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A GENUS FORMULA FOR SOME PLANE CURVES

by Ming-Chang KANG")

ABSTRACT. Let k be an algebraically closed field with chark = 0, and T} be the
irreducible affine curve defined by the equation f(x) = g(y). We determine the genus
of I'o in terms of the numerical data of f and g.

1. INTRODUCTION

Throughout this article k is an algebraically closed field with chark =0,
unless otherwise specified. (See the remarks at the end of this note for weaker
assumptions about the field k.)

Let f(T), g(T) € k[T] be non-constant monic polynomials, let T, be the
affine plane curve defined by the equation f(x) = ¢(y), and let ' be the
projective plane curve associated to I, i.e. T is defined by XY (X, /Xo) =
X g(X2/Xo), where N = max{deg f,deg g}, x = X;/Xo, y = X, /Xo. Assume
that f(x) —g(y) € klx,y] is an irreducible polynomial. The purpose of this note
is to find the genus of (the normalization of) the plane algebraic curve T in
terms of the numerical data of f(x) and g(y). The class of algebraic curves I}
of the form f(x) = g(y) includes hyper-elliptic curves, Fermat curves, some
curves arising in arithmetic questions and coding theory, etc. (see Theorem 1
and [Pr]). It is desirable to find an explicit formula for the genus of such a
plane curve.

Let m = degf, n = degg, d = ged{m,n}. Define R = {a € k :
f'(@ =0}, S={bek:gb)=0}, Sing(Ty) = {(a,b) € RxS : f(a) = g(b)}.
We list all the elements of Sing(Ty) as (ai, by), (a2, bs), ..., (a;, by). (It may
happen that / = 0, i.e. that Sing(I'y)) = @.) For each (a;, b;) € Sing(ITy), write
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@) — g = (x —a)™ fi(x) = (v — b)" g1(y), where fi(@) gi(b;) 7 0. Define
d; = ged{m;, n;}.

The genus of the curve Ty was estimated by Davenport, Lewis and Schinzel
in connection with integral solutions of f(x) = g(y), viz.

THEOREM | ([DLS], Theorem 1). Assume that f(T), g(T) € Z[T]| and
that there are distinct values aj,as,...,a; € R such that t > [m/2] with
f0) = g(y) = (x — a)™ fi(x) — hi(y), where fi(a;) # 0 and hi(y) = 0 has
no multiple roots for 1 < i < t. Then f(x) — g(y) € Clx,y| is irreducible.
Moreover, if n # 2 and (m,n) # (3,3), then the genus of Iy is positive and
the equation f(x) = g(y) has finitely many integral solutions.

The main result of this article is the following

THEOREM 2. Let f(T), g(T) € k[T] and let To,1',m,n,d, m;, n;,d; be
defined as above. Assume that 1y is an irreducible curve. Then the genus
of T is equal to

{m—Dn—D+1—dy/2=> {m—Dm— 1) = 1 +di}/2.

1<i<!

Note that, if T is a non-singular curve, it is necessary that |m — n| <1,
i.e. all the points of I' lying on the infinite line X, = O are non-singular
points. If T' is non-singular and m = n, the above fcrmula reduces to the
well-known formula (m — 1)(m—2)/2; if T is non-singalar and |m —n| =1,
the genus of ' becomes (m — 1)(n —1)/2.

In [Mi], p.74 (Problem II1.2D) it was suggested to find a genus formula
for the cyclic covering y* = f(x) of the affine line by applying Hurwitz’s
formula, although no explicit formula was exhibited taere. Instead we will
prove Theorem 2 by using Pliicker’s formula (see Theorem 3 in Section 2).

We emphasize that in Theorem 2 one must assume that the curve
f(x) — g(y) = 0 is irreducible. This assumption is not a very serious
restriction. For, as a consequence of the classification of finite simple
groups, if f(T), g(T) are indecomposable polynomials, then f(x) — g(y) is
irreducible except when (i) ¢(T) = f(aT + b) for some a,b € k, or
(i) degf = degg = 7,11,13,15,21, or 31. (See [Fe], Theorem 1.1.
A polynomial f(T) € k[T] is indecomposable if, wherever f(T) = J(H(T))
for polynomials f,(T), /»(T) € k[T], we have deg fj =1 for i=1 or 2.)
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2. THE PROOF

We recall Pliicker’s formula first. (See [Se], p.65, Formula (19); [Hi];
[Ca], pp. 111-113. See also the remark in [BK], Theorem 5, p.614.)

THEOREM 3. Let ' be a projective plane curve of degree N. Then the
genus of T is equal to

(N =D =2)/2= o,

where P runs over the singular points of I', Op denotes the local ring at P,
Op is the normalization of Op, and §p = dim(Op /Op).

LEMMA 4. Let k[[x,y]] be the power series ring, m and n be positive
integers, A = k[[x,y]]/(x" —y"), and A the normalization of A. If d =
ged{m,n}, then dim(A/A) = {(m— D(n—1)—1+d}/2.

Proof. STEP 1. If d = ged{m,n} = 1, then dim(A/A) = (m—1)(n—1)/2.

Note that A = k[[x, y]]/(xX" — y") ~ k[[¢*, #"]] < k[[t]] =~ A. Since A is a
complete intersection, A is a Gorenstein local ring and we can apply [Se],
p. 72, Proposition 7. It follows that dim(A/A) = np/2, where (") is the
conductor ideal of A = k[[7]] into A = k[[#*,"]].

On the other hand, the conductor ideal <tM > of k[[f]] into k[[f*,¢"]] is
simply that given by M = min{p € N : for any g > p, ¢ can be written
as nx -+ my for some non-negative integers x,y}. It is not difficult to deter-
mine this non-negative integer M. In fact, M = (m — 1)(n — 1). (See [NZ],
p. 107, Exercise 9.) Hence the result.

STEP 2. Now consider the case d = ged{m,n} > 2. Write m = dr,n = ds.

Let ¢ be a primitive d-th root of unity. Note that x" —y" = (x" )¢ — (y*)? =
[T <;cs"—Cy*). All factors x"—('y* are relatively prime irreducible elements
in k[[x,y]] because k[[x,y]]/(x’~§iy°') = k[[#*,¢"]] 1s a subring of k[[#]]. (Note
that the factor ¢! in X" — ¢’y can be absorbed into y*.)

Let I; be the prime ideal in k[[x,y]] generated by x — ('y*. Since
Lb---I,=0LnLnN---N1,, it follows that

A=)/ J] o« =) =kixyl/h--la— ] 8,

1<i<d 1<j<d

where B; = k[[x, y]l/I;.
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On the other hand, the set of non-zero divisiors of A = k[[x,y]]/LN---NIy
is the image of § = k[[x,y]]\/; U---UI,. Thus the total quotient ring of A
is S7'A, which is just the total quotient ring of [], <j<q Bj- 1t follows that
the normalization of A is [],.,.,B;, where B; is the normalization of B;.

To sum up, dim(A/A) = dim(HlSdeBj/A) + Zlggddim(gj/B_/‘)- Note
that dim(B;/B;) = (r — 1)(s — 1)/2 by Step 1 since gcc{r,s} = 1. It remains
to prove that dim(I[, ., B;/A) = d(d — Drs/2.

STEP 3. We will prove that dim(nggdB_//A) =d(d— l)rs/2.

Define C; = k[[x,y11/I;NIi;1N---N1q and D; = k[[x, y11/Li—1, ;N -+ -Ny)
for 2 <j<d. We get the following short exact sequences

00— A — B x(G ——-)Dz—)(),
0O — ¢ — By xC3 — D3y —— 0,

0—>Cd_1 —)Bd_|XCd—>Dd———-)O.

It follows that A C By X C; C By X By, x C3 C --- C B] x By X -+ X By since
C, = B;. Hence

dim( [ B/A) = dim((B) x C2)/A)

1<j<d

+ ) dim(Bi1 x C)/Cio) = Y dim(D)).

3<j<d 2<j<d

Note that

Dj = ke, yN /-1, ;0 -+~ O 1) = kI, v/ (7 = ¢, T @ = ¢y))

j<i<d
= kllx, y11/&" — Ci_lyS’yS(d—ijl)).

Hence dim(D) = rs(d — j+1). Thus 3, ., dim(D)) = d(d — Drs/2. [

PROOF OF THEOREM 2

The singular points P of I' are either points belonging to Sing(Iy) or
points lying on the infinite line Xy, = 0. We shall compute Jp and apply
Theorem 3.
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STEP 1. P = (a;, b;) € Sing(I'y).

Let 6; = dim(R;/R;) where R; is the local ring at (a;,b;) and R; the
normalization of R;, for 1 < i </[.

Since d; is invariant under completion by [Se], p. 59, Formula (3), it suffices
to compute §; = dim(A;/A;), where A; ~ k[[x, y]] /(2™ —y") is the completion
of R; and A; is the normalization of A;. (For, considering the case i = 1,
we may assume that a; = by = 0 and write f(x) = X" fi(x), 9(y) = y"¢1(y)
where f1(0)g;(0) # 0. The elements f(x), g;(y) are units in k[[x,y]] and can
be written as 8™, y* for some (3,7 € k[[x,y]]. Define X = x3 and Y = y~.
Then Ay ~ kllx,y11/(g(y) — f(x)) ~ K[[X,Y]]/(Y"" — X™).) By Lemma 4, it
follows that dim(A;/A;) = {(m; — D)(n; — 1) — 1 +d;}/2.

STEp 2. If |m—n| < 1, then the projective curve is non-singular
except for those points belonging to Sing(Iy). It is easy to check that
(N— 1N —2)/2={(m—-1Dn—1)+1—d}/2, where N = max{m,n}.

STEP 3. Consider the case m > n + 2. (The case m < n — 2 is similar
and will be omitted.)

Consider the homogenized polynomial equation Xj' g(X2/Xo) = X' f(X1 /Xo)
where x = X; /Xy, y = X»/Xo and we shall write f(x) = [[,;,,(x + ),
g =11, <j<n(y + p;). The only singular point of T" other than those be-
longing to Sing(Ty) is P = (0 :0: 1). Let z = Xo/Xo, w = X;/X,. The
dehomogenized polynomial becomes Z"~" [, <i<n1Hpi2) =[] cicm(w+Ai2).
It suffices to compute dp = dim(A/A), where - o

A=Kuw,dwa/ (" [T O+p2— J] @+r2),

1<j<n 1<i<m

the local ring of I' at the point P. Note that the multiplicity at the point P
is m—n.

STEP 4. The element [[, (1 + p;z) is a unit in A. Call it ¢,

In the local ring A, consider the relation: ez = [],.,c.(w + \2).
Define u = z/w in the quotient field of A. The above relation becomes
" = w" [ i (1 + Aitt).

Write [],.,<,,(1 + XNiw) = > ..., au', where a; € k and ay = 1. Then

no__an i .n L
w Zm—-ngigmalu =w ZOSiSm—n—lalu . Hence

u" (e — E a"u' "y = E aw'u' .

m—n<i<m 0<i<m—n—1

we get eu™™
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n_ i—m+n __ n n--1_ m
€ — E a;w u =€ —dp—pyW —dy—py1W I——dapd
m—n<i<m

is a unit in A, we find
(1) um—n + a]umAn—l + ()zzllm_”~2 NN Oy = 07

where a; € w"A. It follows that u € A.
Clearly, A C B C A, where

B = Alu] = klw, u](wm/(eum_” —w" H (1+ )\iu)) )

1<i<m

Thus 6p = dim(A/A) = dim(B/A) + dim(A/B).

STEP 5. We claim that dim(B/A) = (m — n)(m —n --1)/2.

First we will show that

(2) B=A-+ Z k-wu

0<i<j<m—n—1
Let C be the completion of A. Then C = k[[w,z]]/(ez"””"—]_[lSigm(w%—/\iz)) .

Since B/A = Alu]/A is a finite-dimensional vector space over k, it is naturallly
isomorphic to (Alu]/A) ®4 C. Thus (2) is equivalent to

3) Clul=C+ >  k-w.
0<i<j<m—n—1

To check the validity of (3) it suffices to consider whether Zu’/ (where
0 <j < m—n-—1) belongs to the right-hand-side of (3), because of Formula (1)
and the relation uw = z. We will prove it by induction on j. If j =0, it is
trivial. Now assume j > 1. In case j < m —n —i— 1, then Zu/ = wiu't/
with i4+j < m—n—1 as required. If j > m —n — i, then Zu/ = w'u'"/
and i+ j > m —n. Using (1) we find that &/ is a linear combination of
w'u' with coefficients in A, where 0 <[ < m —n — 1. It follows that, after
modulo C, Zu’/ is a linear combination of u~""% (if /| —n —i > 0) where
[<m—-—n—1.Note that [—n—i <m—2n—i—1 < j. Thus we have reduced
Zu’ to terms of lower exponents.

We shall show that the w'u’/ are linearly indeperdent in B/A where
0<i<j<m-—n~—1.Suppose 0=73_, a;w'u/ in B/A where a; € k are
not all zero. Hence Zi<.i ajw'u’ = p € A. Define p = max{j—i: aij #0}.
Multiply the relation >, ajw'u’ = ¢ by w’. We get Dy @2 = Wy
for some ¢ € A. Since 1 <j<m—n—1, it follows that the multiplicity of
the point P is <m —n — 1, a contradiction.
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STEP 6. Note that A is also the normalization of B. We will compute
dim(A/B).

By [Se], p.59, Formula (3), the question can again be reduced to the
complete case. Let D be the completion of B. Then

D = kl[w,ull /(e ™" —w" [] (1 + ).
1<i<m

Find a € D such that o " = e“lnlgigm(l + Aiu). Define U = u/a.
Then D ~ k[[w,U]]/(U"" — w"). Now we can apply Lemma 4 to get
dim(D/D)={(n— )(im—n—1)—1+d}/2.

STEP 7. Finally we find that §p = dim(A/A) = dim(B/A) + dim(A/B) =
{m — 1)(m —n— 1) — 1 +d}/2. Thus

(N—1D(N—=2)/2—bp={(m—1)n—1)+1—d}/2

because N = max{m,n} = m. This completes the proof of Theorem 2.

REMARKS.

(1) From the above proof, it is clear that Theorem 2 remains valid if
chark =p >0 and p doesn’t divide mn[[, .., mn;.

(2) Similarly, if p is a prime number and the affine curve is defined by
v =11 ;< (x=A)™ such that the ); are distinct, 1 <m; < p and p doesn’t
divide ), ;.,m;, then Theorem 2 (and its proof for this case) remains valid
no matter what chark may be. Note that the latter assumption can always be
achieved. For, if we denote ) ,_,.,m; by m and suppose that m = pr, we
may assume that A\; = 0. Divide both sides of the equation by x". Consider
the new variables u = 1/x, v = y/x".

(3) On the other hand, if we assume that k is a perfect field (such that
(i) ptmn]],;c,mn; if chark =p >0, or (ii) p is a prime number and the
affine curve is defined by y” = [, .,,(x— ;)™ with ...) but not algebraically
closed, then Theorem 2 is true because we can extend the constant field £ to

its algebraic closure at the beginning of the proof without affecting the genus
by [Ch], p.99.
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