Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 50 (2004)

Heft: 1-2: L'enseignement mathématique

Artikel: Lattices, 12-Betti numbers, deficiency, and knot groups
Autor: Eckmann, Beno

DOl: https://doi.org/10.5169/seals-2643

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-2643
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 50 (2004), p. 123—137

LATTICES, ¢,-BETTI NUMBERS, DEFICIENCY, AND KNOT GROUPS

by Beno ECKMANN

In an introductory lecture to the “Borel-Seminar” on ¢, -homology in Berne,
Summer 2002, T described among various other classes a new class of finitely
presented groups where the first /,-Betti number vanishes. Namely, all infinite
lattices in arbitrary connected Lie groups apart from special exceptions. These
exceptions are the lattices commensurable with those in PSL,(R), the isometry
group of the hyperbolic plane. In the general case it follows that the deficiency
of the lattice is < 1. The lattices with vanishing first 4 -Betti number and
deficiency equal to 1 are of special interest. They are examined in Part Two
of this paper.

After writing down the present detailed survey of these aspects of my
lecture I learned that the class was not that new: It had appeared, not long
before, in a paper by John Lott [L] on the deficiency of lattices. In spite of
a considerable overlap between the two papers there are some differences in
methods and motivation; the present text can be considered as a compendium
to [L]. As for the methods, for example, my treatment of harmonic I, -forms is
reduced to the cocompact case (thanks to Gaboriau’s proportionality principle)
and thus does not use the singular ¢,-theory of Cheeger-Gromov nor their
interesting but complicated approach to the non-cocompact case in [Ch-G2].
Or, in Part Two, the additivity of (virtual) cohomology dimensions for group
extensions is a simplifying tool. My motivation for Part Two was the discussion
of knot groups, since they have exactly the respective properties; this is not
~in [L], where the motivation for the special lattices is to show that, apart from
few exceptions, lattices have deficiency < 0 (which contains various special
results by Lubotzky).

I thank Marc Burger for good remarks and suggestions.
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PART ONE:  LATTICES AND FIRST {,-BETTI NUMBER
1. SURVEY AND PRELIMINARIES

1.1. It is well-known that the Lie group L = PSI»(R) contains lattices
I' which are non-Abelian free, and lattices which are isomorphic to the
fundamental group of closed surfaces of genus > 2 (we will call them in short
“surface groups”). The former are non-cocompact and the latter cocompact
(uniform), and these are the only possibilities for a torsion-free lattice in
PSL,(R). The symmetric space M = L/K where K is a maximal compact
subgroup of L, the hyperbolic plane, is the universal covering of a K(I',1)-
manifold of dimension 2, open in the non-cocompact case and closed in the
cocompact case. Since the cohomology dimension cd(I') [B,Ch.VIII], equal
to the geometric dimension except possibly for cd = 2, will play a certain
role in this paper we note here that cd(I') is 1 in the former and 2 in the
latter case. The first ¢, -Betti number 3;(I') of these lattices is # 0.

If we admit torsion then the lattice T is virtually torsicn-free, i.e. contains a
subgroup of finite index which is torsion-free. Thus all the above remarks apply
“virtually”. The virtual cohomology dimension ved(I') is 1 or 2 respectively;
I is virtually non-Abelian free or a virtual surface group, and 3(I') # 0.

1.2. In Part One we show, in the general case of arbitrary connected Lie
groups L, that the non-vanishing of 5, of a lattice is exceptional, in the
following sense. If for a lattice T in a connected Lie group the first (,-Betti
number is non-zero then T' is commensurable with a torsion-free lattice A in
PSL,(R) (this means that there is a subgroup I’y of I' cf finite index and an
exact sequence

| —N-—T)—A—1

where N is finite and A a torsion-free lattice in PSL,(R), i.e. a surface group
or a non-Abelian free group). Thus in general the first ¢>-Betti number of a
lattice is zero. This implies properties of the deficiency of a lattice, and of
the signature of a 4-manifold with fundamental group isomorphic to a lattice
in a connected Lie group.

1.3.  We first consider (Section 2) the case of a connected semisimple linear
Lie group L without compact factors. Here we discuss the non-vanishing of
Gy of a lattice T' for arbitrary k& > 0. Using deep results (see Section 2) it
turns out that (') = 0 for all k except possibly for the middle dimension
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of the symmetric space M = L/K. This has applications. We then turn in
Section 3 to the non-vanishing of [3,. Arbitrary Lie groups are considered
in Section 4; the general case is reduced in several steps to the case of a
semisimple linear Lie group without compact factors.

1.4. DEFINITIONS

a) A lattice T" in a connected Lie group L is a discrete subgroup of L
such that L/T has finite volume. It is said cocompact if L/T" is compact.
A lattice can only be finite if L is compact.

b) Lattices are finitely presentable. If a finitely presentable group G has a
presentation with o generators and [ defining relations the difference o — (3
is called the deficiency of the presentation. The deficiency def(G) is the
maximum of the deficiencies over all presentations.

¢) The geometric dimension gdim(G) of a group G is the minimum of
the dimensions of all K(G, 1)-spaces. In this note “space” will always mean
cell-complex. We recall that the cohomology dimension cd(G) [cf [B]) is
equal to gdim(G) except possibly for c¢d(G) = 2. In any case gdim(G) < 2
implies c¢d(G) <2 and G is torsion-free.

d) For the definition of /¢,-Betti numbers we refer to [E] where further
references can be found. Here we just recall that one considers a free cocompact
G-space Y, in other words a regular covering of a finite cell-complex X with
G as covering transformation group. The reduced ¢,-homology group H;(Y)
is a finitely generated Hilbert G-module and its von Neumann dimension
relative to G is the ith Betti number £(Y,rel G). If Y is the universal
covering X of X then G = m(X) and ,8,-()’(“, rel (X)) is often written [3;(X).
The combinatorial Euler characteristic x(X) of the cell-complex X is equal to
the alternating sum of the /,-Betti numbers of X (exactly as in the classical
Euler-Poincaré formula with ordinary Betti numbers). Note that 3(X) and
B1(X) only depend on the fundamental group m(X) = G and can be written
Bo(G) and (31(G), and that (y(G) = O if and only if G is infinite. More
generally the /;-Betti numbers of G are defined as those of K(G, 1) provided
there is a finite K(G, 1)-complex (or for i < n if there is a K(G,1) with
finite (n + 1)-skeleton).

REMARK. /;-Betti numbers have also been defined for more general free
G -spaces (see [Ch-G]) and even for arbitrary G-spaces [L, Ch.6]. In the case
of a free cocompact action they agree, of course, with those described above.
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In particular one has f,-Betti numbers for groups G without any finiteness
condition.

If, in our context, I' is non-cocompact we obtain from the symmetric space
an open K(I',1)-manifold. There one has to use the more general type of
¢, -Betti numbers in order to obtain information about harmonic [, -forms (see
[Ch-G2]). We avoid that procedure by reducing the approach to the cocompact
case.

1.5. PRELIMINARIES. We recall for later use at different places some facts
concerning [(;(G) of a finitely presented infinite group G.

PROPOSITION 1.1. If Gy is a subgroup of finite index in G then, for all
i >0, 8(G) #0 if and only if B(G1) # 0.

PROPOSITION 1.2. If N is a finite normal subgroup of G then 3,(G) # 0
if and only if 5/(G/N) # 0.

Proposition 1.1 follows from the fact that for a subgroup of finite index
the [3; are multiplied by the index.

To prove Proposition 1.2 consider the Lyndon-Hochschild-Serre spectral
sequence leading from G/N to G. Since ((G/N) = Bi(N) = 0 and
Bo(N) # 0 the only term contributing to (;(G) is H\(G/N;Hy(N)) (reduced
¢, -homology). Thus H;(G) # 0 if and only if H{(G/N) # 0.

PROPOSITION 1.3 (The Cheeger-Gromov Theorem [Ch-G]). If the finitely
presented group G admits an infinite amenable normal subgroup N then
B1(G) =0 (actually, in the more general sense (3(G) =0 for all i).

PROPOSITION 1.4. If 3/(G) = O then the deficiency def(G) is <1, and
def(G) = 1 implies that gdim(G) = cd(G) < 2.

To prove this let Z be the finite 2-dimensional cell complex constructed
from a presentation with deficiency equal to def(G), and Z its universal
covering. We recall from [E] that

X(Z) =1 —def(G) = —(1(G) + (2(Z) .

It 5,(G)= O~then def(G) < 1, and if def(G) is equal to 1 then 3(Z) =0
whence H,(Z) = 0. Since integral finite cycles are contained in Fh(Z) it
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follows that ordinary integral homology in dimension 2 of Z is 0: thus Z
is contractible, and Z is a finite K(G, 1) of dimension two.

Since surface groups of genus > 2 and non-Abelian free groups have
deficiency > 2 it follows from Proposition 1.4 that their first 4 -Betti number
is # 0, and the same holds in the virtual case.

We will also make use of the following classical result (Stallings” Theorem,
see [C] where further references are given) concerning cohomology dimension.

THEOREM 1.5. A finitely generated group of cohomology dimension one

is free.

It has been proved by Swan that the statement is true for all groups. We
will not need that generalization of Theorem 1.5.

2. {,-BETTI NUMBERS OF LATTICES IN SEMISIMPLE LINEAR GROUPS

2.1. Let I' be a torsion-free lattice in the connected semisimple linear
Lie group L without compact factors.

The Riemannian symmetric space M = L/K, where K is a maximal
compact subgroup, is a contractible free I'-manifold of dimension d. It is the
universal covering of a K(T', 1)-manifold X, of dimension d, closed or open
according to whether I' is cocompact or not.

We first look at the case where X is compact. By the theorem of Dodziuk
[D] the reduced ¢;-cohomology space H*(M) of M is T'-isomorphic to the
space H*(M) of harmonic L,-forms of degree k.

If we now assume that 3;(I') # O then H*(M) # 0 and therefore M ad-
mits non-zero harmonic L,-forms of degree k. According to Borel-Wallach
[B-W, Section 5 in Chap.I] and Connes-Moscovici [C-M, Theorem 6.1 ff]
there is only one dimension g where such harmonic g-forms # 0 can

exist, namely ¢ = 3 dimM = 1d. Thus the dimension d of M must
be 2k.

2.2. If the lattice I" is non-cocompact we use the proportionality principle
of Gaboriau [G, Cor. 0.2]. It says that for fixed k the Betti numbers G(ID)
of all lattices I' in L differ only by a positive factor. Thus if F(T") # 0 the
same is true for any cocompact lattice in L; and such lattices always exist
by Borel’s theorem. Thus again d = 2k.
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THEOREM 2.1. Let T be a torsion-free lattice in the connected semisimple
linear Lie group L without compact factors. If the dimension d of the
symmetric space M = L/K is odd then all () are zero. If d is even
then all () are zero except possibly for the middle dimension i = %d.

If the lattice T is not asssumed torsion-free then it contains a subgroup
I, of finite index which is torsion-free. I} is again a lattice in L. The
non-vanishing of 3(I) implies the non-vanishing of G (I') and thus d must
be equal to 2k:

THEOREM 2.2. The conclusions of Theorem 2.1 hold for arbitrary lattices
in L.

2.3. As a corollary of Theorem 2.1 one obtains the following known
result, which is a special case of the “Singer Conjecture”.

THEOREM 2.3. Let X be a closed Riemannian manifold. If the universal

covering X is a Riemannian symmetric space of non-compact type then all
Bi{(X) are zero except possibly for the middle dimension.

Indeed m(X) considered as covering transformation group has a subgroup
of finite index which is a cocompact lattice T' in the 1-component of the
isometry group of X. Thus B:(I) = B:«(X) = 0 except possibly for the middle
dimension.

EXAMPLE 2.4. If X is a closed hyperbolic manifold of dimension d then

X = H? is the hyperbolic d-space. The ¢,-Betti numbers are zero except for
even d = 2k where 3, # 0, see [D].

EXAMPLE 2.5. We consider the non-cocompact lattice I’ = SL,(Z) in
SL,(R) for n > 3, and let '} be a torsion-free subgroup of finite index in I'.
Although here X = M/T’; is not compact it was shown by Borel-Serre [B-S]
that X is homotopy equivalent to a finite cell complex. The 4, -Betti numbers
of Ty, whence of I', are all zero if d is odd (n = 4m or n = 4m+3). They
are all zero except possibly for the middle dimension if d is even (n = 4m-+1
or n = 4m+ 2); but since it is known that for n > 3 the Euler characteristic
of Ty is equal to O they are also all zero.
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3. NON-VANISHING OF (3

3.1. Let again L be a connected semisimple linear Lie group without
compact factors, and I' a lattice in L. If $)(I) # 0 then according to
Theorem 2.1 the dimension d of the symmetric space M = L/K must be 2.
Looking at the list of all L one notices that d = 2 for SI,(R) and PSL,(R),
and there are no other possibilities.

THEOREM 3.1. Let I be a lattice in the connected semisimple linear
Lie group L without compact factors. If the first ¢5-Betti number (3,(T') is
non-zero then I’ is a lattice in SI,(R) or PSLy(R). Thus T is a virtual
surface group or virtually a non-Abelian free group.

3.2. We add two immediate corollaries of Theorem 3.1. L and T are as
in that Theorem.

COROLLARY 3.2. If T' is not isomorphic to a lattice in PSLy(R) then
Bi(I') = 0. This is the case in particular if ved(T) is > 2 for cocompact T
and >'1 for non-cocompact T .

According to Proposition 1.4 the vanishing of S;(I') implies strong
properties of the deficiency of the finitely presented group T : namely
def(I') < 1 and if def(I") = 1, then gdim(T") = cd(T) < 2.

COROLLARY 3.3. If T is not isomorphic to a lattice in PSL,(R) then its
deficiency def(I') is <1 and if def(T) = 1 then gdim(I") = cd(T") < 2 and
I' is torsion-free.

4. LATTICES IN CONNECTED LIE GROUPS

4.1. Let L be a connected Lie group and I' an (infinite) lattice in L,
Rad(L) the radical of L, i.e. the maximal connected normal solvable subgroup
of L.

We recall a general fact (see [A, Proposition 2] or [R, Corollary 8.27]):
If L/Rad(L) has no compact factor then, for any lattice T,

I'/T NRad(L) = T Rad(L)/ Rad(L)

is discrete in L/Rad(L) whence a lattice.
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[The proof that T'/TNRad(L) is discrete is based on various results. One first
shows that the 1-component C of its closure in L/Rad(L) is solvable; then
that C is normal in L/Rad(L) (this in turn because a lattice has property (S),
see [R, 5.1ff]); thus C =1, i.e. T/T'NRad(L) is discrete.]

We now assume that 3(I') # 0. Since the intersection I' N Rad(L) is
solvable, whence amenable it must be finite by Proposition 1.3. We write R
for the product of Rad(L) with a suitable compact normal subgroup of L so

that L; = L/R is semisimple without compact factors. Then I' R is finite
and Ty = T'/TNR is an infinite lattice in L; with §;(I';) # 0.

4.2. The intersection of I} with the discrete center Z(L;) must be finite,
again by Proposition 1.3. The adjoint representation of 1; yields a linear Lie
group L;/Z(Ly). It contains the lattice I'; /T’y NZ(Ly), i.e. the factor group /N
of the original lattice T by a finite normal subgroup N, and G;(I'/N) # 0.

43. Let Ty/N be a torsion-free subgroup of finite index in I'/N. It is a
lattice in a connected semisimple linear Lie group without compact factors;
by Theorem 3.1 it is isomorphic to a torsion-free lattice A in PSL,(R). Since
I’y has finite index in T" and N is finite we get the exact sequence

l —N-—Ty)—A—1

as requested.

THEOREM 4.1. Let T be a lattice in a connected Lie group. If the first
05 -Betti number of T is non-zero then T is commensurable with a torsion-free
lattice A in PSLy(R), i.e. with a surface group of genus > 2 or a non-Abelian

free group.

Thus “in general” the first ¢,-Betti number of a lattice in a connected Lie
group is zero. As in 3.3 this yields information about the deficiency.

THEOREM 4.2. If the infinite lattice T in the connected Lie group L is not
commensurable with a torsion-free lattice in PSLy(R) then Bi(I') = 0. The
deficiency of T is then < 1; and if def(T') =1 then gdim(I') = cd(I') < 2.

4.4. TwWO APPLICATIONS

1) Again we can say that “in genera!l” the deficiency of a lattice in a
connected Lie group is < 0. We return to the exceptional cases of deficiency
one in Part Two.
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2) Let Y be a 4-manifold with fundamental group isomorphic to a lattice
I' in a connected Lie group, I' not commensurable with a lattice in PSL,(R),
and let x be its Euler characteristic and o its signature. Then (cf [E2]) one
has |o| < x.

PART TWO:  LATTICES WITH (3; =0 AND DEFICIENCY 1
5. INTRODUCTION

5.1. As shown in Part One an infinite lattice T' in a connected Lie group
L has first ¢;-Betti number §;(I') = 0, whence deficiency < 1, except if T
is commensurable with a torsion-free lattice in PSL,(R), i.e. with a surface
group of genus > 2 or a free non-Abelian group. The objective of Part Two
i1s to show that lattices with 3; = 0 and def = 1 are exceptional, and to
give a list of these. For any other infinite lattice in a connected Lie group,
not commensurable with a surface group of genus > 2 or a free non-abelian
group, the deficiency is < 0.

5.2. The crucial fact for the lattices I considered here is that they are of
geometric and cohomological dimension < 2 whence torsion-free and have a
finite K(I', 1)-complex; and that their Euler characteristic is 0. This strongly
limits the possibilities for the respective Lie groups.

6. THE COHOMOLOGY DIMENSION OF I' AND THE SOLVABLE CASE

6.1. As shown in Section 1 (in particular in Proposition 1.4), the conditions
B1(I) = 0 and def(I") = 1 imply, actually for any finitely presented infinite
group, that (,(I') = 0, that the 2-dimensional presentation complex, for a
presentation with deficiency 1, is a K(T", 1), and that the Euler characteristic
x(I) = 0. Thus gdim(I') = ¢d(I') < 2 and T is torsion-free. Note that
conversely gdim(I') <2 and £(I') =0 and x(I') =0 imply def(I') = 1.

6.2. We first consider the cases cd(I') =0 and 1.

Since I' is infinite c¢d(T") is # 0. If cd(I’) = 1 then I is a free group by
Stallings’ Theorem 1.5. As 3; =0, I" must be equal to Z and L = R.

In what follows, I'" is always of cohomology dimension 2.
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6.3. If L is solvable then I' is cocompact. Thus in our case L/I" is a
closed K(T,1)-manifold of dimension 2 with solvable fundamental group.
The only possibilities for that manifold are the 2-torus and the Klein bottle ;
ie. T =72 or T = fundamental group of the Klein botile, and L = R®.

7. THE SEMISIMPLE CASE

7.1. Let L be a connected semisimple Lie group without compact factors,
M = L/K the symmetric space (K = maximal compact subgroup), I' a
torsion-free lattice in L. We recall that M is the universal covering of a
K(T", I)-manifold.

In order to get examples for lattices I' with gdim(I') = cd(I’) = 2 and
with 3;(I') = 0 we look for cases where the dimension d'M) is 3. the lattice
being torsion-free and non-cocompact. From 3.1 it follows that 5(I') # 0
would imply d(M) = 2; thus §;(I') is indeed zero. Since d(M) is odd the
Euler characteristic x(I') is zero and this guarantees (see €.1) that def(I') = 1.
To prove that y(I') = 0 one can cither use Theorem 3.1 which tells that all
¢, -Betti numbers of T are zero. A different argument (not using Borel-Wallach
etc) is to note that the Euler-Poincaré measure p in the case of odd d is
identically O [S, paragraph 3] and x(I), the integral of p over L/T is zero.

If dim(M) =3 and I' not cocompact, then cd(I’) <0 2. But cd(I') = 1
would mean T" = Z which here is not possible. Thus cdiI’) = 2.

7.2. Such an example is L = PSI,(C), considered as a real Lie group; its
rank £ is 1, its dimension is 6 and the dimension of K is 3. The torsion-free
non-cocompact lattices in L fulfill all the required properties above.

7.3. Another example of a similar kind is P, the universal covering of
P = PSL,(R). It contains non-cocompact lattices ; if torsion-free they act freely
by translation on P, of dimension 3, and they have the required properties.

7.4, We will show that these two examples are (essentially) the only
semisimple connected Lie groups admitting lattices of the required type.

Observe first that P and PSL,(C) are the only such examples of rank
¢ = 1 with d(M) = 3. Thus we consider cases of rank ¢ = 2 or higher.
We show below that the only possibility to be examined is the special case
L = PSL,(R) x PSL,(R) or its finite coverings (same arguments for SI,(R)
instead of PSL,(R)); here d = 4. If T is a non-cocompact lattice L with
5i(T) = 0 and def(I’) = 1 then (see 6.1) x(I') would have to be zero.
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However, in this case it is > 0 since the Euler-Poincaré measure 1 is positive
(the ranks of L and of K are equal [S, p.136]). Thus this special case is
ruled out. We still have to prove that there are no other possibilities for L of
rank ¢ =2 or higher.

If T is an irreducible lattice in L then it is arithmetic. According to Borel-
Serre [B-S] cd(I') is then > d — ¢ which is, except for the “special case”
above, > 2. If T is reducible, i.e. the direct product of irreducible lattices in
semisimple or simple factors of L then their cohomology dimension is again
> 2. Thus these cases (which include the infinite coverings of the special
case above) are eliminated.

THEOREM 7.1.  An infinite lattice T in a connected semisimple Lie group
with B1(I') = 0 and def() = 1 is isomorphic to a non-cocompact lattice
either in PSL,(C) or in the universal covering of PSL,(R).

7.5. For later use we look more closely at non-cocompact lattices T’
in P. We claim that the image of I' under the covering map p: P — P, with
central kernel Z, remains discrete. To prove this consider I’ as a lattice in
L=Rxyg P. Then L modulo its radical R is ﬁ/Z = P, and according to 4.1
the image of I' is indeed discrete. The intersection of I" with the kernel of
p cannot be 1 since this would imply that p maps I' isomorphically onto a
lattice in P and (3/(I") would be # 0. Thus the intersection is isomorphic to Z
and I'/Z is isomorphic to a non-cocompact lattice in PSL,(R). Therefore the
non-cocompact lattices in P are central extensions of non-cocompact lattices
in PSL,(R) by Z.

7.6. We remark that a group I' which is a central extension as above
has 3;(I') = 0 (and, if torsion free, gdim(I') = 2 and Yx(I') = 0 whence
def(I') = 1). These are exactly the groups isomorphic to non-cocompact
lattices in R x PSL,(R) :

PROPOSITION 7.2. A group T is a central extension of a non-cocompact
lattice Ty in PSLy(R) by Z if and only if it is a non-cocompact lattice in
R x PSL,(R).

Proof. Let I' be such an extension. Note that T}y being virtually free its
ordinary cohomology group H*([p;R) is 0. Thus under the imbedding of Z
into R the extension splits into a direct product R x Iy and T is isomorphic
to a non-cocompact lattice in R x PSL,(R).
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On the other hand the radical of R x PSL,(R) is R; the projection of
a lattice T' to the second factor remains discrete and thus is a lattice Iy in
PSL,(R), and the intersection of I' with R must be isomorphic to Z. It
follows that T is a central extension of Iy by a lattice Z in the first factor.

COROLLARY 7.3. Non-cocompact lattices in P can be imbedded as non-
cocompact lattices in R x PSIL,(R).

8. THE GENERAL CASE

8.1. As in Section 4 let L be an arbitrary connected Lie group, R its
radical times a suitable compact normal subgroup so that L/R is semisimple
without compact factors.

If T is a lattice in L let T} be its intersection with R. Then T'/T'} = A
is a lattice in L/R.

We now assume that 53;(I') = 0 and def(T) = 1; then cd(I') = 2. The
lattice A need not be torsion-free but has a torsion-free subgroup of finite
index. The virtual cohomology dimension ved(A) is finite (it is the cohomology
dimension of any torsion-free subgroup of finite index). Therefore the additivity
of the cohomology dimensions of the torsion free subgroups of A, of I" and
of its normal subgroup I'; yields

ved(T) = ved(Ty) + ved(A) .

Now ved(I') = ¢d(I') = 2 and ved(T'}) = cd(I'}) < 2 since I' and I'y are
torsion-free.

[Concerning the additivity of cohomology dimensions for group extensions
G/N = Q we remark that one has to assume that cd(Q)) is finite — which
is the case here for the torsion-free subgroup of A — and that in general
cd(G) < ¢d(N) + cd(Q). However here the kernel T'j of the extension, being
the fundamental group of a closed manifold, fulfills the sufficient condition
for equality.]

8.2. If cd(I'y) = 2 then vcd(A) = 0. This means that A is finite; since
L/R has no compact factor A=1 and L/R = 1. Thus I' =T and we are
in the solvable case (Section 6). If ¢d(I'}) = 0 then I'; = 1 and we are in
the semisimple case (Section 7).

8.3. The only new case is cd(I'y) = 1; then I'; is free whence equal
to Z: the radical of L must be R. As for A we get ved(A) =1, ie. A
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is virtually free, actually virtually non-abelian free since it is a lattice in a
semisimple Lie group. As a non-cocompact lattice it lies in P = PSL,(R) or
perhaps in a finite covering P of P. If it lies in P then the Lie group must
be, apart possibly from a compact normal subgroup, R x PSL,(R), containing
I' as a non-cocompact lattice. If it lies in P the kernel of its projection to
P is finite cyclic; the kernel of the projection of T to P via P is a finite
extension of Z and torsion free, whence equal to Z. Thus T is again an
extension of a non-cocompact lattice Iy in P by Z, lying in the same product
and necessarily central.

Thus the only new example provided by the “general case” are the non-
cocompact lattices in R x PSL,(R). We recall that the non-cocompact lattices
in P (Corollary 7.3) are also central extensions of the same kind and can be
imbedded in R x PSL,(R). So there is no need to mention P in our final list.

8.4. We summarize the results.

THEOREM 8.3. Lattices in a connected Lie group with vanishing 3, and
deficiency one are isomorphic either to the (cocompact) solvable cases, the
Jundamental groups of the circle or the 2-torus or the Klein bottle ; or to the
non-cocompact lattices in PSL,(C) or in R x PSL,(R). For all other lattices
in a connected Lie group, not commensurable with a surface group of genus
> 2 or a non-abelian free group, the deficiency is < 0.

9. KNOT GROUPS AND LATTICES

9.1. A knot group G (see [Ro]), the fundamental group of the (closed)
complement C of a classical non-trivial knot, has deficiency one and vanishing
first ¢;-Betti number [L-L]. The complement C is aspherical, whence a
K(G, 1)-manifold-with-boundary. The question as to whether a knot group is
a lattice in a connected Lie group is the motivation for Part Two although the
results go beyond that problem.

The solvable cases of Theorem 8.3 do not occur as knot groups, apart
from the group Z of the trivial knot. So knot groups can be lattices only in
PSL,(C) or in R x PSL,(R).

The torus knot groups are isomorphic to lattices in R x PSI,(R) since
they are central extensions by Z of virtual finitely generated non-abelian free
groups (cf Proposition 7.2). This agrees with Thurston geometrization which
tells that the interior of the knot complement, in this case, is a Seifert fibering.
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Since the torus knot groups are the only knot groups with non-trivial center
the groups of all other knots cannot be lattices in R x PSL>(R).

9.2. So we now consider knots which are not torus knots; their groups
can be lattices in PSL,(C) only. As for PSL,(C), it is the isometry group
of hyperbolic 3-space H?. The knot complement C is a Haken 3-manifold
with zero-Euler characteristic. It is atoroidal precisely i the respective knot
does not have a companion; we use here “companion” in the sense of non-
trivial companion. Indeed the boundary torus of a regular neighborhood of
a companion would be a non-boundary-parallel incompressible surface in C.
Thus by Thurston’s Hyperbolization Theorem the interior of the complement
of a knot without companion can be given a hyperbolic structure with finite
volume coming from H?/G. In other words that knot group G is a lattice
in PSL,(C) and the interior of C can be identified with the open manifold
H’/G.

Concerning the notion of companion see [Ro, p. 111]. For concepts related
to the Hyperbolization Theorem and to properties of 3-manifolds we refer
to [K].

9.3. If the knot has a companion then the knot complement is not atoroidal
and its interior does not admit a hyperbolic structure [K, Cor.4.63]. It follows
that G cannot be a lattice in (the only remaining possibility) PSL>(C). We
sketch the proof: If G is such a lattice then H? /G is a K(G, 1)-manifold as
well, thus homotopy equivalent to C. The homotopy equivalence can be turned
into a diffeomorphism mapping H?/G to the interior of the knot complement
C which thus would receive a hyperbolic structure with finite volume.

THEOREM 9.1. Torus knot groups are lattices in RxXPSL,(R). As for other
groups of knots, those of knots without companion are lattices in PSL,(C),
and those of knots with companion are not lattices in any connected Lie group.
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