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STEP 6. Note that A is also the normalization of B. We will compute
dim(A/B).

By [Se], p.59, Formula (3), the question can again be reduced to the
complete case. Let D be the completion of B. Then

D = kl[w,ull /(e ™" —w" [] (1 + ).
1<i<m

Find a € D such that o " = e“lnlgigm(l + Aiu). Define U = u/a.
Then D ~ k[[w,U]]/(U"" — w"). Now we can apply Lemma 4 to get
dim(D/D)={(n— )(im—n—1)—1+d}/2.

STEP 7. Finally we find that §p = dim(A/A) = dim(B/A) + dim(A/B) =
{m — 1)(m —n— 1) — 1 +d}/2. Thus

(N—1D(N—=2)/2—bp={(m—1)n—1)+1—d}/2

because N = max{m,n} = m. This completes the proof of Theorem 2.

REMARKS.

(1) From the above proof, it is clear that Theorem 2 remains valid if
chark =p >0 and p doesn’t divide mn[[, .., mn;.

(2) Similarly, if p is a prime number and the affine curve is defined by
v =11 ;< (x=A)™ such that the ); are distinct, 1 <m; < p and p doesn’t
divide ), ;.,m;, then Theorem 2 (and its proof for this case) remains valid
no matter what chark may be. Note that the latter assumption can always be
achieved. For, if we denote ) ,_,.,m; by m and suppose that m = pr, we
may assume that A\; = 0. Divide both sides of the equation by x". Consider
the new variables u = 1/x, v = y/x".

(3) On the other hand, if we assume that k is a perfect field (such that
(i) ptmn]],;c,mn; if chark =p >0, or (ii) p is a prime number and the
affine curve is defined by y” = [, .,,(x— ;)™ with ...) but not algebraically
closed, then Theorem 2 is true because we can extend the constant field £ to

its algebraic closure at the beginning of the proof without affecting the genus
by [Ch], p.99.
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