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’AIRE DES TRIANGLES IDEAUX
EN GEOMETRIE DE HILBERT

par B. CoLBOIS, C. VERNICOS *) et P. VEROVIC

RESUME. L’objet de cet article est 1’étude de I’aire des triangles idéaux pour la
géométrie de Hilbert d’'un domaine convexe de R". Les résultats que nous obtenons
donnent d’une part une caractérisation de la géométrie hyperbolique dans I’ensemble des
géométries de Hilbert, et d’autre part une minoration optimale, indépendante du convexe,
de I’aire de Hilbert des triangles idéaux qui caractérise les domaines triangulaires du
plan. En outre, sous certaines conditions géométriques, nous établissons une majoration
de cette aire dont nous montrons qu’elle doit dépendre du convexe.

INTRODUCTION

Le concept de simplexe idéal joue un rdle important dans I’étude des
variétés riemanniennes a courbure négative. Par exemple, J. Barge et E. Ghys
obtiennent la caractérisation suivante de la géométrie hyperbolique plane
comme conséquence de leur résultat sur la cohomologie bornée (voir [BG88],
p.-511):

THEOREME 1. Soit g une métrique riemannienne de courbure négative
ou nulle sur une surface S compacte, connexe et orientable. Si les triangles
idéaux du revétement universel de S ont tous la méme aire, alors (S, g) est
de courbure constante.

Signalons que pour une surface riemannienne complete et simplement
connexe a courbure négative ou nulle dont tous les triangles idéaux ont une
aire finie, on ne sait toujours pas s’il existe un analogue de ce résultat.

*) Partiellement financé par le projet européen ACR OFES numéro 00.0349 et la bourse
FNRS 20-65060.01
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Dans la premiere partie du présent travail, nous obtenons une caractérisation
de la géométrie hyperbolique parmi les géométries de Hilbert en terme d’aire
des triangles idéaux (voir le théoréme 2 ci-dessous). Cette caractérisation peut
tre considérée comme une généralisation du théoréme précédent dans un
cadre quelque peu différent. Puis nous étudions les problémes de minoration
et majoration de I'aire des triangles idéaux.

FIGURE 1
Distance de Hilbert

Avant d’énoncer précisément nos résultats, rappelons qu’une géométrie de
Hilbert (C,d¢) est la donnée d’un ouvert non vide, convexe et borné C de R”
— que nous appellerons domaine convexe — muni de la distance de Hilbert
dc définie de la maniére suivante: pour tous points distincts p et ¢ dans C,
la droite passant par p et g rencontre le bord dC de C en deux points a et
b tels que p soit entre a et g et g soit entre p et b (figure 1). On définit
alors

|
dC(p7 CI) = E ln[aapa q, b] 3
ou [a,p,q,b] est le birapport de (a,p,q,b), ¢ est-a-dire

lg—all _ llp—bl|
X > 1,
lp—all  |lg— bl

la,p,q,b] =

en désignant par ||-|| la norme euclidienne canonique sur R”. On pose
€galement de(p,p) = 0 (voir [Hil71], appendice I).
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Remarquons tout de suite que si C et C’ sont deux domaines convexes de
R” tels que leurs images respectives C et C' dans I’espace projectif P"(R)
vérifient C' = A(@), ou A est une homographie de P"(R) — donc conserve le
birapport de quatre points de P*(R) —, alors les géométries de Hilbert (C,dc¢)
et (C’',dcr) sont isométriques.

Dans toute géométrie de Hilbert (C,d¢), le segment de droite reliant deux
points quelconques du convexe C est un segment géodésique pour de (au
sens de [BH99], p.4) et (C,dc) est un espace métrique géodésique dont la
topologie est celle induite par la topologie canonique de R". Ceci dit, en
général, le segment reliant deux points n’est pas 1’'unique géodésique entre
ceux-ci, cette unicit¢ étant néanmoins satisfaite lorsque le bord 9C de C
est une hypersurface de classe C> dans R” dont la courbure de Gauss est
partout non nulle — on dira alors que C est un convexe strict. Notons enfin
que cette condition d’€tre un convexe strict n’est pas nécessaire pour avoir
unicité du segment géodésique — voir une discussion détaillée de ce point
dans [SMOO0], §1.2.2.

Par ailleurs, on peut mettre sur tout domaine convexe C C R” une métrique
de Finsler C°, notée F, en procédant comme suit: si p € C et v € T,C = R”
avec v # 0, la droite passant par p et dirigée par v coupe JC en deux points
pS et pg ; on pose alors

Lo
lp=rcll  llp—r|

Cette métrique de Finsler est liée a la distance de Hilbert de par le fait que

1
Fe(p,v) = EHUH( ) et Fe(p,0)=0.

d
F = —
c(p,v) dt’,:odC(”’p+ tv)
et que

1
de(p,q) = inf{/ Fe(a(t),d'(n)drt ' o€ QI(C,P#])} ;
0

N

ou

QYC,p,q) = {a: [0,1] — C ‘ o de classe C' avec 0(0) = p et o(1) = q}.

N

Grace a cette métrique de Finsler, on construit une mesure borélienne ¢
sur C (qui correspond en fait a la mesure de Hausdorff de I’espace métrique
(C,dc) — voir [BBIOI], exemple 5.5.13) que nous allons expliciter.

Pour chaque p € C, soient Be(p) = {v € R" | Fe(p,v) < 1} la boule
unité ouverte de 7,C = R" pour la norme F¢(p,-) et w, le volume euclidien
de la boule unité ouverte de I’espace euclidien canonique R". En considérant
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la fonction (densité) A: C — R donnée par h(p) = «,/ VO](Bc(p)), ou vol
est la mesure de Lebesgue canonique sur R”, on définit y¢c — que nous
appellerons mesure de Hilbert sur C — par

He(A) = / h(p)d vol(p)
A

pour tout borélien A de C.

Lorsque C est un ellipsoide, (C,d¢) correspond au modele projectif (ou
modele de Klein) de la géométrie hyperbolique, et on peut penser aux
géométries de Hilbert (C,dz) comme a une généralisation naturelle de I’espace
hyperbolique. Une question commune & de nombreux travaux récents (voir
[SMO00], [SMO02], [Ben03], [CV], [KNO2] et leurs références) est de déterminer
les propriétés de I’espace hyperbolique dont héritent les géométries de Hilbert
et de trouver des caractérisations de 1’espace hyperbolique parmi celles-ci.

Le premier résultat de cet article est I’obtention d’une telle caractérisation
grace a I’aire de Hilbert des triangles idéaux. A cause de la non unicité des
géodésiques pour dc entre deux points d’un domaine convexe C C R, un
triangle de (C,dc¢) ne peut étre défini a ’aide des segments géodésiques de
de qui joignent ses sommets. C’est pourquoi nous convenons de définir tout
d’abord un triangle T = abc de R" comme l’intérieur ce 1’enveloppe convexe
affine ouverte de trois points non alignés a,b,c € R". Un tel triangle sera
alors un triangle de (C,d¢) si ses sommets sont dans C et un triangle idéal
de (C,dc) si ses sommets sont dans OC et s’il est inclus dans C.

Dans le cas d’un convexe strict, cela équivaut a la définition usuelle d’un
triangle idéal d’un espace métrique uniquement géodésique, en particulier de
P’espace hyperbolique H" dans lequel il est connu que tous les triangles idéaux
sont isométriques avec une aire (hyperbolique) commune égale a 7. En fait,
nous allons montrer que cette propriété de l’aire caractérise H" parmi les
géométries de Hilbert de R" :

THEOREME 2. Etant donné une géométrie de Hilbert (C,dc) avec C C R",
on a:

1. Tous les triangles idéaux de (C,dc) sont d’aire constante si, et seulement
si, C est un ellipsoide — auquel cas cette aire constante vaut .

2. Si C n’est pas un ellipsoide, il existe des triangles idéaux de (C,dc)
d’aire strictement plus grande que 7 et d’autres d’aire strictement plus petite
que T .
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REMARQUE. Ici, et dans toute la suite de ce travail, I’aire d’un triangle
(idéal ou non) de (C, d¢) est son aire pour la mesure de Hilbert de (CNP, dcnp),
ou P est I'unique plan vectoriel de R"” contenant le triangle.

La démonstration du théoreme 2, donnée dans la premiere partie de cet
article, est simple et purement géométrique.

Dans la seconde partie, nous obtenons une minoration uniforme de 1’aire
des triangles idéaux avec caractérisation du cas d’égalité:

THEOREME 3. Etant donné une géométrie de Hilbert (C,dc) avec C C R”,
ona:

1. L’aire de tout triangle idéal de (C,dc) est au moins égale a m/24.

2. 8i n=2 et s’il existe un triangle idéal de (C,dc) d’aire égal a 73/24,
alors C est un domaine triangulaire.

Remarquons que le cas d’égalité caractérise bien la géométrie de C, puisque
tous les domaines triangulaires du plan munis de leurs géométries de Hilbert
sont isométriques.

Enfin, dans la troisieme partie, nous montrons que la recherche d’une
majoration de I’aire des triangles idéaux donne lieu a une situation différente
et plus contrastée. En effet, le corollaire 6.2 ci-dessous fournit des géométries
de Hilbert qui possedent des triangles idéaux d’aire infinie, de sorte qu’il
est illusoire de chercher un majorant de I’aire des triangles idéaux commun
a toutes les géométries de Hilbert a I’instar du théoreme 3. L’exemple 11
montre également que cette impossibilité persiste méme en se restreignant a
I’ensemble des convexes stricts de R”.

Cependant, lorsqu’on considere un convexe strict fixé¢ C de R”, nous
prouvons qu’il existe néanmoins un majorant (dépendant de C) de l’aire de
tous les triangles idéaux de (C,d¢):

THEOREME 4. Soit C un convexe strict, i.e. un convexe de R" ayant
pour bord OC une hypersurface de classe C* dont la courbure de Gauss est
partout non nulle. Alors il existe une constante o = a(C) > 0 telle que tout
triangle idéal de (C,d¢) a une aire au plus égale a «.
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1. PRELIMINAIRES

1.1 QUELQUES PROPRIETES ELEMENTAIRES

Nous débutons par une liste de faits simples et généraux dont nous ferons
abondamment usage.

PROPOSITION 5. Soient (A,d4) et (B,dg) des géométries de Hilbert telles
que AC B CR". Alors:

1. Les métriques de Finsler F 4 et Fp vérifient Fg(p,v) < F4(p,v) pour
tous p € A et v € R" non nul, I’égalité¢ ayant lieu si, et seulement si,
Pa=Dpg € py=ph (figure 2).

2. Pour tous p,q € A, on a dg(p,q) < da(p,q).

3. Pour tout p € A, on a vol(B(p)) < vol(Bg(p)), avec égalité si, et
seulement si, A= B.

4. Pour tout borélien A de A, on a up(A) < pa(A), avec égalité si, et
seulement si, A =B.

Démonstration. 11 suffit de prouver I’assertion (1) qui implique toutes les
autres propriétés. Or, elle découle directement du fait que pour tous p € A
etveR”, v#0,o0na

3

lp=pill <llp=rsl et llp=rall < llp - 5]

’égalité ayant lieu si, et seulement si, p; = p et pj\ = pg. []

Grace a cette proposition, on va pouvoir estimer la mesure de Hilbert d’un
domaine convexe du plan inclus dans un domaine carré, ce dernier présentant
I’avantage d’étre suffisamment simple pour permettre des calculs effectifs.

1.2 ESTIMATION DE L’AIRE PAR COMPARAISON AVEC LE DOMAINE CARRE

L’estimation de I’aire de Hilbert d’un convexe de R? revient a estimer le
volume euclidien de la boule unité ouverte pour la métrique de Finsler en
chaque point du convexe. Lorsque le convexe est un carré, on obtient:

PROPOSITION 6. Soit S le domaine carré {(x,y) € R*||x| < 1 et |y| < 1}.
Alors pour tout p = (x,y) € S, on a
2(1 = 2)(1 = y*) < vol(Bs(p) < 4(1 — (1 — ),

oit Bs(p) est la boule unité ouverte de T,S = R? pour la norme Fs(p,-).
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FIGURE 2

Comparaison des distances et mesures de Hilbert de deux domaines convexes embofités

Démonstration. Etant donné p € S, la preuve consiste a vérifier que la
boule Bs(p) est d’une part incluse dans un rectangle R dont les cotés sont
parallelles a ceux du carré S, et d’autre part contient un losange dont les
sommets sont les points de contact entre R et Bs(p).

Puisque S est symétrique par rapport aux axes de coordonnées, il suffit
de se restreindre a p € [0, 1] x[0, 1[.

* Soit v = (a,h) € R* non nul tel que |a] < 3(1 —x) et b > 0, de
sorte que la demi-droite p + R_v (resp. p + Ryv) coupe OS sur la droite

d’équation y = —1 (resp. y = 1) en un point pg (resp. pjg ). 11 résulte alors
du théoreme de Thales que
b el b el
= - = T 3
t+y  p—ps| 1=y |p—ps
dou 1 b b b
F = — =
s:v) 2(1+y+1—y> 1=y’

ce qui donne I'implication v € Bs(p) = b < 1 — y*.
Ainsi, Bs(p) étant symétrique par rapport a 0, on a

1 1
&@wﬂﬁiu—miu—ﬂxR}cRxha—ﬁMme

et par suite
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Bs(p) C R x [—(1 — y*),(1 — y))]

puisque Bs(p) est convexe.
De la méme facon, on montre que

Bs(p) C [—(1 — %), (1 —x)] x R.
Par conséquent, on obtient

Bs(p) C [=(1 =), (1 =] x [=(1 =), (1 = ¥)],
ce qui entraine la deuxieme inégalité de la proposition 6.

* On remarque par ailleurs que les points (1 —x2,0) et (0,1 —y?) sont
dans I’adhérence de Bs(p), qui est convexe et symétrique par rapport a 0,
d’ot il résulte que I’enveloppe convexe des points (1 — x2,0), (0,1 — y?),
—(1 —x%,0) et —(0,1 —y?) est dans Bs(p). Comme le volume euclidien de

cette enveloppe convexe — qui est un losange — est égal a 2(1 —x?)(1 —y?),
on en déduit la premiere inégalité de la proposition 6.  []

REMARQUE. A titre indicatif, on peut ais¢ément vor que la boule Bs(p)
est un octogone lorsque p n’est pas sur les diagonales de S, sinon Bs(p) est
un hexagone si p # 0 et un carré si p = 0.

De cette estimation, nous pouvons alors tirer deux conséquences utiles
concernant ’aire de Hilbert des triangles idéaux.

COROLLAIRE 6.1. Soient C un domaine convexe du plan tel que OC
contient un segment ouvert la,b| et p € C. Pour chaque t €0, 1[, notons
my(t) = (1 —t)p+ta et mp(t) = (1 —Op+1tb. Alors, pour 0 < s < t, si A(t,s)
désigne ['enveloppe convexe des points mgy(t), my(s), mp(t) et mp(s), on a
}ER e (A(t, s)) = +o0 lorsque s est fixé.

Démonstration. Apres transformation affine, on se ramene au cas ot p =0
et C est inclus dans le carré S de la proposition 6 avec a = (—xp, 1) et
b = (xp, 1) pour un certain xy € 10, 1] (figure 3).

Alors, pout tous s,z €]0,1[ tels que s < ¢, le rectangle de sommets
my(s) = (—sxg,s), mp(s) = (sxo,s), mu(t) = (—sxp,t) et mp(t) = (sx0,1) est
inclus dans A(s,?), d’ou il résulte que

$X0 t T )
ps(A(s, 1) > 2./0 ([ m C»)’) dx.
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FIGURE 3

Cas d’un convexe dont le bord contient un segment

Mais, d’apres la proposition 6, on a vol(Bs(x,y)) < 4(1 — x*)(1 — y?) pour
tout p = (x,y) € S, ce qui entraine que

T S0 dx Lo dy
A(s, 1) > —
usasy > 3x ([T 15 ) < ([ 125)
c’est-a-dire,

ps(A(s, 1) =

x Argth(sxg) x [Argth(r) — Argth(s)] .

YR

Par conséquent, en fixant s, on obtient linll Us (A(s,t)) = +00.
—
Comme C C &, on a finalement linlluc(A(s, t)) = +oo d’apres la
t—
proposition 5 (4). [

COROLLAIRE 6.2. Soient C un domaine convexe du plan et w € 9C tels
qu’il existe deux droites d’appui distinctes de C en w.

Alors, pour tous points distincts p,q € C, on a pc(pwq) = +00, ou pwq
est le triangle de sommets p, q et w.

Démonstration. On va montrer que tout triangle de C dont un sommet
est un «coin» de C peut étre pensé comme une demi-bande affine ouverte
du plan.

Par transformation affine, on se rameéne au cas ou C est inclus dans le
carré S de la proposition 6 avec w = (1,1) et les droites (wp) et (wq)
symétriques 1’une de I'autre dans la réflexion par rapport a la droite (Ow) et
tel que po,qo0 € C, ou py et go sont respectivement les points d’intersection
de la droite d’équation x +y = 1 avec (wp) et (wgq).

En notant e¢; = (1,0), e, = (0,1) et wo = (1/2,1/2), il existe donc
to €10, 1[ tel que po = (1 — to) wo + toe; et go = (1 — ty) wo + toes.
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€9 & w

b C1

FIGURE 4

Cas d’un convexe possédant un « coin »

Considérons alors A = {(x,y) e R* | x+y>lety<x <1} C S etle

C> -difféomorphisme f: A — R% x R% défini par
Jfx,y) = (X, Y) = (Argth(z), Argth(s))
ou t,s €10, 1[ sont tels que (x,y) = (1 — )[(1 — ) wy 4 tey] + sw.

L'image par f du triangle wowpo C A est ainsi la bande 10, Argth(#)[ xR
dont on va montrer que [’aire euclidienne usuelle — qui est infinie — est
plus petite que I’'aire de wowpy pour la mesure de Hilbert pus.

Un calcul simple donne

o y=x
y+x—2
ce qui entraine que le jacobien de f en (x,y) € A vaut
1
2+ )1 —x)(1 =y

En vertu de la deuxieme inégalité de la proposition 6 et du fait que

et s=x+y—1,

Jac(f)(x,y) =

(1 +x)(1+y) <3(x—+y) pour tout (x,y) € A,

il en résulte que

dxdy

6
+00 = dXdYy = / < — ps(wowpy) -
10, Argth(ro)[ X R*. wowpo 2 A =) —y) "7

D’autre part, puisque ps(wowpo) < ps(gowpo) et que us((gwp)\(gowpo))
est finie — la partie (qwp)\(qowpo) étant compacte —, on en déduit que
ps(qup) = +00.

Enfin, comme C C &, la proposition 5 (4) acheéve la preuve du corol-
laire 6.2.  []
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2. CARACTERISATION DE LA GEOMETRIE HYPERBOLIQUE PAR
L’AIRE DE HILBERT DES TRIANGLES IDEAUX

En préliminaire a la démonstration du théoréme 2, rappelons le théoréme
suivant qui est un résultat classique de géométrie convexe que nous énongons
en dimension deux et dont la preuve se trouve dans [Joh48] ou [Lev97],
Lecture 3, Theorem 3.1, p. 13-19.

THEOREME 7 (Ellipse de John). Soit C un domaine convexe du plan.

Il contient une unique ellipse ouverte d’aire euclidienne maximale, [’ellipse
de John de C, dont le bord a au moins trois points de contact avec OC.

Par dualité, C est aussi inclus dans une unique ellipse ouverte d’aire
euclidienne minimale dont le bord a au moins trois points de contact avec OC.

Nous allons maintenant donner la preuve du théoreme 2 qui indique
comment I’aire de Hilbert des triangles idéaux permet de caractériser 1’espace
hyperbolique H" parmi toutes les géométries de Hilbert de R”.

Démonstration du théoreme 2. Commengons par faire la preuve lorsque
C C R%.

C

FIGURE 5
Ellipse de John

Si C est une ellipse, I’espace métrique (C,d¢) est isométrique au modele
projectif de Klein du plan hyperbolique (voir par exemple [BP92], p.2) qui a
tous ses triangles idéaux d’aire égale a .
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Si C est n’est pas une ellipse, soit & 1'unique ellipse ouverte d’aire
euclidienne maximale incluse dans le convexe C — dornnée par le théoreme 7
et appelée ellipse de John de C. L’ellipse & ayant au moins trois points de
contact avec JC, on peut considérer le triangle 7; dont les sommets sont ces
trois points (figure 5).

Pour la géométrie de Hilbert associée a l’ellipse dz John &;, le triangle
T; est idéal et d’aire égale a ug(7;) = m. Par conséquent, comme &; est
strictement incluse dans C, on a puc(7;) < m en vertu de la proposition 5 (4).

D’autre part, considérons 'unique ellipse ouverte &, d’aire euclidienne
minimale contenant C (duale de &;). D’apres le théoréme 7, son bord possede
également au moins trois points en commun avec celui de C, ce qui définit
un triangle 7,.

1. Si T, est un triangle idéal de (C,d¢), alors uc(T,) > m puisque &,
contient strictement C.

2. Si T, n’est pas un triangle idéal de (C,d¢), alors 'un des cdtés du
triangle 7, est inclus dans OC, ce qui implique que 1’on peut obtenir un
triangle idéal de (C,dc) dont 1’aire est arbitrairement grande en vertu du
corollaire 6.1.

Enfin, dans le cas oo C C R”", on fait ce qui précede dans chaque
intersection de C avec un plan vectoriel de R, sachant que C est un ellipsoide
si, et seulement si, chacune de ces intersections est une ellipse. L]

3. BORNES SUR L’AIRE DES TRIANGLES IDEAUX EN GEOMETRIE DE HILBERT

Nous sommes a présent naturellement amenés a nous demander si 1’aire
des triangles idéaux d’une géométrie de Hilbert est controlée.

3.1 Du cOTE DE LA MINORATION

En ce qui concerne la minoration de I'aire des triangles idéaux, nous avons
le résultat global énoncé au théoreme 3 qui est valable pour n’importe quel
domaine convexe de R”. Pour démontrer ceci, on va étudier au préalable le
cas particulier ot le domaine convexe est un triangle de RZ.

LEMME 8. Soit A un domaine convexe triangulaire du plan. Alors tous
les triangles idéaux de (A,dn) ont une aire au moins égale a /24 et seul,
a isométrie pres, le triangle idéal de sommets les milieux des cotés de A a
une aire égale a ce minimum.
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Ce lemme étant assez technique, nous ne donnerons que les étapes de sa
preuve, renvoyant a I’annexe A.1 pour les détails. Mais auparavant, montrons
comment ce lemme implique le théoréme 3.

Démonstration du théoreme 3 a [’aide du lemme 8. Considérons d’abord
le cas o C C R2.

Soient T = abc un triangle idéal de (C,d¢) et D,, Dy, D. des droites
d’appui du convexe C en a, b et ¢ respectivement.

D’un point de vue projectif, il s’agit d’'une méme et unique situation.
Cependant, d’un point de vue affine — celui que nous avons suivi jusqu’ici —,
trois cas se présentent:

1. Si D,, D, et D. définissent un domaine convexe triangulaire A qui
contient C, alors on obtient le point (i) du théoréme 3 en appliquant la
proposition 5 (4) (avec A = C et B = A) et le lemme 8. En outre, si
C est strictement inclus dans A, alors uc(T) > ua(T) > 7r3/24 d’apres la
proposition 5, d’ott pc(T) > 7/24, ce qui donne le point (ii) du théoréme 3
en contraposant.

2. Si D, et D, sont paralleles, on plonge le plan affine contenant le
convexe C dans son complété projectif (voir par exemple [Ber77], §5.1)
identifié naturellement 2 P?(R), dans lequel les deux droites D, et D, se
coupent. En considérant alors une droite D qui est I’image par le plongement
d’une parallele a D, contenue dans le demi-plan déterminé par D. et ne
contenant pas C, on est ramené au point (i) dans le nouveau plan affine
PX(R)\ D.

3. Si D,, Dy et D. définissent un domaine convexe triangulaire qui
ne contient pas C, on peut supposer que le triangle en question est dans
le demi-plan déterminé par D, et ne contenant pas C. Dans ce cas, on
plonge le plan affine contenant C dans P?>(R). En considérant alors une
droite D image par le plongement d’une droite paralltle 2 D, contenue
dans le demi-plan déterminé par D,, ne contenant pas C et qui rencontre le
domaine triangulaire, on est ramené au point (i) dans le nouveau plan affine
P2(R)\ D.

Enfin, dans le cas o C C R”, on applique ce qui préceéde a chaque
intersection de C avec un plan vectoriel de R*.  []

Démonstration du lemme 8. Partant d’un domaine triangulaire A = mpqg C
R? et d’un triangle idéal T = abc de (A,d,), la preuve va se faire en trois
étapes.
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ETAPE 1: Elle se résume au lemme suivant, dont la preuve est en
annexe A.l.

LEMME 9. Soit Ay le domaine triangulaire de sommets 0, e| et ey, ou
(e1,e2) est la base canonique de R%. Pour chaque « €10,1/2], notons T(«)
le triangle idéal de (Ay,dn,) dont les sommets sont

ala) = (o, 1 — ), b(a)=(0,1 —a) et cla)=1(a,0).

Alors il existe o €10,1/2] et une transformation affine de R* qui envoie
simultanément le domaine A sur le domaine Ay et le triangle idéal T de
(A,dp) sur le triangle idéal T(o) de (Ag,da,).

ETAPE 2: Sachant que pour chaque p = (x,y) € A, la boule unité ouverte
Ba,(p) de T,Ag = R? pour la norme Fa,(p,-) est un hexagone décrit dans
[dIH93], p.106-107, le calcul de la mesure de Hilbert ps, (que nous ne
détaillerons pas) nous donne

s dxdy
d = — X —.
,qu(p) 12 xy(] —X—y)
L application A: ]0,1/2] — R définie par A(«) = pa,(T(a)) est strictement
décroissante de sorte que son minimum est atteint en « = 1/2 seulement, ce
qui correspond au triangle idéal 7'(1/2) de (Ag,da,) dont les sommets sont

les milieux des cotés de Ay — voir les calculs dans I’annexe A.2.

ETAPE 3: Montrons que I’aire de Hilbert de 7(1/2) est égale a 73/24.
D’apres I’annexe A.2, cela revient a calculer

1 1
f(O):—zf derz/ Il +2)
0 0

X X

puisque A(1/2) = 5F(0).
Pour déterminer le premier terme, on développe en série entiere par rapport
a € €]0,1[ la quantité

l—¢
dx 1
= —1
‘7:](8) 0 X n(] *‘.X)
B /I_Ed_.x+OO_Xf
0 X —1 k
+oo
1
=) —(l-¢of



L’AIRE DES TRIANGLES IDEAUX EN GEOMETRIE DE HILBERT 217

En faisant ¢ — 0, le théoreme de convergence dominée de Lebesgue nous
permet alors d’obtenir F;(0) = 7%/6.

Pour évaluer le second terme de JF(0), on introduit la fonction

1—e¢
Fale) = / (1 + 1)
0 X

définie pour ¢ € ]0, 1[ et qui, également a 1’aide d’un développement en série
entiere, fournit

+o0o 1 k
F(0) = —Z(kz) :
k=1

En remarquant alors que Fi(0) — F,(0) = %}"1 (0), on obtient F»(0) = 71'2/ 12

et par suite F(0) = 2F(0) + 2F»(0) = 7?/2. Finalement, I’aire de Hilbert de
2

™ s s

T(1/2) vaut A(1/2) = BT S5 ]

3.2 Du cOTE DE LA MAJORATION

Pour ce qui est de la majoration de 1’aire des triangles idéaux, remarquons
tout d’abord qu’il existe des géométries de Hilbert planes dans lesquelles on
peut trouver des triangles idéaux d’aire aussi grande que 1’on veut, et méme
d’aire infinie, comme le montrent les corollaires 6.1 et 6.2 de la premiere
partie.

Néanmoins, avec quelques hypotheses de régularité, on évite les triangles
idéaux d’aire infinie:

PROPOSITION 10. Soit C un domaine convexe de R" dont le bord est une
hypersurface de classe C?. Alors tout triangle idéal de (C,dc) a une aire

finie.

Démonstration. Considérons d’abord le cas ou C C RZ.

Soit T = abc un triangle idéal de (C,dc) dont on oriente les sommets
dans le sens trigonométrique. Comme OC est de classe C2, il existe r > 0
et des disques ouverts euclidiens D(a), D(b) et D(c) de rayon r tangents au
bord de C en a, b et ¢ respectivement et inclus dans C. En considérant le
sommet a, désignons par @' et @’ les points d’intersection du bord de D(a)
avec les segments Ja,b[ et Ja,c[ respectivement. Ainsi le triangle ada’ a
ses sommets orientés dans le sens trigonométrique et a dD(a) pour cercle
euclidien circonscrit. En procédant de méme avec les sommets b et ¢, on

obtient les triangles bb'b"” et cc'c”.
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FIGURE 6
L’aire des triangles idéaux est finie dés que 9C est C?

L’adhérence du complémentaire de la réunion des triangles ad’a’, bb'b"”
et cc’c” dans T = abc est alors un compact inclus dans C, donc d’aire de
Hilbert finie. En outre, comme ad’a’ est un triangle idéal de (D(a), dp()), on
a upw(ad'd”) = m (géométrie hyperbolique plane) et par suite pc(ad’a’) <«
en vertu de la proposition 5 (4). Comme il en est de méme avec bb'b" et
cc’'c”, la proposition 10 en découle lorsque C C R?.

Dans le cas ou C C R”, on fait ce qui précede dans chaque intersection
de C avec un plan vectoriel de R*.  []

Comme on I’a déja vu au corollaire 6.1, dés qu’un domaine convexe C
du plan a un bord — méme de classe C*> — qui contient un segment ouvert,
alors I’aire des triangles idéaux de (C,d¢) peut étre arbitrairement grande. En
revanche, lorsque C est un convexe strict, le théoreme 4 affirme que ceci ne
peut pas se produire.

Avant d’en donner la preuve, notons cependant (ue la constante «(C)
figurant dans ce théoreme n’admet pas de majoration uniforme en C, méme
dans I’ensemble des convexes stricts du plan, comme le montre I’exemple
suivant.

EXEMPLE 11. Considérons le carré S = {(x,y) € R? | [x| < 1 et |y| < 1}
ainsi que son homothétique ¢S avec ¢ €]1/2,1[ arbitraire. Si C est un
convexe du plan tel que tS C C C S, désignons par ac, be et cc les points
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d’intersection de OC avec les segments fermés joignant 0 a a = (—1,1),
b=(1,1) et c =(0,—1) respectivement (figure 7).

a

FIGURE 7

L aire des triangles idéaux ne peut &tre majorée uniformément en C

Alors Te = acbcce est un triangle idéal de C qui contient la partie
A(1/2,1) définie au corollaire 6.1 avec p = 0 et s = 1/2. Le méme
corollaire affirmant que lim,_; pus (A(l /2,t)) = 400, il en résulte que
lim—,1 p1c (A(r)) = 400 et par suite, pour tout entier n > 0, il existe 7 €10, 1[
tel que tout domaine convexe C du plan avec tS C C C § (qu’il soit strict
ou pas) vérifie ps(Te) > n.

Afin de démontrer le théoreme 4, pour lequel on se raméne au cas ou
C C R? par intersection avec des plans vectoriels de R”, nous allons utiliser
la distance euclidienne canonique d sur R? et écrire C comme la réunion
du compact K5 = {p € C | d(p,0C) > §} — ou la constante 6 = §(C) > 0
sera précisée ultérieurement — et de son complémentaire Vs = C \ Ks. Pour
majorer I’aire d’un triangle idéal quelconque 7 de (C,dc), il suffira alors de
majorer ’aire de la partie du triangle 7 hors du compact Kjs, c’est-a-dire
T N Vs. Pour cela, nous allons inclure 7 N Vs dans la réunion d’un certain
nombre N = N(C) > 0 de triangles, chacun d’eux étant contenu dans un
disque ouvert inclus dans C.

La proposition 5 (4) permet alors de majorer I’aire de T NVs par N7 en
comparaison avec la géométrie du plan hyperbolique (qui est, rappelons-le,
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la géométrie de Hilbert d’un disque ouvert). Finalement, on aura puc(7) <
N7+ pe(Ks).

La preuve de ce résultat reposera sur plusieurs lemmes techniques
démontrés dans I’annexe B.

Tout d’abord, le fait que C soit un convexe strict assure ’existence de
deux constantes r > 0 et R > 0 telles que le cercle de rayon 2r roule a
I'intérieur de C et que OC roule a l'intérieur du discue fermé de rayon R
(voir [Blal6] et [CV], p.3). Cela va nous permettre de ramener une partie de
la preuve du théoreme 4 a des considérations sur les cordes de deux cercles
euclidiens emboités et tangents données au lemme B.1.

Puis, a I'aide du lemme 12 ci-dessous, on étudiera les cordes de OC
(c’est-a-dire les segments fermés reliant deux points distincts de 9C) en les
comparant aux cordes des cercles euclidiens de rayon r (resp. R) tangents
intérieurement (resp. extérieurement) a C. Lors de la preuve du théoréme 4,
ces cordes seront les cOtés des triangles idéaux de (C,dc) et la constante
0 = 6(C) ne dépendra que de r et R.

Dans la suite, pour tous t > 0 et w € JC, on désignera par I'y(w) le
cercle de rayon ¢ tangent a 9C en w et inclus dans le demi-plan fermé de
R? contenant w dans son bord et dans lequel se trouve C. Aussi, le disque
ouvert correspondant sera noté Dy(w).

LEMME 12. Soit C un convexe strict du plan. Pour tous points distincts
a et b de dC, ona:

1. Il existe un unique point d’intersection d entre la,b| et T, (a).

2. La distance euclidienne de d au bord de C est minorée en fonction
de d(a,b), r et R uniquement :

r
/ > 2 )
d(d,0C) > ozda,b)

Les preuves de ce lemme et du lemme B.1 qui I'implique, seront données
dans I’annexe B, tout comme le résultat suivant, cui fournit la clé du
théoreme 4:

LEMME 13. Soient C un convexe strict du plan ainsi que a et b deux
points distincts de OC tels que d(a,b) < r. Alors, 'unique rectangle ouvert
S(a, b) de base le segment la,b| et de hauteur r inclus dans C vérifie

e(S(a, b)) < 2nE ( 2R> .

7
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3
r

A partir de maintenant, posons § = j5; et introduisons

Vs ={p e C|dp,oC) < b}

dont le complémentaire Ks = C\V; est compact, donc d’aire uc(Ks) finie.

Quitte a diminuer r et/ou augmenter R, on peut supposer que J est
suffisamment petit pour que K; soit convexe en utilisant 1’exponentielle
normale de la sous-variété AC de R? muni de sa métrique riemannienne
canonique (voir [CV], p.5)

FIGURE 8
Premier cas

Démonstration du théoréme 4. Soit T = abc un triangle idéal de (C,dc)
dont on oriente les sommets dans le sens trigonométrique. On va traiter trois
cas selon que la longueur euclidienne des cotés du triangle 7' est ou non
inférieure a r.

Cas 1: d(a,b) > r, dib,c) > r et d(a,c) > r (figure 8).
En considérant le sommet a, désignons par o et d” les points

d’intersection du cercle I',(a) avec les segments |a, b[ et ]a, c[ respectivement.

Ainsi le triangle ad’a” a ses sommets orientés dans le sens trigonométrique

et a I'.(a) pour cercle euclidien circonscrit. En procédant de méme avec les

sommets b et c¢, on obtient les triangles bb'b" et cc'c”.
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D’apres le lemme 12 (ii), on a ici d(d’,0C) > 6 et d(a”,0C) > §, d’ou
d,d" € Ks et par suite [d',d"] C K5 puisque K5 est convexe. De méme, on
a[b,b']CKs et [d,d']CKs.

Cela entraine que TN Vs est contenu dans la réunion des triangles ad’a”,
bb'b" et cc’c”, chacun d’eux étant d’aire majoré par m en comparaison avec
la géométrie hyperbolique associée aux disques ouverts D,(a), D,(b) et D,(c).
On en déduit donc que pe(T) < 371 + pc(Ks).

CAS 2: d(a,b) <r etdb,c)<r.

Soit m le projeté orthogonal du point & sur la droite (ac). Rappelons
que S(a,b) désigne le rectangle de base [a,b] et de hauteur r donné par le
lemme 13.

* Supposons que m appartienne au segment [a,c] (figure 9).

S(b,c) - \

_ S(a,b)

FIGURE 9
Cas m € |a,c]

Puisque le triangle abm est rectangle en m, on a d(m,b) < d(a,b).
Si p est le projeté orthogonal de m sur la droite (a,b), on a de méme
dim,p) < d(m,b) et par suite d(m,p) < d(a,b) < r. Comme en outre
p € la,b], il en résulte que m appartient au rectanzle fermé S(a,b). Le
méme raisonnement avec le triangle bcm montre que m appartient également
au rectangle fermé S(b,c), ce qui entraine que les triangles abm et bcm sont
inclus respectivement dans les convexes S(a, b) et S(b, c). Or abm U bcm = abc
puisque m € [a,c], d’ou T = abc C S(a,b) U S(b,c). On en déduit ainsi
que 11e(T) < pe(S(a, b)) + ue(S(h, ) et par conséquent ue(T) < 47TE(27R)
d’apres le lemme 13.
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* Supposons que a appartienne au segment [m,c] (figure 10).

/ oC
|
C\ _ : ] i b
~__ | —
T~ | T /
T~ . \\\ ] _— ’J‘,////// /
“géi\\ )
\\\ /
~, /
m
\
FIGURE 10

Cas a € [m, ]

Alors d(a,c) < d(m,c), ce qui avec d(m,c) < d(b,c) (le triangle bcm
étant rectangle en m) conduit a d(a,c) < d(b,c) < r. En outre, on a ici que,
en notant @ I’angle au sommet a du triangle abc, @ > /2 et par suite le
projeté orthogonal de a sur la droite (bc) est dans le segment [b,c], ce qui
permet de conclure comme dans le point précédent.

e Supposons que ¢ appartienne au segment [a, m].

On applique alors le point précédent en échangeant les roles de a et c.

Cas 3: d(a,b) <r, db,c) 21 et dla,c) >r.

C’est la situation la plus délicate a traiter. Tout comme dans le premier
cas, désignons par ¢’ et ¢” les points d’intersection du cercle T'.(c) avec les
segments la,c[ et ]b,c[ respectivement. Dans ce qui suit, a et b sont les
angles en a et b du triangle abc.

A

« Supposons & < 7/2 et b < w/2 (figure 11).

Soient p et g les sommets du rectangle S(a,b) autres que a et b tels
que p—qg =a — b. D’apres le lemme B.2, la distance euclidienne de p au
centre du cercle I'v(a) est inférieure ou égale a (3/4)r, ce qui montre que
dip,Tr(a)) = r/4, dou d(p,0C) > r/4 puisque p € D,(a) C C (et donc
d(p,0C) = d(p,T'+(a))). De méme, en considérant I'.(p), on a d(q,0C) > r/4.
De r/4 > 6, on déduit alors que p et g sont dans le convexe Kj et par suite

[p,q] C Ks.
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Par ailleurs, comme @ < 7/2 (resp. b< /2), la droite (ac) (resp. (bc))
coupe le segment [p,q] (parallele a (ab) qui n’est parallele ni a (ac), ni a
(bc)) en un unique point m, (resp. mp ). On a donc ’adhérence de T = abc qui
est incluse dans la réunion de I’adhérence du triangle cc’c¢” et des enveloppes

convexes de {a,b,m,,mp} et {m,,mpy,c',c"}.

FIGURE 11
Cas a<nw/2 et h< /2

Comme d’une part m,,m;, € K5 et ¢/,c” € K5 (méme raison que dans le
premier cas), I’enveloppe convexe de {m,,my,c’,c"} est dans Ky et puisque
d’autre part a,b,m,,m;, appartiennent au rectangle fermé S(a,b) qui est
convexe, I’enveloppe convexe de {a,b,m,,my} est dans S(a,b).

Il en résulte que

pel(T) < pe (S(a, b)) + pe(Ks) + pelecc”)

et par conséquent

2R
pe(T) < W(ZE(‘}—) + 1) + pc(Ks)
en vertu du lemme 13.

* Supposons a > w/2 (figure 12; le cas b > 7/2 se traite de fagon
similaire).

Introduisons comme précédemment les points p, g et m; (puisque
b < m/2) et soit en outre ¢’ le point d’intersection du cercle T,(a) avec le
segment Ja,cl.
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FIGURE 12
Cas ot a > w/2

Sachant que d(a,c) > r, on a d(a”,0C) > § d’apres le lemme B.1 (ii),
d’ou d” € K;. D’autre part, en raisonnant comme au point précédent, on a
p,mp,c’ ¢ € K5 et a,b,p,m, € S(a,b). Par suite, I’enveloppe convexe de
{p,mp,c’,c"} et le triangle pa’c’ sont inclus dans Kjs alors que I’enveloppe
convexe de {a,b,p,m;} est dans le rectangle fermé S(a,b).

Enfin, la convexité de D,(a) et le fait que a,a”,p € D,(a) assurent que
le triangle aa"p est inclus dans D,(a).

Puisque l’adhérence de T = abc est contenue dans la réunion des

adhérences des triangles pd’c’, aa"p et cc’¢” ainsi que des enveloppes

convexes de {p,my,c’,c"} et {a,b,p,my}, il s’ensuit que

pe(T) < pe (S(@, b)) + pe(Ks) + pelad’p) + pelec'cy,

2R
pe(T) < 2 (E(T) + 1) + 11c(Ks)

d’apres le lemme 13. [
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QUESTIONS OUVERTES CONCERNANT LES MAJORANTS. Pour conclure le
présent travail, tentons de donner les hypotheses les plus faibles que I’on doit
imposer a un domaine convexe donné C du plan pour espérer obtenir une
majoration de 1’aire des triangles idéaux de (C,d¢).

1. D’apres le corollaire 6.1, il ne peut y avoir de segment ouvert dans le
bord 9C, ce qui se traduit par le fait que C doit €tre affinement strictement
convexe, autrement dit que tout segment de droite ouvert entre deux points de
0C est contenu dans C.

2. D’apres le corollaire 6.2, il ne peut y avoir de « coin » dans C, c’est-
a-dire de point de JC en lequel C admet deux droites d’appui distinctes. Du
point de vu analytique, ceci signifie que le bord JC doit étre localement le
graphe d’une fonction convexe partout dérivable. Mais avec I’hypothese de
convexité, cela implique que le bord de C est une courbe de classe C! (voir
[Bou76], 1.32, §4). Ainsi, on peut se concentrer sur un domaine C affinement
strictement convexe dont le bord est C!.

3. A la proposition 10, nous avons cependant eu besoin d’avoir dC de
classe C? pour montrer que I’aire des triangles idéaux de (C,dc) est finie, et
d’ajouter I’hypothése que la courbure de JC n’est jamais nulle pour exhiber
un majorant de cette aire.

Ainsi, lorsque C est affinement strictement convexe avec un bord de classe
C' sans étre C?, la finitude de 1’aire des triangles idéaux de (C,dc) reste un
probléme ouvert. Tout comme I’est la question de savoir s’il existe un majorant
de I’aire de ces triangles lorsque C est affinement strictement convexe avec
un bord de classe C? dont la courbure s’annule en cerrains points.

ANNEXE A. LES DOMAINES TRIANGULAIRES

Rappelons que 1’on s’est donné un domaine triangulaire A = mpg C R? et
un triangle idéal 7 = abc de (A,dyp). 1l existe donc A, p, v €10, 1[ tels que

a=({1-XNm+ \p, b=0—-wp+pg et c=(1—-v)g+vm.

On considere par ailleurs le domaine triangulaire Ay de R*> C R® dont les
sommets sont 0 = (0,0,0), ¢; =(1,0,0) et e; = (0,1,0) et le triangle idéal
T(a) de (Ag,da,) ayant pour sommets a(w) = (o, 1 —a,0), b(a) = (0,1—0a,0)
et c(a) =(a,0,0).
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A.1 PREUVE DU LEMME 9
Introduisons d’abord f: R> — R? 1’application affine injective qui envoie
les points m, p et g sur e;, e; et e3 = (0,0,1) respectivement. En notant

ad =(1—Ne + \ey, b'=00—pe +pes et =1 —v)es+vep,

le triangle 7" = a'b'¢’ est alors I'image de T par f et a ses sommets sur les
cotés du triangle A" = f(A).

Considérons ensuite les points

d’ = aue)) + (1 — a)(vey),
b" = (1 — a)(vey) + afwes),
" = (1 — a)(wez) + a(uey)

avece
B Apv
I —m o
=N W
U= i w#0 et U_(l—)\)(l—z/)w#o'

Remarquons que, quitte a remplacer A\ par 1 — A\, u par 1 — pu et v par
1 — v, on peut supposer a € ]0,1/2]. On vérifie sans peine que d’’ est sur la
droite (0d’), b” sur la droite (0b') et ¢’ sur la droite (0c’), de sorte qu’en
désignant par 7: R* — P?(R) la projection canonique, on obtient

(1) m(T") = m(T")
ainsi que
(2) m(A) = m(A"),

ou T" =d"b"c¢"” et A” est le triangle de sommets ue;, ve, et wes.

Enfin, si L est I’application linéaire surjective de R® sur R?> qui envoie
respectivement ue;, ve, et wes sur e;, ey et 0, alors L(A”) = Ay et
L(T"y = T(a).

Comme les applications f et L sont affines et qu'on a les égalités (1)
et (2), il en résulte que les géométries de Hilbert (A,dx) et (Ag,da,) sont
isométriques avec correspondance entre les triangles idéaux 7 et T(«).
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0 c(a) "€l

FIGURE 13
Triangle idéal T(a) pour le domaine triangulaive Ay

A.2 L AIRE DES TRIANGLES IDEAUX POUR UN DOMAINE TRIANGULAIRE

L’aire du triangle idéal T(a) vaut

dxdy
Ay =75 [ /
YT =1 —/e) XY(1 = X = ¥)

et se décompose comme suit:

12 I dcly
2 A@) = / / s )
T 1—a)(1 A/ry) I —x—y/x(1—x

_ In(1 ——x/a)
(3) = 2/0 _x(l 9 dx

o 1 -2« dx
@ T e e e

Le calcul de I’'intégrale (3) donne

/”‘ In(1 **X/O‘)dx: /(1 In(1 —X/Oé)d)H—/a ‘n(l *)c/(x)(bC
0 X(l —)C) 0 X 0 1—x )

N v

On pose u = x/« Intégration par parties
a—x
" n(1 — u) lﬂ(1+ 1_a>
= —du— | ——— i«
Jo u % 0 o — X B
On pose v = ==

1 =
(5) :/ Mdu_/ In(l +U)dv
0 u 0 v
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Par ailleurs, I'intégrale (4) s’écrit

o In(153x+1) o In(153x + 1) o (15304 1)
/ dx = / dx + / dx
0 x(1 —x) 0 X 0 I —x
On pose; ( 1;22a) X lntégration\’par parties
e o ln(l + a_x>
o n(1 l—«
:/ MdH/ — L dx
0 u 0 I+ azax
On pose v = £
1—2a et
"o In(1 =a In(1 4+
© = [T g [T D g,
0 u ) 0 ] — Tav
On utilise alors dans (5) et (6) la nouvelle variable ¢ = % qui parcourt

[0, +oo| lorsque « décrit ]0,1/2]. En posant F(r) = %A(a), on obtient
ainsi

1 T
(7) F@) = _2/ m(l—_”)dLH_z/ - Mdv
Jo 0

u v
“In(1 7 In(1
+ / n_(+_u)du +t / n_(_'—_v)dv .
0 u 0 1 — tv
Enfin, le changement de variable w = I]jr’;’ dans la derniere intégrale de

(7) conduit a

I _ Ew
]:(;):_2/ Mdquz/ Fnd+o)
0 0

u v
"In(1 ™ In(l — 141
+/ Mde_/ uden(L) In(1 + 7).
Jo u 1 w 4

(1402

La fonction F se dérive sans trop de difficultés et, aprés simplifications,
on obtient finalement

;o4 (1 +1)?
Fl(t) = 1+tln((1+t)2_]> >0.

On en déduit donc que F est strictement croissante sur [0, +oo[ et par
suite son minimum est atteint en r = 0 seulement. Autrement dit, I’application
A: ]0,1/2] — R est strictement décroissante et atteint son minimum en le
seul point o = 1/2.
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ANNEXE B. LEMMES TECHNIQUES DU THEOREME 4

LEMME B.l. Etant donné des réels 0 < o < ', soient T, et Ty
les cercles euclidiens de R* passant par Dorigine et de centres respectifs
¢ =(0,0) et ¢ =(0,0). Pour chaque point m du segment [0,c] et pour
chaque vecteur non nul v € R%, on note p (resp. p') le point d’intersection
de la demi-droite fermée m + R_v avec T, (resp. Ty ) et q (resp. q') le
point d’intersection de la demi-droite fermée m + Ryv avec Ty (resp. Ty ).

On a alors

d(p,q) > (5—) ap',q).

En outre, lorsque m =0 (et donc p=p =0), on a

o —o
dq,T'y) 2 ( / > d(O’q)2 '
Ly
/ | h F o’
s \\\
/ 0 ;
: ® Cl “ FQ }
0 .
‘ \ 4
| m._ Y
% o - a a / /”/ ////
FIGURE 14
Lemme B.1

Démonstration du lemme B.1. Lorsque p = q, la droite m+Ruv est égale
a R x {0}, ce qui entraine que p’ = ¢’ et par suite le lemme est trivialement
vérifié.
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Supposons donc p et g distincts. Soient a et @ les milieux de (p,q) et
(', q') respectivement. Comme ¢ (resp. ¢’) est sur la médiatrice de (p,q)
(resp. (p',q')), le vecteur a—c (resp. @’ —c’) est orthogonal & v. Il en résulte
que a —c et @ — ¢ sont colinéaires, d’oll I’existence d’un réel A tel que
a—c=\Nd — ).

Or m, c et ¢’ étant alignés ainsi que m, a et &', on a aussi (Thales)
m—c = ANm — c’). En écrivant m = tc avec t € [0,1] et sachant que
¢ = (0 /o), il vient

R
(/o) —1t

et par conséquent (¢'/p)A € [0,1]. On en déduit que

e [0, 1]

d(a,qf = ¢ — d(a,c)* = o> — Nd(d', ')’

2 Y
(V{7 () e
0 Q
2 2
;(ﬁ,) (Q,z — d(a',c’)z) :(%) d(a’,q')2»
o o
ce qui démontre la premiere inégalité.
En ce qui concerne la deuxigme inégalité, on a d(q,T,) = o' — d(q,¢')
et )
0% —d(g,¢")" =20'd0,q)cosd — d(0, g)

dans le triangle Ogc’, ce qui entraine que
d(q,Ty) (d(q, )+ g’) = 20'd(0, g) cos O — d(0, ¢)* .

Par ailleurs, dans le triangle isoctle Ogc, on a d(0,q) = 2pcos0, d’on il
résulte que

d(4.Ty)(d(g,¢') + ') = ((¢'/o) — 1)d(0, 4.

En remarquant alors que d(q,c’ ) < o', on obtient la relation désirée. ]

LEMME B.2. Soient r > 0 fixé, T, le cercle euclidien de R* passant
par lorigine et de centre ¢ = (0,r) et D, le disque ouvert correspondant.
Pour tout h € [0,r], notons p = (—a,h) (resp. g = (e, h)) Uintersection de
la droite d’équation 'y = h avec T, N(R_ x R) (resp. T, N (R4 x R)) et soit
pl=(—a,h+r) (resp. ¢ = (a,h+r)).

Alors, si d(p,q) =2a <r, on a d(c,p’) =d(c,q") < (3/4)r (les points p'
et ¢' sont donc en particulier dans D, ).
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*y
A, 3 AN
r %
/ ! /
b S : q
lo ]
oC
\‘\\ - - //,""
p \\ /// q
e -
—Q 0 o x
FIGURE 15
Lemme B.2

Démonstration du lemme B.2. On a

®) d(c, q')2 — o’ + 1 et
‘ P2 =d(c,q)* = a* + (r — h)*,

d’ou il résulte que d(c,q’)2 = 2rh. Comme « < r/2, on déduit de (8) que
h< (1—+/3/2)r et par suite

d(c,q’)2 < (2 — \/§)r2 <r?/2.

Donc d(c,q’) < (\/5/2)7’ < (3/4)r. L]

Démonstration du lemme 12. 1l existe au moins un point d’intersection
d entre la,b[ et T'.(a) car sinon soit b est dans I',(2), ce qui contredit le
fait que le cercle de rayon 2r roule a l'intérieur de C, soit b est dans le
demi-plan fermé bordé par la tangente a OC en a qui ne contient pas le
convexe strict C, ce qui est 12 encore impossible. L'unicité¢ résulte du fait
qu’un cercle coupe une droite en au plus deux points distincts et il y a déja
a et @ dans intersection de I'.(a) avec la droite (al).
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Puisque o’ € D,.(a) CC, on a
d(d',0C) > d(d, I.(a)) .

Or, d’apres la deuxieme inégalité du lemme B.1 avec p=r et o' =2r, on a
/ 1 n2
d(a ,I‘zr(a)) > 4—d(a,a )
r

et d’apres la premiere inégalité de ce méme lemme avec o = r, ¢ = R,
on a d(a,d’) > (r/Ryd(a,m), ou m est le point d’intersection autre que
a entre Tr(a) et la droite (ab). Comme a € D.(a) C C C Dg(a), on a
b e ld,m] Cla,m], d’ou d(a,m) > d(a,b) et par suite

r

s by O

d(d,00) > - x <%)2d(a,b)2 _

~ 4y

En ce qui concerne le lemme 13, il va se déduire du lemme technique
suivant :

LEMME B.3. Etant donné un convexe strict C du plan, soient a et b
deux points distincts de OC tels que d(a,b) < r. Alors :

1. Pour chaque m € la,bl, il existe w, € OC \ {a,b} tel que d(m,dC) =
dim,w,,) avec m —w,, 1. OC.

2. L’intersection C(a,b), entre OC et l'un des deux demi plan fermés
H™(a,b) et H(a,b) de R? bordés par la droite (ab), vérifie d(m,C(a, b)) =
d(m,0C) quel que soit m € la, b|.

Démonstration du lemme B.3.

1. Pour m €la,b[ fixé, la fonction f: 9C — R définie par f(w) =
d*(m,w) étant continue sur le compact 9C, I'existence de w,, € 9C tel que
d(m,0C) = d(m, w,,) en découle. De plus, comme OC et f sont différentiables,
wy, est un point critique de f, ce qui conduit & m — w,, L OC. Enfin, si on
avait wy, = a, on aurait alors (ab) L OC en a et par suite b € D,(a) puisque
d(a,b) <r. Or D,(a) C C, d’ou il résulterait que b € C, ce qui est faux. Par
conséquent, on a w,, # a ainsi que w,, # b pour la méme raison.

2. A présent, en notant C (a,b) = H (a,b) N OC et Ct(a,b) =
H*(a,b) N OC, supposons qu’il existe m~,mt € [a,b] tels que I’on ait
dim=,C~(a,b)) > d(m™,0C) et dim™,C*(a,b)) > d(m*,dC).

Soient alors w™,wt € AC \ {a,b} tels que dim=,0C) = dim™,w™)
et dm*,0C) = dim*,wt) — d’ol nécessairement w~ € Ct(a,b) et
wt eC (a,b) — avec m™ —w~ L 8C et m* —wt 1 OC.
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On a donc r > d(a,b) > dm ,b) > dim—,C~(a,b)) > d(m,0C) =
dm~,w™), dot dim ,w”) < r ainsi que d(m",w”) < r de maniere
analogue. De 1a, il résulte alors que le centre ¢~ ¢ (w m~) du cercle
[ (w™) est dans H (a,b) et que le centre ¢ € (wrm™) du cercle T (w™)
est dans H™(a,b).

FIGURE 16
Lemme B.3 (1)

En désignant enfin par S~ (resp. ST) I'unique diamétre (segment fermé)
de T (w™) (resp. ['(w™)) parallele a la droite (ab), I’enveloppe convexe de
S~ UST (parallélogramme plein) a une intersection [p, g] avec (ab) telle que
d(p,q) = 2r. Or, la convexité de C implique que cette enveloppe convexe est
incluse dans C, et par suite [p,q] C [a,b]. On a donc 4(a,b) > d(p,q) > 2r,
ce qui est impossible puisque d(a,b) < r par hypothese. [

Démonstration du lemme 13.

 Pour chaque m € la, b[, soit w, € dC\ {a,b} tel que d(m,C(a,b)) =
d(m,w,,) donné par le lemme B.3. Ceci entraine que d(m,w,) < r et par
suite le cercle I'.(w,,) coupe la droite (ab) en deux points p,, € [a,m| et
gm €lm,b] qui vérifient d(p,,qm) = (r/R)d(a,b) en vertu de la premiere
inégalité du lemme B.1 avec p=r, ¢ =R et v=>b-a.

Par ailleurs, d’aprés le lemme 12, soient &' et »' les uniques points
d’intersection de la, b| avec les cercles I'.(a) et [,(b) respectivement, pour
lesquels on a d(a,a’) > (r/R)d(a,b) et d(b',b) > (r/R)d(a,b), toujours
d’apres le lemme B.1.
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Alors [a,d'[, 10',b] et la famille (1pu, gmDmeocy a3 forment un recou-
vrement ouvert de [a,b], dont on peut donc extraire un sous-recouvrement
fini Z qui est minimal pour l’inclusion. En outre, d’apres ce qui préceéde,
les éléments de 7 sont des segments de longueurs supérieures ou égales a
(r/R)d(a,b).

A présent, montrons qu’aucun point de [a,b] ne peut appartenir a plus de
deux éléments de Z, c’est-a-dire que si un point xy € [a, b] vérifie xo € INJ
avec 1,J € T, alors pour tout H € Z\ {I,J}, on a xp ¢ H.

En effet, apres identification de [a,b] avec un segment de R et quitte
a échanger les r6les de I et J, on a inf(/) < inf(J) < sup(/) < sup(J) par
minimalité de Z. Aussi, supposons qu’il existe H € Z\ {I,J} tel que xy € H.

Si on avait inf(J) < inf(H), alors on aurait sup(J) < sup(H) car H ¢ J
(minimalit¢ de Z) et par suite J C [ UH, ce qui est faux puisque Z est
minimal. C’est donc que inf(H) < inf(J). Or ceci impose que sup(H) < sup(J)
car J ¢ H, d’ou il vient que inf(H) < inf(J) (sinon H C I UJ) et donc
que sup(/) < sup(H) (sinon H C I). Mais alors, c’est que I C H, ce qui, la
encore, est impossible.

Notons alors Z = {I,,...,1,}, A, = U1<i<j<nlimlj et A = [a,b]\ As.
Les ensembles A; et A, forment ainsi une partition mesurable de [a,b] et
vérifient Long(/;) + --- 4 Long(l,) = Long(A;) + 2 Long(A;).

Or, Long(A;) + 2Long(4;) = (Long(A;) + Long(4)) + Long(4,) <
Long([a, b]) + Long(la,b]) = 2d(a,b), d’ou il résulte que n(r/R)d(a,b) <
2d(a, b) puisqu’on a vu que Long(l) > (r/R)d(a,b) pour tout k=1,...,n.

Conclusion: n < EQ2R/r).

* On peut maintenant terminer la preuve du lemme 13 en remarquant que
le rectangle fermé S(a, b) est la réunion des rectangles fermés S, de base le
segment [; et de hauteur r» pour 1 < k < n, chacun d’eux étant inclus dans
un disque D,(wy). En effet, on a alors

pe (S, b)) < pe(Sk)
k=1

avec
1% (Sk) < D, (wp) (Sk)

pour tout 1 < k < n en vertu de la proposition 5 (iv).

Or, chaque rectangle S; étant la réunion des adhérences de deux triangles,
on a Up,(w,)(Sx) < 27 puisque tout triangle est contenu dans un triangle idéal
et que 7 est I’aire d’un triangle idéal dans le disque hyperbolique. Ceci achéve
la preuve du lemme 13. []
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