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A GENUS FORMULA FOR SOME PLANE CURVES

by Ming-Chang Kang '

Abstract. Let k be an algebraically closed field with char k 0, and Io be the
irreducible affine curve defined by the equation We determine the genus
of To in terms of the numerical data of / and g.

1. Introduction

Throughout this article k is an algebraically closed field with char A' 0,
unless otherwise specified. (See the remarks at the end of this note for weaker
assumptions about the field k.)

Let f(T),g(T) G A(7'1 be non-constant monic polynomials, let To be the
affine plane curve defined by the equation g(y), and let T be the
projective plane curve associated to T0, i.e. T is defined by
Xq 9(X2/%), where N maxjdeg /, deg Xi /%. Assume
that f(x) — g(y)g k[x. \j is an irreducible polynomial. The purpose of this note
is to find the genus of (the normalization of) the plane algebraic curve T in
terms of the numerical data of f(x) and g(y). The class of algebraic curves T0

of the form f(x) g(y) includes hyper-elliptic curves, Fermât curves, some
curves arising in arithmetic questions and coding theory, etc. (see Theorem 1

and [Pr]). It is desirable to find an explicit formula for the genus of such a
plane curve.

Let m — deg/, n degg, d gcd{m,n}. Define R {a G k :

f(a) =0}, S {b e k : g'(b)0}, Sing(T0) {(a, G /(a)
We list all the elements of Sing(T0) as (It may
happen that I0, i.e. that Sing(r0) 0.) For each (a,, b,) G Sing(T0), write

*
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fix) - giy=(x~ at)"''f\{x)-(y-bif' (y), where f 0. Define

cli gcd{m,-, «,•}.

The genus of the curve T0 was estimated by Davenport, Lewis and Schinzel

in connection with integral solutions of fix) giy), viz.

Theorem 1 ([DLS], Theorem 1). Assume that /(F), g(T) G Z[F] and

that there are distinct values a^ai,.. » tat G R such that t > [m/2\ with

fix) - giy) - ("v - ai)m'f\{x) - hiiy), where ffaj) ^ 0 and hfy) 0 has

no multiple roots for 1 < i < t. Then fix) — giy) G C[v,y] is irreducible.

Moreover, if n ^ 2 and (m,n) ^ (3,3), then the genus of To is positive and

the equation fix) giy) has finitely many integral solutions.

The main result of this article is the following

Theorem 2. Let /(T), giT) G k[T] and let r0,F, m, J, be

defined as above. Assume that T0 is an irreducible curve. Then the genus

of T is equal to

{(m - 1)(« - 1) + 1 - d}/2- J2~ - 1) - 1 +
\<i<l

Note that, if T is a non-singular curve, it is necessary that \m - n\ < 1,

i.e. all the points of F lying on the infinite line := 0 are non-singular

points. If T is non-singular and m n, the above formula reduces to the

well-known formula (m — l)(m —2)/2 ; if T is non-sing alar and \m — n\ 1,

the genus of T becomes (m — 1 )(« — l)/2.
In [Mi], p. 74 (Problem III.2D) it was suggested to find a genus formula

for the cyclic covering yn fix) of the affine line by applying Hurwitz's

formula, although no explicit formula was exhibited ttiere. Instead we will

prove Theorem 2 by using Plficker's formula (see Theorem 3 in Section 2).

We emphasize that in Theorem 2 one must assume that the curve

_ g(y) — o is irreducible. This assumption is not a very serious

restriction. For, as a consequence of the classification of finite simple

groups, if /(F), giT) are indecomposable polynomials, then fix) - giy) is

irreducible except when (i) giT) — fiaT + b) for some a,b G k, or

(ii) deg/ deg g 7,11,13,15,21, or 31. (See [Fe], Theorem 1.1.

A polynomial /(F) G k[T] is indecomposable if, wherever /(F) =/(/2(F))
for polynomials /i(F),/2(F) G k[T], we have deg / 1 for i 1 or 2.)
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2. The proof

We recall Pliicker's formula first. (See [Se], p.65, Formula (19); [Hi];
[Ca], pp. 111-113. See also the remark in [BK], Theorem 5, p. 614.)

THEOREM 3. Let T be a projective plane curve of degree N. Then the

genus of T is equal to

(N-l)(N-2)/2 -J26p >

where P runs over the singular points of T, Op denotes the local ring at P,

Op is the normalization of Op, and 6p dim(Op/Op).

Lemma 4. Let k[[x,y]] be the power series ring, m and n be positive
integers, A — k[[x,y]\/(tfn — yn), and Ä the normalization of A. If d

gcd{m^n}, then dim^(Â/A) {{m — l)(n — 1) — 1 + d}/2.

Proof Step 1. If d — gcd{m,n} 1, then dim(Ä/A) (m— l)(n—1)/2.
Note that A k[[x,y]]/tf11 - /) ~ k[[f\tm]] ^ k[[t]] ~ Ä. Since A is a

complete intersection, A is a Gorenstein local ring and we can apply [Se],

p. 72, Proposition 7. It follows that dim(Ä/A) «p/2, where (flp) is the

conductor ideal of Ä k[[t]] into A k[[tn,f1]].
On the other hand, the conductor ideal (tM) of k[[t]] into k[[f\ tm]\ is

simply that given by M — min {p G N : for any q > p, q can be written
as nx + my for some non-negative integers x,y}. It is not difficult to determine

this non-negative integer M. In fact, M (m — 1 ){n — 1). (See [NZ],
p. 107, Exercise 9.) Hence the result.

STEP 2. Now consider the case d — gcd{m,n} > 2. Write m dr^n — ds.

Let C be a primitive d-th root of unity. Note that x!n — yn (xr)d — (ys)d

n,<K,/^ -Cy)-All factors j^-cy are relatively prime irreducible elements

in k[[x,y]\ because k[[x^y]]/(xr — £y) k[[t\ f]] is a subring of (Note
that the factor Ç in xr — Qys can be absorbed into /.)

Let p be the prime ideal in ^[[x, y]] generated by xr — Çys. Since

h h • • • Id — h H h H • • • fi Id, it follows that

A ÄH.v.yll/ JJ (V - CV) AM.v.vll//, J] Bj,
1 <i<d 1 <j<d

where Bj k[[x,y]]/Ij.
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On the other hand, the set of non-zero divisiors of A k[[x,y]]/I\ n- • -nid
is the image of S k[[x,y]] \ I\ U • • • U Id. Thus the total quotient ring of A
is S~lA, which is just the total quotient ring of Yl\<j<dBj. It follows that
the normalization of A is Ü i <j<d ' where Bj is the normalization of Bj.

To sum up, dim(Ä/A) dimiH^^Bj/A) + ]T\<j<ddim(Ëj/Bj)- Note
that dim(Bj/Bj) (r - 1)0- l)/2 by Step 1 since gccl{r, s} 1. It remains

to prove that dim(JJ{^j<dBj/A) d(d - l)rs/2.

Step 3. We will prove that dim(Y[\<j<dBj/A) d(d — \)rs/2.
Define Cj k[[x,y]]/Ijnij+i fl • -f)Id and Dj ^[[v,y]]/(/7_u/yn-• *DId)

for 2 <j<d. We get the following short exact sequences

0 y A y B\ x C2 y D2 y 0,

0 y C2 y B2 x C3 y D3 y 0
5

0 I- Cd-1 » Bd-\ x Cd » Dd y 0.

It follows that A C B\ x C2 C B\ x B2 x C3 C • • • C B\ x B2 x • • • x Bd since

Cd Bd. Hence

dim( Yl Bj/A) dim((ß| x C2)/A)
1 <j<d

+ dimrtß;..., x C^/C,--!) =; ^ dim(Dy).
3</<rf 2</<J

Note that

Dj k[[x,y]\/(Ij-UIjn• • • n /„) k[[x,y]]/(ï - C^V, J] (xr - C/))
j<i<d

~A'II.V.v|J/(.v' - c' 'y./"'
Hence dim(D7) rs(d — y + 1). Thus dim^) := d(d —1)^/2.

Proof of Theorem 2

The singular points P of T are either points belonging to Sing(To) or
points lying on the infinite line 0. We shall compute 5P and apply
Theorem 3.
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Step 1. P {au bt) e Sing(r0).

Let Si — dim(Ri/Ri) where Rt is the local ring at (an hi) and Rt the

normalization of Rt, for 1 < i < I.
Since Si is invariant under completion by [Se], p. 59, Formula (3), it suffices

to compute St dim(A;/A/), where A; ~ k^x^y]]/^' —yn') is the completion
of Rj and A/ is the normalization of At. (For, considering the case / 1,

we may assume that a\ — b\ 0 and write f{x) Xnif\M, 9(y) yni9\(y)
where /i((%i(0) / 0. The elements /i(x), g\{y) are units in k[[x,y]] and can
be written as ßm\ ynx for some ß, 7 G &[[v,y]]. Define X — xß and Y yy.
Then Ax ~ k[[x,y]]/(g(y) -f(x)) ~ T]]/(r> By Lemma 4, it
follows that dim(Ä//A;) {(m, — l)(/7, — 1) - 1 + dj}/2.

Step 2. If |m — 771 < 1, then the projective curve is non-singular
except for those points belonging to Sing(r0). It is easy to check that

(N — 1 )(N — 2)/2 {(m — 1 ){n — 1) + 1 — d}j2, where N ma

Step 3. Consider the case m > n + 2. (The case m < n — 2 is similar
and will be omitted.)

Consider the homogenized polynomial equation g(X2/X0) Xf{X\ /A0)
where a Aj/2f0, y X2/X0 and we shall write f(x) — ni<i<m^+
sV) n !<,-<„()> + P/')- The only singular point of T other than those

belonging to Sing(r0) is P (0 : 0 : 1). Let z — X0/X2, w X\jX2. The

dehomogenized polynomial becomes fl~n n 1 <j<n(i+pjz) - rii<i<m(w+v)-
It suffices to compute SP dim(A/A), where

A k[w,z\w,z)/(zm~n na + PjZ) II V))
1 </'<« 1 <i<m

the local ring of T at the point P. Note that the multiplicity at the point P
is m — n.

Step 4. The element ni</<„0 + Pf) is a unit in A. Call it e.

In the local ring A, consider the relation: ef1^1 Y\x<i<m{w + A/z).
Define u z/w in the quotient field of A. The above relation becomes
eum~» w"n,<,<ffl(l+A,«).

Write n,<,<m(l + -^i") — Eo <i<ma>u'>wherea,- e k and a() I. Then

we get eum~n-wn Em-n<i<maiu'w" Eo</<m-„-i a.-"1'- Hence

aiw"ui~m+n)= J2 "rifV-
m—n<i<m 0<i<m—n—\
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As

e — ^ iijw"it'~"l+n e - am-nw" - am-n+\wn~~xz — • • • — amzm

is a unit in A, we find

(1) II'" 11 + Q>\Um " 1

+ (%2Um n 2
H~ * + Olm—gj 0

7

where a, G u/M. It follows that w G Ä.

Clearly, A C B C Ä, where

B A[u]Â|,r.- [J (1 + A,-«))
1

Thus Sp dim(Ä/A) dim(ß/A) + dim(Ä/ß).

Step 5. We claim that dim(P/A) (m — n)(m — n l)/2.
First we will show that

(2) B=A+ ^2 k' w'uJ
•

0 <i<j<m — n— 1

Let C be the completion of A. Then C k[[wJz]\/(ezm~~n-Xtj<i<m(wAXiZ)) •

Since B/A A[u]/A is a finite-dimensional vector space over k, it is naturallly
isomorphic to (.A[u]/A) <g>A C. Thus (2) is equivalent to

(3) CM C + ]T t • w'V.
1— 1

To check the validity of (3) it suffices to consider whether tuj (where
0 <j < m — n—I) belongs to the right-hand-side of (3), because of Formula (1)
and the relation uw z. We will prove it by induction on /'. If j 0, it is

trivial. Now assume j > 1. In case j < m — /? — /— 1, then zW wlul+i
with z + j < m — n\ — 1 as required. If j > m — n — i, then z^-7 wluz+-7

and i A j > m — n. Using (1) we find that z/z+/ is a linear combination of
wnul with coefficients in A, where 0 < I < m — n — 1. It follows that, after

modulo C, tu-i is a linear combination of //" " ' (if / — /? — />()) where
1 <m — n— 1. Note that l — n — i<m — 2n — i—\ <j. Thus we have reduced

tu'} to terms of lower exponents.
We shall show that the tCzC are linearly independent in B/A where

0 < i < j < m - n - 1. Suppose 0 Yh<jaiiwlu'j m B/A where a,, G k are

not all zero. Hence JZi<j aijw'li^ <p G A. Define max{ / — z : ^ 0}.
Multiply the relation ]L/</ aifit it by wP. We get ^2j_i=pUijZj wtjj
for some $ G A. Since 1 <j<m — n— 1, it follows that the multiplicity of
the point P is < m — n — 1, a contradiction.
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Step 6. Note that A is also the normalization of B. We will compute
dim(Ä/B).

By [Se], p. 59, Formula (3), the question can again be reduced to the

complete case. Let D be the completion of B. Then

Dk[[w, u]]/(eu"'~" - P[ (1 + A,m)) '

1 <i<m

Find a G D such that am~n e~l Yl\<i<m^ + A/m). Define U u/a.
Then D ~ k[[w, U]]/(Urtl~n — w"). Now we can apply Lemma 4 to get
dim(D/D) {(n — 1 ){m — n — 1) — 1 + d}/2.

Step 7. Finally we find that 6P dim(Ä/A) dim(B/A) + dim(Ä/B)
{(m — 1 ){m — n — 1) — 1 + d}/2. Thus

(N - 1 )(N - 2)/2 -ôp {{m - 1 ){n - 1) + 1 - d}/2
because N max{m, n} m. This completes the proof of Theorem 2.

Remarks.
(1) From the above proof, it is clear that Theorem 2 remains valid if

char k /?>() and p doesn't divide /7z/? n i <;/<:/ •

(2) Similarly, if p is a prime number and the affine curve is defined by

yp ni<K/(*-A,r such ^at the A, are distinct, 1 < rrij < p and p doesn't

divide Xu<K/m" ^en Theorem 2 (and its proof for this case) remains valid

no matter what char& may be. Note that the latter assumption can always be

achieved. For, if we denote X]i<K/m' ^ m anc* suppose that m pr, we

may assume that Ai 0. Divide both sides of the equation by Consider
the new variables u 1 /v, v y/T".

(3) On the other hand, if we assume that k is a perfect field (such that

(i) p \ mnYl\ </</mini if char^ p > 0, or (ii) p is a prime number and the

affine curve is defined by yp — Ükk/^- A/)W/ with but not algebraically
closed, then Theorem 2 is true because we can extend the constant field k to
its algebraic closure at the beginning of the proof without affecting the genus
by [Ch], p. 99.
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