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L'AIRE DES TRIANGLES IDÉAUX

EN GÉOMÉTRIE DE HILBERT

par B. Colbois, C. Vernicos*) et R Verovic

Résumé. L'objet de cet article est l'étude de l'aire des triangles idéaux pour la

géométrie de Hilbert d'un domaine convexe de R". Les résultats que nous obtenons
donnent d'une part une caractérisation de la géométrie hyperbolique dans l'ensemble des

géométries de Hilbert, et d'autre part une minoration optimale, indépendante du convexe,
de l'aire de Hilbert des triangles idéaux qui caractérise les domaines triangulaires du

plan. En outre, sous certaines conditions géométriques, nous établissons une majoration
de cette aire dont nous montrons qu'elle doit dépendre du convexe.

Introduction

Le concept de simplexe idéal joue un rôle important dans l'étude des

variétés riemanniennes à courbure négative. Par exemple, J. Barge et É. Ghys

obtiennent la caractérisation suivante de la géométrie hyperbolique plane

comme conséquence de leur résultat sur la cohomologie bornée (voir [BG88],

p. 511) :

THÉORÈME 1. Soit g une métrique riemannienne de courbure négative

ou nulle sur une surface S compacte, connexe et orientable. Si les triangles
idéaux du revêtement universel de S ont tous la même aire, alors (S, g) est

de courbure constante.

Signalons que pour une surface riemannienne complète et simplement

connexe à courbure négative ou nulle dont tous les triangles idéaux ont une

aire finie, on ne sait toujours pas s'il existe un analogue de ce résultat.

*) Partiellement financé par le projet européen ACR OFES numéro 00.0349 et la bourse
FNRS 20-65060.01
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Dans la première partie du présent travail, nous obtenons une caractérisation
de la géométrie hyperbolique parmi les géométries de Hilbert en terme d'aire
des triangles idéaux (voir le théorème 2 ci-dessous). Cette caractérisation peut
être considérée comme une généralisation du théorème précédent dans un
cadre quelque peu différent. Puis nous étudions les problèmes de minoration
et majoration de l'aire des triangles idéaux.

Avant d'énoncer précisément nos résultats, rappelons qu'une géométrie de

Hilbert (C,dc) est la donnée d'un ouvert non vide, convexe et borné C de Rn

— que nous appellerons domaine convexe — muni de la distance de Hilbert
de définie de la manière suivante : pour tous points distincts p et q dans C,
la droite passant par p et q rencontre le bord dC de C en deux points a et
b tels que p soit entre a et q et q soit entre p et b (figure 1). On définit
alors

dc(p,q) - ^ln[[a,p,q,b\,

où [a,p,q,b] est le birapport de (a,p,q,b), c'est-à-dire

r ;i \k~a\\ \\P~H
[a,p, q, b] ïï

4 x f -41 > 1

\\p-a\\ \\q — b\\

en désignant par ||-|| la norme euclidienne canonique sur Rw. On pose
également dc(p,p) 0 (voir [Hil71], appendice I).
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Remarquons tout de suite que si C et C sont deux domaines convexes de

R" tels que leurs images respectives C et Cf dans l'espace projectif PA2(R)

vérifient C — A(C), où A est une homographie de F(R) — donc conserve le

birapport de quatre points de F(R)—, alors les géométries de Hilbert (C,dc)
et (C, de) sont isométriques.

Dans toute géométrie de Hilbert (C\dc), le segment de droite reliant deux

points quelconques du convexe C est un segment géodésique pour de (au

sens de [BH99], p. 4) et (C,dc) est un espace métrique géodésique dont la

topologie est celle induite par la topologie canonique de W. Ceci dit, en

général, le segment reliant deux points n'est pas l'unique géodésique entre

ceux-ci, cette unicité étant néanmoins satisfaite lorsque le bord dC de C

est une hypersurface de classe C2 dans W dont la courbure de Gauss est

partout non nulle — on dira alors que C est un convexe strict. Notons enfin

que cette condition d'être un convexe strict n'est pas nécessaire pour avoir
unicité du segment géodésique — voir une discussion détaillée de ce point
dans [SM00], §1.2.2.

Par ailleurs, on peut mettre sur tout domaine convexe C C Rw une métrique
de Finsler C°, notée Fe en procédant comme suit : si p G C et v G TpC R"
avec v 0, la droite passant par p et dirigée par v coupe dC en deux points

Pc et pç ; on pose alors

Fc(p,v)=\IMHiï Cr-M + M
Cttt et 0) 0.

2 I

Cette métrique de Finsler est liée à la distance de Hilbert de par le fait que

d

dt

d
Fc(p,v)=—

et que

t=o

c« î

dcip,q)~inf<! / a G Q'(C ,P,<7)j >

OU

Ql(C,p,q) {a: [0,1] —> C | a de classe C1 avec cr(0) p et a( 1) q}

Grâce à cette métrique de Finsler, on construit une mesure borélienne pc
sur C (qui correspond en fait à la mesure de Hausdorff de l'espace métrique
(C,dc) — voir [BBI01], exemple 5.5.13) que nous allons expliciter.

Pour chaque p G C, soient Bc(p) {v G Rw | Fc(p,v) < 1} la boule
unité ouverte de TpC Rw pour la norme Fcip, •) et wn le volume euclidien
de la boule unité ouverte de l'espace euclidien canonique R". En considérant
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la fonction (densité) h\ C —> R donnée par h(p) — uun/ vol(#c(p)) »
où vol

est la mesure de Lebesgue canonique sur R", on définit pc — que nous

appellerons mesure de Hilbert sur C — par

tic(A) [ h(p)dwol(p)
Ja

pour tout borélien A de C.

Lorsque C est un ellipsoïde, (C,dc) correspond au modèle projectif (ou
modèle de Klein) de la géométrie hyperbolique, et on peut penser aux

géométries de Hilbert (C,dc) comme à une généralisation naturelle de l'espace

hyperbolique. Une question commune à de nombreux travaux récents (voir
[SM00], [SM02], [Ben03], [CV], [KN02] et leurs références) est de déterminer
les propriétés de l'espace hyperbolique dont héritent les géométries de Hilbert
et de trouver des caractérisations de l'espace hyperbolique parmi celles-ci.

Le premier résultat de cet article est l'obtention d'une telle caractérisation

grâce à l'aire de Hilbert des triangles idéaux. A cause de la non unicité des

géodésiques pour de entre deux points d'un domaine convexe C C R", un

triangle de (C,dc) ne peut être défini à l'aide des segments géodésiques de

de qui joignent ses sommets. C'est pourquoi nous convenons de définir tout
d'abord un triangle T — abc de Rn comme l'intérieur de l'enveloppe convexe
affine ouverte de trois points non alignés a,b,c G R". Un tel triangle sera

alors un triangle de (C,de) si ses sommets sont dans C et un triangle idéal

de (C,de) si ses sommets sont dans dC et s'il est inclus dans C.

Dans le cas d'un convexe strict, cela équivaut à la définition usuelle d'un

triangle idéal d'un espace métrique uniquement géodésique, en particulier de

l'espace hyperbolique Hw dans lequel il est connu que tous les triangles idéaux

sont isométriques avec une aire (hyperbolique) commune égale à tt En fait,
nous allons montrer que cette propriété de l'aire caractérise H" parmi les

géométries de Hilbert de R" :

THÉORÈME 2. Etant donné une géométrie de Hilbert (C,dc) avec C CR",
on a :

1. Tous les triangles idéaux de (C,de) sont d'aire constante si, et seulement

si, C est un ellipsoïde — auquel cas cette aire constante vaut ir.
2. Si C n'est pas un ellipsoïde, il existe des triangles idéaux de (C,dc)

d'aire strictement plus grande que ir et d'autres d'aire strictement plus petite

que 7r.
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Remarque. Ici, et dans toute la suite de ce travail, l'aire d'un triangle
(idéal ou non) de (C,dc) est son aire pour la mesure de Hilbert de (CDP, dcnp) >

où P est l'unique plan vectoriel de R" contenant le triangle.

La démonstration du théorème 2, donnée dans la première partie de cet

article, est simple et purement géométrique.
Dans la seconde partie, nous obtenons une minoration uniforme de l'aire

des triangles idéaux avec caractérisation du cas d'égalité:

THÉORÈME 3. Étant donné une géométrie de Hilbert (C,dc) avec C C R",
on a :

1. L'aire de tout triangle idéal de (C,dc) est au moins égale à 7r3/24.

2. Si n — 2 et s'il existe un triangle idéal de (C,dc) d'aire égal à 7r3/24,

alors C est un domaine triangulaire.

Remarquons que le cas d'égalité caractérise bien la géométrie de C, puisque
tous les domaines triangulaires du plan munis de leurs géométries de Hilbert
sont isométriques.

Enfin, dans la troisième partie, nous montrons que la recherche d'une

majoration de l'aire des triangles idéaux donne lieu à une situation différente

et plus contrastée. En effet, le corollaire 6.2 ci-dessous fournit des géométries
de Hilbert qui possèdent des triangles idéaux d'aire infinie, de sorte qu'il
est illusoire de chercher un majorant de l'aire des triangles idéaux commun
à toutes les géométries de Hilbert à l'instar du théorème 3. L'exemple 11

montre également que cette impossibilité persiste même en se restreignant à

l'ensemble des convexes stricts de Rn.

Cependant, lorsqu'on considère un convexe strict fixé C de Rn, nous

prouvons qu'il existe néanmoins un majorant (dépendant de C) de l'aire de

tous les triangles idéaux de (C, de) :

THÉORÈME 4. Soit C un convexe strict, i.e. un convexe de R" ayant

pour bord dC une hypersurface de classe C2 dont la courbure de Gauss est

partout non nulle. Alors il existe une constante a a(C) > 0 telle que tout
triangle idéal de (C,dc) a une aire au plus égale à a.
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1. Préliminaires

1.1 Quelques propriétés élémentaires

Nous débutons par une liste de faits simples et généraux dont nous ferons
abondamment usage.

PROPOSITION 5. Soient Q4, tfU) et (£>, dß) des géométries de Hilbert telles

que A C B C R'7. Alors :

1. Les métriques de Finsler FA et Fß vérifient Fß\p,v) ^ F^(p,v) pour
tous p G A et v G R" non nul, Légalité ayant lieu si, et seulement si,

Pa PB et PA PB (fiSure 2

2. Pour tous p,q G A, on a dß(p,q) ^ d^ip^q).
3. Pour tout p G A, on a vol (B^(p)) ^ vol (Bß(p)), avec égalité si, et

seulement si, A — B.
4. Pour tout borélien A de A, on a pß(A) ^ //^(.4), avec égalité si, et

seulement si, A B.

Démonstration. Il suffit de prouver l'assertion (1) qui implique toutes les

autres propriétés. Or, elle découle directement du fait que pour tous p G A
et v G R'\ î)/0, on a

\\P - Pa\\ ^ \\P - PB\\ et < >

l'égalité ayant lieu si, et seulement si, p~± p~^ et p\ p^

Grâce à cette proposition, on va pouvoir estimer la mesure de Hilbert d'un
domaine convexe du plan inclus dans un domaine carré ce dernier présentant

l'avantage d'être suffisamment simple pour permettre des calculs effectifs.

1.2 Estimation de l'aire par comparaison avec le domaine carré

L'estimation de l'aire de Hilbert d'un convexe de F? revient à estimer le
volume euclidien de la boule unité ouverte pour la métrique de Finsler en

chaque point du convexe. Lorsque le convexe est un carré, on obtient:

Proposition 6. Soit S le domaine carré {(v, y) G R2 \\x\ < 1 et \y\ < 1}.
Alors pour tout p — (x,y) G S, on a

2< 1 • *:')( I < vol (Bs{p))<4(1 - jOd " f),
où Bsip) est la boule unité ouverte de TpS R2 pour la norme Fs(p, •)•
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Figure 2

Comparaison des distances et mesures de Hilbert de deux domaines convexes emboîtés

Démonstration. Étant donné p G <S, la preuve consiste à vérifier que la
boule Bsip) est d'une part incluse dans un rectangle 1Z dont les côtés sont

parallèlles à ceux du carré S, et d'autre part contient un losange dont les

sommets sont les points de contact entre 7Z et Bsip).
Puisque S est symétrique par rapport aux axes de coordonnées, il suffit

de se restreindre à p e [0, l[x[0,1[.
• Soit v - (a,b) e R2 non nul tel que \a\ ^ |'(1 - x) et b ^ 0, de

sorte que la demi-droite p + R_u (resp. /? + R+u) coupe dS sur la droite
d'équation y — 1 (resp. y 1 en un point p$ (resp. Il résulte alors
du théorème de Thalès que

Ml
et

i + y l|p-Psll l~y \\p-ps\
d'où

Fs(p,v)\I— h
2 Vi + v i -i-V

,2ce qui donne l'implication v G Bsip) => b < 1 — y
Ainsi, Bsip) étant symétrique par rapport à 0, on a

Bs(p)n

et par suite

X R > C R x [—(1 — y (1 —
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Bsip) C R x [—(1 — y2), (1 — y2)]

puisque Bsip) est convexe.

De la même façon, on montre que

fisWcHl-Aa-^lxR.
Par conséquent, on obtient

Bsip)C[-(1 - x2), (1 - x2)] x [-(1 - (1 - y2)],

ce qui entraîne la deuxième inégalité de la proposition 6.

• On remarque par ailleurs que les points (1 —^,0) et (0,1 — y2) sont
dans l'adhérence de Bsip), qui est convexe et symétrique par rapport à 0,
d'où il résulte que l'enveloppe convexe des points (1 — v^O), (0,1 — y2),
—(1 — x2,0) et —(0,1 — y2) est dans Bsip). Comme le volume euclidien de

cette enveloppe convexe — qui est un losange — est égal à 2(1 — v2)(l — y2),

on en déduit la première inégalité de la proposition 6.

REMARQUE. A titre indicatif, on peut aisément voir que la boule Bsip)
est un octogone lorsque p n'est pas sur les diagonales de S, sinon Bsip) est

un hexagone si p ^ 0 et un carré si p — 0.

De cette estimation, nous pouvons alors tirer deux conséquences utiles

concernant l'aire de Hilbert des triangles idéaux.

COROLLAIRE 6.1. Soient C un domaine convexe du plan tel que dC

contient un segment ouvert ]a,b[ et p G C. Pour chaque t G ]0, 1[, notons

mait) (1 — t)p + ta et mbit) (1 — t)p-\-tb. Alors, pour 0 < s < t, si Ait, s)

désigne l'enveloppe convexe des points mait), mais), mbit) et mbis), on a

lim fie (Ait, 5)) +00 lorsque s est fixé.

Démonstration. Après transformation affine, on se ramène au cas où p 0

et C est inclus dans le carré S de la proposition 6 avec a (—x0,1) et

b ix0,1) pour un certain xo G ]0,1[ (figure 3).

Alors, pout tous s,t G ]0,1[ tels que s ^ t, le rectangle de sommets

mais) (—sxo,s)9 mbis) (wo, s), mait) - i~sxo,t) et mbit) isxo,t) est

inclus dans Ais,t), d'où il résulte que
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Figure 3

Cas d'un convexe dont le bord contient un segment

Mais, d'après la proposition 6, on a vol(#s(x,y)) ^ 4(1 - x2)^ - y2) pour
tout p(x, y) GS,ce qui entraîne que

-«»»HfAH/'A).
c'est-à-dire,

PsiMs, 0) ^ ^ x Argth(sxo) x [Argth(f) - Argth(j)]

Par conséquent, en fixant s, on obtient limps (A(s, 0) +oo.
t-> î v 7

Comme C C 5, on a finalement lim(A(.s, t)) +oo d'après la

proposition 5 (4).

COROLLAIRE 6.2. Soient C un domaine convexe du plan et u G dC tels

qu'il existe deux droites d'appui distinctes de C en uo.

Alors, pour tous points distincts p,q G C, on a ßcip^q) +oo, où puq
est le triangle de sommets p, q et u

Démonstration. On va montrer que tout triangle de C dont un sommet
est un «coin» de C peut être pensé comme une demi-bande affine ouverte
du plan.

Par transformation affine, on se ramène au cas où C est inclus dans le

carré S de la proposition 6 avec u (1,1) et les droites (up) et (coq)

symétriques l'une de l'autre dans la réflexion par rapport à la droite (Ocu) et
tel que po,qo C C, où po et qo sont respectivement les points d'intersection
de la droite d'équation x + y 1 avec (up) et (coq).

En notant e\ (1,0), ei (0,1) et ujq (1/2,1/2), il existe donc

t0 e ]0,1[ tel que p0 (1 - to)u0 + t0e\ et q0 (1 - t0)u0 + t0e2.
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Figure 4

Cas d'un convexe possédant un « coin »

Considérons alors A {(x,y) G R2 | x + y > 1 et y < x < 1} c S et le

C°° -difféomorphisme / : À —y x défini par

f(x,y) (X, F) (Argth(0, Argth(.)),

où t, s G |(). 1 [ sont tels que (x, y) (1 — s)[(l — t) uj0 -f- te\ ] + suo.

L'image par / du triangle ujo^Po C A est ainsi la bande ]0, Argth(/o)[xR^
dont on va montrer que l'aire euclidienne usuelle — qui est infinie — est

plus petite que l'aire de ouocopo pour la mesure de Hilbert ps •

Un calcul simple donne

y ~ x
t et s x + y — 1,

y + x - 2

ce qui entraîne que le jacobien de / en (x, y) G A vaut

Jac(/)(x, y) -1—— -. 2(x +y)(-x)(l- y,<

En vertu de la deuxième inégalité de la proposition 6 et du fait que

(1 + x)(l + y) ^ 3(x + y) pour tout (x, y) G A,

il en résulte que

f f dxdy 6
/ dZdF / — ^ - ps(w0wpo).

J]0,Argth(ïo)[xR^_ Ju>0cop0 2(x + y)(l x)(1 - y) 7T

D'autre part, puisque ps(^o^Po) ^ psiqo^Po) et que ps((qujp)\(qo^Po))
est finie — la partie (qujp)\(qoujpo) étant compacte —, on en déduit que
Ps(qup) +oo.

Enfin, comme C C S, la proposition 5 (4) achève; la preuve du corollaire

6.2.
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2. Caractérisation de la géométrie hyperbolique par
l'aire de Hilbert des triangles idéaux

En préliminaire à la démonstration du théorème 2, rappelons le théorème
suivant qui est un résultat classique de géométrie convexe que nous énonçons
en dimension deux et dont la preuve se trouve dans [Joh48] ou [Lev97],
Lecture 3, Theorem 3.1, p. 13-19.

THÉORÈME 7 (Ellipse de John). Soit C un domaine convexe du plan.
Il contient une unique ellipse ouverte d'aire euclidienne maximale, l'ellipse

de John de C, dont le bord a au moins trois points de contact avec dC.
Par dualité, C est aussi inclus dans une unique ellipse ouverte d'aire

euclidienne minimale dont le bord a au moins trois points de contact avec dC.

Nous allons maintenant donner la preuve du théorème 2 qui indique
comment l'aire de Hilbert des triangles idéaux permet de caractériser l'espace
hyperbolique W parmi toutes les géométries de Hilbert de Rn.

Démonstration du théorème 2. Commençons par faire la preuve lorsque
CcR2.

Figure 5

Ellipse de John

Si C est une ellipse, l'espace métrique (C,dc) est isométrique au modèle

projectif de Klein du plan hyperbolique (voir par exemple [BP92], p. 2) qui a

tous ses triangles idéaux d'aire égale à ir.
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Si C est n'est pas une ellipse, soit Si l'unique ellipse ouverte d'aire
euclidienne maximale incluse dans le convexe C — donnée par le théorème 7

et appelée ellipse de John de C. L'ellipse Si ayant au moins trois points de

contact avec dC, on peut considérer le triangle 7} dont les sommets sont ces

trois points (figure 5).

Pour la géométrie de Hilbert associée à l'ellipse de John SL, le triangle
Ti est idéal et d'aire égale à pst(Ti) ir. Par conséquent, comme Si est

strictement incluse dans C, on a pc{Ti) < tt en vertu de la proposition 5 (4).

D'autre part, considérons l'unique ellipse ouverte Se d'aire euclidienne
minimale contenant C (duale de Si). D'après le théorème 7, son bord possède

également au moins trois points en commun avec celui de C, ce qui définit

un triangle Te.

1. Si Te est un triangle idéal de (C, Je), alors pc(Te) > 7r puisque Se

contient strictement C.

2. Si Te n'est pas un triangle idéal de (C,Jc), alors l'un des côtés du

triangle Te est inclus dans dC, ce qui implique que l'on peut obtenir un

triangle idéal de (C,Jc) dont l'aire est arbitrairement grande en vertu du

corollaire 6.1.

Enfin, dans le cas où C C R", on fait ce qui précède dans chaque
intersection de C avec un plan vectoriel de Rn, sachant que C est un ellipsoïde
si, et seulement si, chacune de ces intersections est une ellipse.

3. Bornes sur l'aire des triangles idéaux en géométrie de Hilbert

Nous sommes à présent naturellement amenés à nous demander si l'aire
des triangles idéaux d'une géométrie de Hilbert est contrôlée.

3.1 DU CÔTÉ DE LA MINORATION

En ce qui concerne la minoration de l'aire des triangles idéaux, nous avons
le résultat global énoncé au théorème 3 qui est valable pour n'importe quel
domaine convexe de R". Pour démontrer ceci, on va étudier au préalable le

cas particulier où le domaine convexe est un triangle de R2.

Lemme 8. Soit À un domaine convexe triangulaire du plan. Alors tous

les triangles idéaux de (A, Ja) ont une aire au moins égale à 7t3/24 et seul,

à isométrie près, le triangle idéal de sommets les milieux des côtés de A a

une aire égale à ce minimum.
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Ce lemme étant assez technique, nous ne donnerons que les étapes de sa

preuve, renvoyant à l'annexe A.l pour les détails. Mais auparavant, montrons
comment ce lemme implique le théorème 3.

Démonstration du théorème 3 à l'aide du lemme 8. Considérons d'abord
le cas où C C R2.

Soient T — abc un triangle idéal de (C,dc) et Da, Db, Dc des droites

d'appui du convexe C en a, b et c respectivement.

D'un point de vue projectif, il s'agit d'une même et unique situation.

Cependant, d'un point de vue affine — celui que nous avons suivi jusqu'ici —,
trois cas se présentent:

1. Si Da, Db et Dc définissent un domaine convexe triangulaire À qui
contient C, alors on obtient le point (i) du théorème 3 en appliquant la

proposition 5 (4) (avec A — C et B — A) et le lemme 8. En outre, si
C est strictement inclus dans A, alors nc(T) > (T) ^ 7r3/24 d'après la

proposition 5, d'où ßc(T) > 7r3/24, ce qui donne le point (ii) du théorème 3

en contraposant.

2. Si Da et Db sont parallèles, on plonge le plan affine contenant le

convexe C dans son complété projectif (voir par exemple [Ber77], §5.1)
identifié naturellement à P2(R), dans lequel les deux droites Da et Db se

coupent. En considérant alors une droite D qui est l'image par le plongement
d'une parallèle à Dc contenue dans le demi-plan déterminé par Dc et ne

contenant pas C, on est ramené au point (i) dans le nouveau plan affine

P2(R)\D.
3. Si Da, Db et Dc définissent un domaine convexe triangulaire qui

ne contient pas C, on peut supposer que le triangle en question est dans

le demi-plan déterminé par Da et ne contenant pas C. Dans ce cas, on
plonge le plan affine contenant C dans P2(R). En considérant alors une
droite D image par le plongement d'une droite parallèle à Da contenue
dans le demi-plan déterminé par Da, ne contenant pas C et qui rencontre le
domaine triangulaire, on est ramené au point (i) dans le nouveau plan affine
P2(R)\D.

Enfin, dans le cas où C C R", on applique ce qui précède à chaque
intersection de C avec un plan vectoriel de Rn.

Démonstration du lemme 8. Partant d'un domaine triangulaire À mpq C
R2 et d'un triangle idéal T abc de (À, JA), la preuve va se faire en trois
étapes.
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Étape 1 : Elle se résume au lemme suivant, dont la preuve est en

annexe A.l.

Lemme 9. Soit Ao le domaine triangulaire de sommets 0, e\ et e2, où

(^1,^2) est la base canonique de R2. Pour chaque a G 10, 1/2], notons T(a)
le triangle idéal de (Ao, Ja0) dont les sommets sont

a(a) — (a, 1 — a), b(a) (0,1 — a) et c(a) (<r, 0).

Alors il existe a G ]0, 1/2] et une transformation affine de R2 qui envoie

simultanément le domaine A sur le domaine Ao et le triangle idéal T de

(A, Ja) sur le triangle idéal T{a) de (Ao, Ja0)-

Étape 2 : Sachant que pour chaque p — (v, y) G Ao, la boule unité ouverte

Baq(p) de TpAo R2 pour la norme FA0(p, •) est un hexagone décrit dans

[dlH93], p. 106-107, le calcul de la mesure de Hilbert /iAo (que nous ne

détaillerons pas) nous donne

71- dvdy
àpA0(p) ttX —12 xy(\-x-y)

L'application A: ]0,1/2] —» R déûnie par A(a) Pan(T(a)) est strictement

décroissante de sorte que son minimum est atteint en a 1/2 seulement, ce

qui correspond au triangle idéal T( 1/2) de (A0, Ja0) c^ont les sommets sont

les milieux des côtés de Ao — voir les calculs dans l'annexe A.2.

Étape 3: Montrons que l'aire de Hilbert de 7X1/2) est égale à 7t3/24.

D'après l'annexe A.2, cela revient à calculer

„ é ln(l -*) „ ln(l JT(0) ——2 I dv + 2 / dx
J0 x J0 x

puisque ^4(1/2)

Pour déterminer le premier terme, on développe en série entière par rapport
à £ G ]0,1[ la quantité

* 1 —£-r*Krb)
/ 0

+00

r Ik
k=l

-I

t-
k= 1
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En faisant £ —> 0, le théorème de convergence dominée de Lebesgue nous

permet alors d'obtenir 7i(0) 7r2/6.

Pour évaluer le second terme de .7(0), on introduit la fonction

fl~£ âx
?2{e)= / — ln(l + x)

Jo x

définie pour eG]0,l[ et qui, également à l'aide d'un développement en série

entière, fournit
+°° / i \kw -Eir-*=1

En remarquant alors que 7i(0) — 7*2(0) 2^(0), on obtient 7*2(0) tt2/ 12

et par suite .7(0) 27) (0) + 27*2(0) 7r2/2. Finalement, l'aire de Hilbert de

7(1/2) vaut .4(1/2) ~ x y ~

3.2 Du CÔTÉ DE LA MAJORATION

Pour ce qui est de la majoration de l'aire des triangles idéaux, remarquons
tout d'abord qu'il existe des géométries de Hilbert planes dans lesquelles on

peut trouver des triangles idéaux d'aire aussi grande que l'on veut, et même

d'aire infinie, comme le montrent les corollaires 6.1 et 6.2 de la première

partie.

Néanmoins, avec quelques hypothèses de régularité, on évite les triangles
idéaux d'aire infinie:

PROPOSITION 10. Soit C un domaine convexe de R" dont le bord est une

hypersurface de classe C2. Alors tout triangle idéal de (C, de) a une aire

finie.

Démonstration. Considérons d'abord le cas où C C R2.

Soit T abc un triangle idéal de (C,dc) dont on oriente les sommets
dans le sens trigonométrique. Comme dC est de classe C2, il existe r > 0

et des disques ouverts euclidiens D(a), D{b) et D(c) de rayon r tangents au

bord de C en a, b et c respectivement et inclus dans C. En considérant le

sommet a, désignons par a' et a" les points d'intersection du bord de D(a)
avec les segments ]a, b[ et ]a,c[ respectivement. Ainsi le triangle ada" a

ses sommets orientés dans le sens trigonométrique et a dD(a) pour cercle

euclidien circonscrit. En procédant de même avec les sommets b et c, on
obtient les triangles bb'bn et cc'c".
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C

Figure 6

L'aire des triangles idéaux est finie dès que dC est C2

L'adhérence du complémentaire de la réunion des triangles aa'a", bb'b"
et cdc" dans T abc est alors un compact inclus dans C, donc d'aire de

Hilbert finie. En outre, comme ada" est un triangle idéal de (D(a), dD^a)), on
a iiD{a)(ada") tt (géométrie hyperbolique plane) et par suite (iciada") ^ n
en vertu de la proposition 5 (4). Comme il en est de même avec bb'b" et

cc'c", la proposition 10 en découle lorsque CcR2.
Dans le cas où C C R" on fait ce qui précède dans chaque intersection

de C avec un plan vectoriel de R".

Comme on l'a déjà vu au corollaire 6.1, dès qu'un domaine convexe C

du plan a un bord — même de classe C2 — qui contient un segment ouvert,
alors l'aire des triangles idéaux de (C,dc) peut être arbitrairement grande. En
revanche, lorsque C est un convexe strict, le théorème 4 affirme que ceci ne

peut pas se produire.

Avant d'en donner la preuve, notons cependant que la constante a(C)
figurant dans ce théorème n'admet pas de majoration uniforme en C, même

dans l'ensemble des convexes stricts du plan, comme le montre l'exemple
suivant.

Exemple 11. Considérons le carré S — {(v,y) G R2 | \x\ < 1 et |y| < 1}
ainsi que son homothétique tS avec t G] 1/2,1[ arbitraire. Si C est un
convexe du plan tel que tS C C C S, désignons par ac, bc et ce les points
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d'intersection de dC avec les segments fermés joignant 0 à a — (—1,1),
b 1,1) et c — (0, —1) respectivement (figure 7).

Alors Te acbccc est un triangle idéal de C qui contient la partie

A(\/2,/) définie au corollaire 6.1 avec p 0 et s 1/2. Le même

corollaire affirmant que lim^i ps (A( 1/2, t)) +oo, il en résulte que

lim^i ßc (^(0) +og ^ par suite, pour tout entier n > 0, il existe t G ]0,1[
tel que tout domaine convexe C du plan avec tS C C C S (qu'il soit strict

ou pas) vérifie ßs(Tc) > n.

Afin de démontrer le théorème 4, pour lequel on se ramène au cas où

CcR2 par intersection avec des plans vectoriels de W, nous allons utiliser
la distance euclidienne canonique d sur R2 et écrire C comme la réunion
du compact K§ {p E C \ d(p,dC) ^ Ù} — où la constante Ô 6(C) > 0

sera précisée ultérieurement — et de son complémentaire Vs C \ K$. Pour

majorer l'aire d'un triangle idéal quelconque T de (C^dc), il suffira alors de

majorer l'aire de la partie du triangle T hors du compact K$, c'est-à-dire

TnVô. Pour cela, nous allons inclure T H V§ dans la réunion d'un certain
nombre N — N(C) > 0 de triangles, chacun d'eux étant contenu dans un
disque ouvert inclus dans C.

La proposition 5 (4) permet alors de majorer l'aire de T D V$ par Ntt en

comparaison avec la géométrie du plan hyperbolique (qui est, rappelons-le,

c

Figure 7

L'aire des triangles idéaux ne peut être majorée uniformément en C



220 B. COLBOIS, C. VERNICOS ET P. VEROVIC

la géométrie de Hilbert d'un disque ouvert). Finalement, on aura pc(T) ^
Nn + ßc(Ks).

La preuve de ce résultat reposera sur plusieurs lemmes techniques
démontrés dans l'annexe B.

Tout d'abord, le fait que C soit un convexe strict assure l'existence de

deux constantes r > 0 et R > 0 telles que le cercle de rayon 2r roule à

l'intérieur de C et que dC roule à l'intérieur du discue fermé de rayon R

(voir [Blal6] et [CV], p. 3). Cela va nous permettre de ramener une partie de

la preuve du théorème 4 à des considérations sur les cordes de deux cercles

euclidiens emboîtés et tangents données au lemme B.l.
Puis, à l'aide du lemme 12 ci-dessous, on étudiera les cordes de dC

(c'est-à-dire les segments fermés reliant deux points distincts de dC) en les

comparant aux cordes des cercles euclidiens de rayon r (resp. R) tangents
intérieurement (resp. extérieurement) à C. Lors de la preuve du théorème 4,

ces cordes seront les côtés des triangles idéaux de (C,dc) et la constante
S ô(C) ne dépendra que de r et R.

Dans la suite, pour tous t > 0 et uj G dC, on désignera par T£w) le
cercle de rayon t tangent à dC en lu et inclus dans le demi-plan fermé de
R2 contenant co dans son bord et dans lequel se trouve C. Aussi, le disque
ouvert correspondant sera noté Dt(u).

Lemme 12. Soit C un convexe strict du plan. Pour tous points distincts

a et b de dC, on a :

1. Il existe un unique point d'intersection d entre ]a,b[ et Tr(a).
2. La distance euclidienne de a' au bord de C est minorée en fonction

de d(a,b), r et R uniquement:

Les preuves de ce lemme et du lemme B.l qui l'implique, seront données

dans l'annexe B, tout comme le résultat suivant, qui fournit la clé du

théorème 4:

Lemme 13. Soient C un convexe strict du plan ainsi que a et b deux

points distincts de dC tels que d(a,b) f r. Alors, l'unique rectangle ouvert
S(a, b) de base le segment ]#, b[ et de hauteur r inclus dans C vérifie

d(a dC) 5? -p-y d{a, b)2
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3

A partir de maintenant, posons (5 ^ et introduisons

Vô {peC | dip, dC) < 5}

dont le complémentaire Ks C\V$ est compact, donc d'aire pc(Ks) finie.

Quitte à diminuer r et/ou augmenter R, on peut supposer que S est

suffisamment petit pour que Ks soit convexe en utilisant l'exponentielle
normale de la sous-variété dC de R2 muni de sa métrique riemannienne

canonique (voir [CV], p. 5)

c

Figure 8

Premier cas

Démonstration du théorème 4. Soit T abc un triangle idéal de (C,dc)
dont on oriente les sommets dans le sens trigonométrique. On va traiter trois
cas selon que la longueur euclidienne des côtés du triangle T est ou non
inférieure à r.

CAS 1 : d(a,b) ^ r, d(b,c) ^ r et d{a,c) ^ r (figure 8).

En considérant le sommet a, désignons par a! et a" les points
d'intersection du cercle Tr(a) avec les segments ]a, b[ et ]<a, c[ respectivement.
Ainsi le triangle aa'a" a ses sommets orientés dans le sens trigonométrique
et a Tr{a) pour cercle euclidien circonscrit. En procédant de même avec les

sommets b et c, on obtient les triangles bb'b" et cc'c".
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D'après le lemme 12 (ii), on a ici d(a',dC) ^ 8 et d(a",dC) ^ 5, d'où
a', a" G ^ et par suite [a!, a"] C ^ puisque K§ est convexe. De même, on
a [b',b"] C Ks et [c/,c//] C^.

Cela entraîne que T n est contenu dans la réunion des triangles ada",
bb'b" et cc'c", chacun d'eux étant d'aire majoré par 7r en comparaison avec
la géométrie hyperbolique associée aux disques ouverts Dr(a), Dr(b) et Dr(c).
On en déduit donc que pc(T) ^ 37r + fie (Ks).

CAS 2: d(a,b) ^ r et d(b,c) d r.
Soit m le projeté orthogonal du point b sur la droite (ac). Rappelons

que S(a,b) désigne le rectangle de base [a,b\ et de hauteur r donné par le

lemme 13.

• Supposons que m appartienne au segment [a, c] (figure 9).

SilKc)

Figure 9

Cas m G [a, c]

Puisque le triangle est rectangle en m, on a d(m,b) d d(a,b).
Si p est le projeté orthogonal de m sur la droite (a,b), on a de même

d(m,p) d d(m^b) et par suite d(m,p) d d(a,b) d r. Comme en outre

p G [a,b], il en résulte que m appartient au rectangle fermé S(a,b). Le
même raisonnement avec le triangle bem montre que m appartient également

au rectangle fermé S(b, c), ce qui entraîne que les triangles abm et bem sont

inclus respectivement dans les convexes S(a, b) et S(b, c). Or abm U bem abc

puisque m G [a,c], d'où T — abc C S(a,b) U S(b,cj. On en déduit ainsi

que pc(T) d pc(S(a, b)) + pc(S(b, c)) et par conséquent pc(T) d
d'après le lemme 13.
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• Supposons que a appartienne au segment [m, c] (figure 10).

c

de

Figure 10

Cas a G [m, c]

Alors J(a, c) ^ d(ra, c), ce qui avec J(m, c) ^ d(b, c) (le triangle bcm

étant rectangle en m) conduit à d(a1 c) ^ d(b,c) ^ r. En outre, on a ici que,
en notant â l'angle au sommet a du triangle abc, à ^ 7r/2 et par suite le

projeté orthogonal de a sur la droite (bc) est dans le segment [Z?, c], ce qui

permet de conclure comme dans le point précédent.

• Supposons que c appartienne au segment [a,m].
On applique alors le point précédent en échangeant les rôles de û et c.

CAS 3: d(a,b) ^ r, d(b,c) ^ r et d(a,c) ^ r.
C'est la situation la plus délicate à traiter. Tout comme dans le premier

cas, désignons par c' et c" les points d'intersection du cercle Tr(c) avec les

segments ]a, c[ et ]Z?, c[ respectivement. Dans ce qui suit, â et b sont les

angles en a et b du triangle abc.

• Supposons â ^ tt/2 et b ^ tt/2 (figure 11).

Soient p et q les sommets du rectangle S(a,b) autres que a et b tels

que p — q — a — b. D'après le lemme B.2, la distance euclidienne de p au

centre du cercle Tr(a) est inférieure ou égale à (3/4)r, ce qui montre que
d(p:Tr(a)) ^ rf4, d'où d{p,dC) ^ r/4 puisque p G Dr(a) C C (et donc

d{p, dC) ^ dip, Tr(a))). De même, en considérant Tr(p), on a d(q, dC) ^ r/4.
De r/4 ^ S, on déduit alors que p et q sont dans le convexe Ks et par suite

[p, q] C Kô.
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Par ailleurs, comme â ^ tt/2 (resp. b ^ 7t/2), la droite (ac) (resp. (be))

coupe le segment [p,q] (parallèle à (ab) qui n'est parallèle ni à (ac), ni à

(bc)) en un unique point ma (resp. mb). On a donc l'adhérence de T abc qui
est incluse dans la réunion de l'adhérence du triangle cc'c" et des enveloppes

convexes de {a,b,ma,mb} et {ma, c', c"}.

Figure 11

Cas â ^ 7r/2 et b it/2

Comme d'une part ma)mb G Ks et c' ,c" G Ks (même raison que dans le

premier cas), l'enveloppe convexe de {raa, m/,, c7, c"} est dans Ks et puisque
d'autre part a,appartiennent au rectangle fermé S(a,b) qui est

convexe, l'enveloppe convexe de {a,b,ma,mb} est dans S(a,b).
Il en résulte que

ßciT) ne(s(a, b))+ hc(Ks) +
et par conséquent

HC(T)< TT(l\E(~-)+ l) +

en vertu du lemme 13.

• Supposons â > 7t/2 (figure 12; le cas b > 7t/2 se traite de façon
similaire).

Introduisons comme précédemment les points p, q et ms (puisque
b ^ 7r/2) et soit en outre d' le point d'intersection du cercle Tr(a) avec le

segment ]a,c[.
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Figure 12

Cas où à > 7t/2

Sachant que d(a,c) ^ r, on a d(a",dC) ^ S d'après le lemme B.l (ii),
d'où a" G K§. D'autre part, en raisonnant comme au point précédent, on a

p,mbld,c" G Ks et a,b,p,mb G S(a,b). Par suite, l'enveloppe convexe de

{p,rrib,cf, c"} et le triangle pa"c' sont inclus dans Ks alors que l'enveloppe
convexe de {a,b,p,mb} est dans le rectangle fermé S(a, b).

Enfin, la convexité de Dr(a) et le fait que a,a" ,p G Dr(a) assurent que
le triangle aa"p est inclus dans Dr(a).

Puisque l'adhérence de T abc est contenue dans la réunion des

adhérences des triangles pa"c', aa"p et cdc" ainsi que des enveloppes
convexes de {/?, mb) d, c"} et {a, b,p, mb}, il s'ensuit que

Pc(T) ^ ßc (S(a, b)) + pc(Ks) + nc(aa"p) + ßc(cdc"),

d'où

MU «S + l) + Mc(^)

d'après le lemme 13.
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Questions ouvertes concernant les majorants. Pour conclure le

présent travail, tentons de donner les hypothèses les plus faibles que l'on doit

imposer à un domaine convexe donné C du plan pour espérer obtenir une

majoration de l'aire des triangles idéaux de (C, Je).
1. D'après le corollaire 6.1, il ne peut y avoir de segment ouvert dans le

bord dC, ce qui se traduit par le fait que C doit être affinement strictement

convexe, autrement dit que tout segment de droite ouvert entre deux points de

dC est contenu dans C.

2. D'après le corollaire 6.2, il ne peut y avoir de « coin » dans C, c'est-
à-dire de point de dC en lequel C admet deux droites d'appui distinctes. Du

point de vu analytique, ceci signifie que le bord dC doit être localement le

graphe d'une fonction convexe partout dérivable. Mais avec l'hypothèse de

convexité, cela implique que le bord de C est une courbe de classe C1 (voir
[Bou76], 1.32, §4). Ainsi, on peut se concentrer sur un domaine C affinement
strictement convexe dont le bord est C1.

3. A la proposition 10, nous avons cependant eu besoin d'avoir dC de

classe C2 pour montrer que l'aire des triangles idéaux de (C, Je) est finie, et

d'ajouter l'hypothèse que la courbure de dC n'est jamais nulle pour exhiber

un majorant de cette aire.

Ainsi, lorsque C est affinement strictement convexe avec un bord de classe

C1 sans être C2, la finitude de l'aire des triangles idéaux de (C, Je) reste un

problème ouvert. Tout comme l'est la question de savoir s'il existe un majorant
de l'aire de ces triangles lorsque C est affinement strictement convexe avec

un bord de classe C2 dont la courbure s'annule en certains points.

Annexe A. Les domaines triangulaires

Rappelons que l'on s'est donné un domaine triangulaire A mpq C R2 et

un triangle idéal T — abc de (À, Ja). Il existe donc À,//, v G ]0,1[ tels que

a (1 - \)m + Xp b (1 - p)p + M et c — (1 - v)q + vm

On considère par ailleurs le domaine triangulaire Aq de R2 C R3 dont les

sommets sont 0 (0,0,0), e\ — (1,0,0) et e2 (0,1,0) et le triangle idéal

T(a) de (Ào, Ja0) ayant pour sommets a(a) (a, 1—a,0), b(a) (0,1 —a,0)
et c(a) (ce, 0,0).
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A.l Preuve du lemme 9

Introduisons d'abord /: R2 -A R3 l'application affine injective qui envoie
les points m, p et q sur e\, C2 et e3 (0,0,1) respectivement. En notant

a7 (1 — X)e\ + Àé?2 b' (1 — /i)^2 + /i^3 et c7 (1 — u)c3 + uci

le triangle T <27Z/c7 est alors l'image de T par / et a ses sommets sur les

côtés du triangle À7 =/(À).
Considérons ensuite les points

a" — a{ue\) + (1 — a)(ve2),

b" (1 — a)(ve2) + a(îu^3),
c77 (1 — g)(ic^3) + o:(m^i)

V" ]0,1[,(I - A)(l //)( I - /') A///'

(1-A)(1-M) /n ^
A^

—v—et w=(i-Axi-,r^°-
Remarquons que, quitte à remplacer À par 1 — À, fi par 1 — \i et z/ par
1 — v, on peut supposer a G ]0,1/2]. On vérifie sans peine que a" est sur la
droite (0a7), b77 sur la droite (Ob') et c" sur la droite (Oc7), de sorte qu'en
désignant par 7r: R3 P2(R) la projection canonique, on obtient

(1) <T') <k(T")

ainsi que

(2) 7T(A7) 7T(A7/)

où T" a!'b"c" et A" est le triangle de sommets ue1, CC2 et we3.

Enfin, si L est l'application linéaire surjective de R3 sur R2 qui envoie

respectivement ue 1, CC2 et we^ sur e\, e2 et 0, alors L(A77) Ao et

L(T") T(a).
Comme les applications / et L sont affines et qu'on a les égalités (1)

et (2), il en résulte que les géométries de Hilbert (A,dA) et (A0,<7a0) sont

isométriques avec correspondance entre les triangles idéaux T et T(a).
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e2

Figure 13

Triangle idéal T(a) pour le domaine triangulaire Aq

A.2 L'aire des triangles idéaux pour un domaine triangulaire
L'aire du triangle idéal T(a) vaut

AqO
7r fa fx a dxdyi'CX. Pi

J0 Al-12 Jo -Hl - -x-y)
et se décompose comme suit:

dxdv

/ 0 J(\-a){\~x/a)^(a)=/7 (I+ -_!_)io i(l-a)(l-x/a)Vy 1 -x-y/x(l -x)

"2jf

Le calcul de l'intégrale (3) donne

ln(l — x/a) fa\n(l—x/a) faln(l—x/a)r „-»/o)dr r in(i-x/o)dt+ ma
J0 v(l-x) Jo X Jo 1 -

On pose u x/a Intégration par parties

/•'ü^d»-r-(1+^)d(
Jo w 2o « - *

S ^

On pose vr 1 — O!

1

« =r«Lj2d,./
JO M 2o

-« ln(l + u)
du.

u



L'AIRE DES TRIANGLES IDÉAUX EN GÉOMÉTRIE DE HILBERT 229

Par ailleurs, l'intégrale (4) s'écrit

r ln(^x+l) /•« ln(Ui^x+l) ln(-L2«x+1)
/ ~^ï ~^dx/ —* -dx+ / —

J0 x(l-x) Jo X y0 1-x dr

On pose u (x Intégration par parties

I

-dxf^m±jodu+ rH' + f),
Jo u 1 + ~^x

(6)

On pose v

n"in(i + %u+i^ Ai^i±u_dw
Jo u

dM+ « J0 1-I^A
On utilise alors dans (5) et (6) la nouvelle variable t qui parcourt
[0, +oo[ lorsque a décrit ]0,1/2]. En posant T{t) on obtient
ainsi

(7) T(t)--2 / —— —du+ 2 /
l+' ln(l + "}d/'-2[W^>éu+2r

Jou Jo V

fl ln(l ~\-u) [i\+ ln(l + é)
/ du + t — dv

Jo u Jo l-tv
Enfin, le changement de variable w — dans la dernière intégrale de

(7) conduit à

W -2/"Û^d„ + 2L!ï<l±^<i„I"lnÇl -
Jo u Jo

/An(l + u) M ln(l — w) / 1 + A
+ J du + j — du; + In ^—-—Jln(l+/).

La fonction T se dérive sans trop de difficultés et, après simplifications,
on obtient finalement

^-TTÎh(ôW^)>0-
On en déduit donc que T est strictement croissante sur [0, +oo[ et par

suite son minimum est atteint en t 0 seulement. Autrement dit, l'application
A: ]0,1/2] —» R est strictement décroissante et atteint son minimum en le
seul point a - 1/2.
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Annexe B. Lemmes techniques du théorème 4

Lemme B.l. Étant donné des réels 0 < g < g', soient et Y^
les cercles euclidiens de R2 passant par Vorigine et de centres respectifs

c (0, q) et c' (0, g'). Pour chaque point m du segment [0,c] et pour
chaque vecteur non nul v G R2, on note p (resp. p') le point d'intersection
de la demi-droite fermée m + R_u avec Yß (resp. YQ/ et q (resp. q') le

point d'intersection de la demi-droite fermée m + R+u avec Yß (resp. Yô>

On a alors

En outre, lorsque m — 0 (et donc p p' — 0 on a

\

•c' 1

Q c

\

0 x

Figure 14

Lemme B.l

Démonstration du lemme B.l. Lorsque p — q, la droite ra + Ru est égale

à R x {0}, ce qui entraîne que p' — q' et par suite le lemme est trivialement

vérifié.
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Supposons donc p et q distincts. Soient a et d les milieux de (p, q) et
(//,<?') respectivement. Comme c (resp. d) est sur la médiatrice de (p,q)
(resp. (p',q')), le vecteur a-c (resp. d -c') est orthogonal à v. Il en résulte

que a — c et d — d sont colinéaires, d'où l'existence d'un réel À tel que
a — c A(d — d).

Or m, c et c' étant alignés ainsi que m, o et on a aussi (Thalès)
m - c X(m - d). En écrivant m te avec t G [0,1] et sachant que
d (g'/ g)c, il vient

1 ~tA= -77-— G [0,1[
(Q /Q) ~ t

et par conséquent (g'/q)\ g [0,1]. On en déduit que

d(a, q)2 g2 - d(a, cf — g2 - \2d(a', d)2

(q'2-d(a',c')2)=(^) d(a',q')\

ce qui démontre la première inégalité.
En ce qui concerne la deuxième inégalité, on a d(q,Tet) g' - d(q,d)

et
g'2 — d(q,c)2 2gfd(0,q)cosÔ — d(0,q)2

dans le triangle 0qd, ce qui entraîne que

d{q^Q>) (d(q,d) + g'^j 2g'd(0, q) cosÔ - d(0,q)2

Par ailleurs, dans le triangle isocèle 0qc, on a d(0,q) 2pcosÔ, d'où il
résulte que

d(q,re') (d(q,c')+ É>') ((q'/q)- 1)^(0,

En remarquant alors que d(q,c') < g', on obtient la relation désirée. D

LEMME B.2. Soient r > 0 fixé, Tr le cercle euclidien de R2 passant
par l'origine et de centre c (0, r) et Dr le disque ouvert correspondant.
Pour tout h G [0,r], notons p (—a, h) (resp. q — (a, h)) l'intersection de
la droite d'équation y h avec Tr D (R_ x R) (resp. D (R+ xR)J ^ soit
p' (—g, h + r) (resp. q' (a,h + r)).

Alors, si d(p,q) 2a ^r, on a d(c,p') d(c,q') ^ (3/4)r (les points p'
et q' sont donc en particulier dans Dr).
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Figure 15

Lemme B.2

Démonstration du lemme B.2. On a

x2 9

(8)
d(c. q') =a2jrh2 et

r2 =-s d(c, q)2 a2 + (r - h)2

d'où il résulte que d(c,q'^2 2rh. Comme a ^ r/2, on déduit de (8) que
h ^ (l —1/3/2)r et par suite

rf(c,^r')2 ^ (2- vT)r2 ^

Done dic^q') ^ (y/2/2)r ^ (3/4)r.

Démonstration du lemme 12. Il existe au moins un point d'intersection

a' entre ]a,b[ et Tr(a) car sinon soit b est dans Tr(a), ce qui contredit le

fait que le cercle de rayon 2r roule à l'intérieur de C, soit b est dans le

demi-plan fermé bordé par la tangente à dC en a qui ne contient pas le

convexe strict C, ce qui est là encore impossible. L'unicité résulte du fait

qu'un cercle coupe une droite en au plus deux points distincts et il y a déjà

a et a' dans l'intersection de Tr(a) avec la droite (ab).
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Puisque a' G D2r(a) C C, on a

d(a',dC) ^ d{a',T2r(a))

Or, d'après la deuxième inégalité du lemme B.l avec g — r et g' 2r, on a

et d'après la première inégalité de ce même lemme avec g r, gf R,
on a d(a,a') ^ (r/R)d(a,m), où m est le point d'intersection autre que
a entre 1^0) et la droite (ab). Comme a G Dr(a) C C C DR(a), on a
b G [a7,m] C [a,m], d'où d(a,m) ^ d(a1b) et par suite

En ce qui concerne le lemme 13, il va se déduire du lemme technique
suivant :

LEMME B.3. Etant donné un convexe strict C du plan, soient a et b

deux points distincts de dC tels que d(a,b) ^ r. Alors:
1. Pour chaque m e]a,b[, il existe ujm G dC\ {a,b} tel que d(m,dC)

d(m, ujm) avec m — ujm JL dC.
2. Uintersection C(a,b), entre dC et l'un des deux demi plan fermés

H~(a,b) et //+(a, b) de R2 bordés par la droite (ab), vérifie d(m,C(a,b)) —

d(m,dC) quel que soit m G]a, Z?[.

Démonstration du lemme B.3.
1. Pour m G ]a, b\ fixé, la fonction /: dC —» R définie par f(uo)

d2(m,u) étant continue sur le compact dC, l'existence de ujm G dC tel que
d(m, dC) d(m, ujm) en découle. De plus, comme dC et / sont différentiables,
uüm est un point critique de /, ce qui conduit à m - um _L dC. Enfin, si on
avait ujm — a, on aurait alors (ab) _L dC en a et par suite b G Dr(a) puisque
d(a,b) ^ r. Or Dr(a) C C, d'où il résulterait que b G C, ce qui est faux. Par

conséquent, on a u;m a ainsi que cum ^ b pour la même raison.
2. A présent, en notant C~(a,b) H~(a,b) fi 9C et C+(a, Z?)

//+(a, Z?) n dC, supposons qu'il existe G [a, b] tels que l'on ait
d(m~,C~(a, b)) > d(m~,dC) et d(m+ ,C+(a,b)) > d(m+,dC).

Soient alors cc~,ü;+ G <9C \ {a,Z?} tels que d(m~,dC) d(m~,uj~)
et <i(ra+,dC) J(m+,a;+) — d'où nécessairement G C+(a,Z?) et

G C~(a,b) — avec m" — c<;~ _L ôC et _L <9C.

J(a',r2f(a)) ï>
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On a donc r ^ d(a,b) ^ d(m~,b) ^ d(m C~(a, b)) > d(m~,dC)

d(m~,u~), d'où d{m",u~) < r ainsi que d(m+ ,o.~) < r de manière

analogue. De là, il résulte alors que le centre c~~ G (uo~m~) du cercle

rr(o;_) est dans H~(a,b) et que le centre c+ G (ou+m+) du cercle Tr(u+)
est dans H+(a,b).

C~(a,b)
dC c_

H~(a,b)

11+(a. b) \

m

rri1 / 00-

C+(a,b)
c+

Figure 16

Lemme B.3 (1)

En désignant enfin par S~ (resp. S+) l'unique diamètre (segment fermé)
de rV(ar) (resp. rr(o;+)) parallèle à la droite (ab), l'enveloppe convexe de

S~ U S+ (parallélogramme plein) a une intersection [/?, q] avec (ab) telle que

d(p,q) E> 2r. Or, la convexité de C implique que cette enveloppe convexe est

incluse dans C, et par suite [p,q] C [a,b\. On a donc d(a,b) ^ d(p,q) ^ 2r,
ce qui est impossible puisque d(a, b) ^ r par hypothèse.

Démonstration du lemme 13.

• Pour chaque m £]<z, &[, s°it G <9C \ {a,b} tel que d(m,C(a,b))
d(m,ujm) donné par le lemme B.3. Ceci entraîne que d(m,um) ^ r et par
suite le cercle Tr(ujm) coupe la droite (ab) en deux points pm G \a,m[ et

qm ]m,b] qui vérifient d(pm, qrn) ^ (r/R)d(a,b) en vertu de la première

inégalité du lemme B.l avec g r, g' R et v — b — a.
Par ailleurs, d'après le lemme 12, soient a! et h' les uniques points

d'intersection de ]a,b[ avec les cercles Tr(a) et Tr(b) respectivement, pour
lesquels on a d(a^d) ^ (r/R)d(a1b) et d(b',b) ^ (r/R)d(a,b), toujours

d'après le lemme B.l.
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Alors [<a,a'[, ]bf,b\ et la famille (]pm,Çm[)medc\{a:b} forment un
recouvrement ouvert de [a, b], dont on peut donc extraire un sous-recouvrement
fini X qui est minimal pour l'inclusion. En outre, d'après ce qui précède,
les éléments de X sont des segments de longueurs supérieures ou égales à

(r/R)d(a, b).
A présent, montrons qu'aucun point de [a, b] ne peut appartenir à plus de

deux éléments de X, c'est-à-dire que si un point xo G [a, b] vérifie x0 G 70/
avec /,/el, alors pour tout 77 G X \ {/, /}, on a xo £ 77.

En effet, après identification de [a,b] avec un segment de R et quitte
à échanger les rôles de I et /, on a inf(7) < inf(/) < sup(7) < sup(/) par
minimalité de X. Aussi, supposons qu'il existe 77 G X\{7,/} tel que G 77.

Si on avait inf(Z) ^ inf(77), alors on aurait sup(/) < sup(77) car 77 <f_ J
(minimalité de X) et par suite J C 7 U 77, ce qui est faux puisque X est

minimal. C'est donc que inf(77) < inf(/). Or ceci impose que sup(77) < sup(/)
car / <£ 77, d'où il vient que inf(77) < inf(7) (sinon 77 C 7U7) et donc

que sup(7) < sup(77) (sinon 77 C 7). Mais alors, c'est que 7 c 77, ce qui, là

encore, est impossible.
Notons alors 1{k, A2Uh n 1j et A< - U

Les ensembles Ai et A2 forment ainsi une partition mesurable de [a, b] et

vérifient Long(7i) H h Long(7„) Long(Ai) + 2Long(A2).
Or, Long(Ai) + 2Long(A2) (Long(Ai) + Long(A2)) + Long(A2) ^

Long([a, b]) + Long([a, b]) 2d(a, 7), d'où il résulte que n(r/R)d(a,b)
2d(a,b) puisqu'on a vu que Long(7*) > (r/R)d(a,b) pour tout k lf,.., n.

Conclusion : n ^ E(2R/r).
• On peut maintenant terminer la preuve du lemme 13 en remarquant que

le rectangle fermé S(a, b) est la réunion des rectangles fermés Sk de base le

segment 7^ et de hauteur r pour 1 ^ k ^ n, chacun d'eux étant inclus dans

un disque Dr(üük). En effet, on a alors

n

Hc(S(a, b)) < ^2
k=l

avec

MC (Sk) ^ ßDr(k>k) {Sk)

pour tout 1 ^ k ^ n en vertu de la proposition 5 (iv).
Or, chaque rectangle Sk étant la réunion des adhérences de deux triangles,

on a fJLQr(u)k)(Sk) ^ 27t puisque tout triangle est contenu dans un triangle idéal
et que 7r est l'aire d'un triangle idéal dans le disque hyperbolique. Ceci achève

la preuve du lemme 13.
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