. Si H(G,7) =0 pour
toute représentation unitaire irréductible w du groupe G alors H'(G,0) =0
pour toute représentation orthogonale irréductible o du groupe G.

L’outil essentiel de la preuve de cette proposition est la proposition suivante
(voir [SV02]).

PROPOSITION 6. Si o est une représentation orthogonale irréductible du
groupe G alors la représentation complexifiée oc est somme directe d’au
plus deux représentations unitaires irréductibles.

Les lemme et corollaire qui suivent, également utiles a la preuve de la
proposition 5, sont classiques.

LEMME 5. Soient m et m deux représentations orthogonales (resp.
unitaires). On a un isomorphisme (bicontinu) d’espaces vectoriels topologiques

ZNG, m © ™) ~ ZN(G,m) & ZNG, ).
Cet isomorphisme fait correspondre
BYG,m @m) e  BYG,m)®BYG,m).
En particulier, on a les isomorphismes d’espaces vectoriels topologiques
HY(G,m ® m) ~ H'(G, 7)) © H(G,T>)

et
HY(G,m & m) ~ HY(G, 7)) ® H(G,T).



FONCTIONS CONDITIONNELLEMENT DE TYPE NEGATIF 261

Preuve. Notons P; la projection orthogonale de H., @® H,, sur Hp,
(i=1,2).
On vérifie aisément que les applications

Z\(G,m & m) — ZNG, 1) ®Z(G,m); b+ (P ob,P;yob)
et
ZNG, ) ® ZN (G, m) — ZNG, 1 &™) ; (b1, b)) — by @ by

sont inverses 1’'une de l'autre et fournissent les isomorphismes et la corres-
pondance annoncés.  []

COROLLAIRE 2. Soit o une représentation orthogonale et oc la repré-
sentation complexifiée. On a

H'(G,0) = {0}  si et seulement si  H'(G,o¢) = {0}

et
HY(G,0) = {0} si et seulement si HY(G,o¢) = {0}.

Preuve. Soit o une représentation orthogonale. La représentation com-
plexifiée oc, vue comme représentation orthogonale, s’écrit alors o¢c = o @0 .
Grace au lemme 5 on a alors

H'(G,0¢) = H'(G,0) ® H(G,0); H'(G,o¢) = H(G,0) ® H(G, o),
ce qui acheve la preuve. [

Preuve de la proposition 5. Soit o une représentation orthogonale ir-
réductible de G. Si la représentation complexifiée oc est irréductible, on a
ﬁ(G, oc) =0 et donc ﬁT(G, o) =0 par le corollaire 2. Si la représentation
complexifiée oc est réductible, elle s’écrit comme une somme directe

oc =01 P o

de deux représentations unitaires irréductibles o et o, (proposition 6) dont
la cohomologie réduite est nulle (par hypothese). Grace au lemme 5:

H'(G,0¢) = {0}
et on conclut a I’aide du corollaire 2 que

H'(G,0)={0}. O
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6. ANNULATION DE LA 1-COHOMOLOGIE REDUITE
Le résultat principal de cette section est le suivant.

PROPOSITION 7. Soit G un groupe localement compact et compactement
engendré. Si HY(G,7) =0 pour toute représentation orthogonale irréductible
w du groupe G alors ﬁT(G, p) = 0 pour toute représentation orthogonale p
du groupe G.

Cette proposition est ’analogue du théoreme 4 pour les représentations
orthogonales. La nécessité de transiter par les représentations orthogonales
s’explique par le dictionnaire entre représentations orthogonales et fonctions
conditionnellement de type négatif (cf. théoreme 1).

Preuve du théoreme 4. Elle se fait en trois pas.

PREMIER PAS. Si H'(G,7) = 0 pour toute représentation unitaire irré-
ductible 7 de G, alors H'(G,0) = 0 pour toute représentation orthogonale
irréductible o de G : c’est la proposition 5 de la secticn 5.

DEUXIEME PAS. Si H'(G,0) = 0 pour toute représentation orthogonale
irréductible o de G, alors H'(G, p) = 0 pour toute représentation orthogonale
p de G : c’est la proposition 7 ci-dessus.

TROISIEME PAS. Si H'(G,p) = 0 pour toute représentation orthogonale
irréductible p de G, alors H'(G,0) = 0 pour toute représentation unitaire 6
de G : ce pas est trivial, car toute représentation unitaire peut €tre vue comme
représentation orthogonale par restriction des scalaires de C a R, []

Si 7 est une représentation orthogonale de G et b = Z!'(G,7), en posant
a(g)v =m(g)v + b(g) pour g € G, v € H,

on définit une action affine de G sur H, de partie linéaire m. On vérifie
aisément que « possede un point fixe si et seulement si b € BN (G, 7).

DEFINITION 3. L’action affine o posséde presque des point fixes si pour
tout € > 0 et pour toute partie compacte K de G, il existe v € H, tel que
lla(g)v — v|| < € pour tout g € K.
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Nous dirons qu’une fonction conditionnellement de type négatif ) sur G
est associ€e a I'action affine « s’il existe v € H, tel que

P(g) = [|eg) v — vl

pour tout g € G. La caractérisation suivante des actions affines possédant
presque des points fixes est due a Y. Shalom (voir [Sha00], corollaire 6.6).

LEMME 6. Soit G un groupe localement compact engendré par un
voisinage Q de e, symétrique et compact. Soit o une action affine du groupe
G sur ’espace de Hilbert (réel) ‘H donnée par

ag)v =m(g)v+b(g).

Les propriétés suivantes sont équivalentes.
(1) L’action affine o posséde presque des points fixes ;
(i) b est presque un cobord (i.e. b € E(G, m));

(iii) foute fonction conditionnellement de type négatif normalisée ) sur G
de la forme ¥ (g) = ||a(g)€ — §||2 (€ € H) vérifie la condition

Ve>0
(x*) | 3neN*, Jay,...a, e R>p avec Y a;=1et Igy,...,9, € G
tels que Yg € Q on a

n

a;a; (w’(gflgg,-) - @b(gj_lgi)> <e;

ij=1
(iv) il existe v une fonction conditionnellement de type négatif normalisée sur
G de la forme Y (g) = ||a(g)§ — SH2 (& € H ) qui vérifie la condition (x).

PROPOSITION 8. L’ensemble des fonctions conditionnellement de type
négatif normalisées sur G qui vérifient la condition (x) est un cdne convexe
C fermé pour la topologie de la convergence uniforme sur les compacts.
Autrement dit,

(@) si A € Rxo et ¢ est une fonction conditionnellement de type négatif
normalisée sur G satisfaisant (x), alors M\ est une fonction de méme
ype;

(b) si 1 et v sont des fonctions conditionnellement de type négatif
normalisées sur G satisfaisant (x), alors 1) + 1, est une fonction de
méme type;
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(c) si (¢))ic; est une suite généralisée de fonctions conditionnellement de
type négatif normalisées sur G satisfaisant (x) et si 1 est une fonction

/

conditionnellement de type négatif normalisée sur G avec 1 ¥
i€

(uniformément sur les compacts de G), alors  sctisfait (x).

Preuve. (a) Evident.

(b) Ecrivons 1i(g) = ||ci(g) & — §,~||2 (i=1,2) avec «a; une action affine
sur un espace de Hilbert réel #H; et & € H;. Par la proposition 6, a; et as
ont presque des points fixes.

Considérons 1’action affine G sur ‘H; & H, donnée par

3o)msm) = (a9 m, ax(g)m)

Il est clair que 3 possede presque des points fixes.

Posons ¢ = 41 + 4. On a ¥(g) = || B(g)(&, &) — (€1, &)|° et donc le
lemme 6 implique que v vérifie ().

(c) Par contraposée, supposons que ¢ ne satisfait pas la condition (*) du
lemme 6; donc la fonction 1 satisfait la condition

de >0 tel que
(xx) | VneN* Vay,...a, € Rsg avec ) a;=1etVg,...,0.€G
il existe g € Q avec

n

Z a;a; (L/J(gj_]gg,-) - ¢(g,_lg,)> > € .

ij=I

Montrons alors qu’il existe i € I tel que ¢; satisfait (x%) pour 5.

Soit ay,...,a, € R>q avec Y>.a;=1c¢et gi,...,g9. € G. Choisissons un
g € Q dont I’existence est assurée par (xx).

Il suffit de montrer que

n
_ _ €
> aja (il 9g9) — vilgi 'gp) > >
jk=1
La réunion des gk_lgj et des g,:lggj oll j,k parcourent {1,...,n} est un
compact de G, qu’on note K. Sur K, v — v uniformément. Donc pour i
assez grand, on a pour tous j, k € {1,...,n}

V(g 99) — vilgy '99)| <

Al B|®

gy ' g) — wilar ' g)] <
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Ceci implique que

‘ > aja (vl ' 99) — vilgr'9)) — > aan(vigy ggp) — wlgp 1g,-))’

Jik=1 jk=1

‘ € & &
< Zajak(frg) =5
jk=1

Donc

> aa(bilgr  g9) — vilgr ' g)) > H

€
k=1 Z

Preuve de la proposition 7. Si E(G, o) = 0 pour toute représenta-
tion orthogonale irréductible o de G, par le lemme 6 (et le théoréeme 1)
toute fonction conditionnellement de type négatif normalisée indécomposable
satisfait la propri€té (x). Par le théoréme 3, le cone C de la proposition 8
est le cone CL(G) de toutes les fonctions conditionnellement de type négatif
normalisées sur G. Toutes les fonctions conditionnellement de type négatif
normalisées vérifient donc la condition (x). A nouveau par le lemme 6, cela
veut dire que toute action affine de G posséde presque des points fixes,
c’est-a-dire F(G, p) = 0 pour toute représentation orthogonale p de G. [

Ajouté sur épreuves. N. Monod nous a signalé le résultat suivant de S. Kakutani
et K. Kodaira (Ueber das Haarsche MaB in der lokal bikompakten Gruppe, Proc. Imp.
Acad. Japan 20 (1944), 444-450): '

Tout groupe localement compact, o-compact G contient un sous-groupe compact
normal K, tel que G/K,s est séparable.

Avec ce résultat, il est possible de donner une autre preuve du théoréme 4. Plus
précisément, on peut ramener comme suit le cas général au cas séparable, qui a été
trait€ par A. Guichardet, comme nous le signalons dans le texte. Soit donc G un
groupe localement compact, compactement engendré, tel que H'(G,7) = 0 pour toute
représentation unitaire irréductible 7 de G. Nous devons montrer que ﬁ(G, o)=20
pour toute représentation unitaire o de G. Par le lemme 6, il est équivalent de montrer
que toute action affine o de G sur un espace de Hilbert 7{ posseéde presque des points
fixes. Comme K, est compact, I’ensemble H“%") des points a(K,)-fixes est un sous-
espace affine fermé non vide, o(G)-invariant, sur lequel I’action de G factorise par le
groupe séparable G/K,. Par le cas séparable, ’action de G/K,s sur H** ) possede
presque des points fixes.

Nous remercions N. Monod de nous avoir indiqué la référcnce a Kakutani et
Kodaira.
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