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SUR LES GROUPES DE DIFFEOMORPHISMES DU CERCLE
ENGENDRES PAR DES ELEMENTS PROCHES DES ROTATIONS
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INTRODUCTION

Soit ' un sous-groupe du groupe Homeo, (S!) des homéomorphismes
directs du cercle. Un sous-ensemble K de S' est invariant par T' si f(x)
appartient 2 K pour tout x € K et tout f € I'. Un ensemble compact non
vide et invariant K est minimal si les seuls sous-ensembles fermés invariants
de K sont I’ensemble vide et K. Il est bien connu qu’on a toujours une (et
seulement une) des possibilités suivantes (voir le §1 pour la preuve):
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(a) il y a (au moins) une orbite finie;
(b) toutes les orbites sont denses:

(c) il existe un ensemble fermé invariant minirnal homéomorphe a
I’ensemble de Cantor; cet ensemble est unique et il est contenu dans
I’adhérence de toute orbite. On I’appelle un minimal exceptionnel.

Lorsque le groupe T est cyclique infini et lorsque son gnérateur a une
certaine régularité (par exemple, il est de classe C?), le cas (c) ci-dessus ne
peut pas se produire: c’est essentiellement le théoreme de Denjoy. Cependant,
des ensembles de Cantor minimaux peuvent apparaitre pour des sous-groupes
non cycliques de difféomorphismes de S' de classe C>* ou méme analytiques
réels. Quelques exemples apparaissent de maniére naturelle dans 1’étude des
groupes fuchsiens. Un autre exemple intéressant est construit dans [12]. Dans
[28] le lecteur trouvera un exemple d’intérét historique, et nous en étudierons
d’autres au §3.4.

L'un des objectifs de ce travail est d’expliciter quelques restrictions a
I'existence de minimaux exceptionnels pour des groupes agissant sur le cercle
par difféomorphismes de classe C?. Par exemple, un théoreme classique de
R. Sacksteder fournit la contrainte suivante: s’il existe un Cantor minimal et
si le groupe est de type fini, alors il existe un élément avec un point fixe
hyperbolique (voir [29]). Il y a aussi une contrainte de type algébrique: sous
les hypotheses précédentes, le groupe contient un sous-groupe libre & deux
générateurs (voir le premier appendice).

Nous nous intéressons plutdt a des propriétés reliées aux générateurs du
groupe. Nous montrerons que si les générateurs satisfont certaines conditions,
alors il ne peut pas y avoir de minimal exceptionnel. De plus, nous étudierons
dans ce cas des propriétés dynamiques.

Avant d’€tre plus précis, citons d’abord un exemple. Dans la théorie des
groupes fuchsiens on démontre, en utilisant 1’inégalité de Jorgensen, que si
un sous-groupe discret a deux générateurs de PSL(2,R) admet un minimal
exceptionnel, alors le déplacement de 1'un des générateurs est “grand”. Cela
signifie qu’il est impossible de conjuguer simultanément dans PSL(2,R) les
deux générateurs d’un tel groupe en des éléments “proches des rotations”
(voir [2], pages 105 et 321). Le premier but de ce travail est de donner
une preuve complete d’une extension de ce résultat a des groupes engendrés
par des €léments proches des rotations dans le groupe Diffi(S‘) des difféo-
morphismes directs et de classe C> du cercle. Le théoréme suivant a été
originalement démontré par G. Duminy aux environs de 1977. Cependant, a
notre connaissance, aucune preuve n’en a été publiée.
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THEOREME A (G. DUMINY). Il existe une constante & > 0 telle que,
si T est un sous-groupe de Diff%r(Sl) engendré par un ensemble I (pas
nécessairement fini) de difféfomorphismes, dont au moins 'un d’entre eux a un
nombre fini de points périodiques, et tels que |f"(x)| < do pour tout f € It
et tout x € S', alors T n’admet pas de minimal exceptionnel.

Ce théoreme reste valable pour des sous-groupes du groupe Difff_’g(Sl)
des difféomorphismes directs du cercle dont la variation totale du logarithme
de la dérivée est finie. En fait, le théoréme A découle presque directement du
résultat suivant.

THEOREME B. Il existe une constante \y > 0 telle que, si I' est un sous-
groupe de Difffg(Sl) engendré par un ensemble T' de difféomorphismes,
dont au moins l'un d’entre eux a un nombre fini de points périodiques, et tels
que var(log(f)) < \o pour tout f € T', alors T' n’admet pas de minimal
exceptionnel.

Les points périodiques des difféomorphismes “génériques” sont isol€s (voir
[22]). 11 est donc raisonnable d’espérer que les théorémes A et B soient encore
valables sans I’hypothése d’un nombre fini de points périodiques pour 1'un des
générateurs. Cependant, dans 1’étude du cas général on trouve des problemes de
nature combinatoire. Nous reviendrons plus loin sur cette question. Signalons
pour le moment que dans le cadre des diff€omorphismes analytiques réels du
cercle on peut résoudre aisément ces difficultés, ce qui permet d’€tablir le
résultat suivant.

THEOREME C. [l existe une constante \; > 0 telle que, si " est un sous-
groupe du groupe des difféomorphismes directs et analytiques réels du cercle
qui est engendré par un ensemble T d’éléments satisfaisant var (log(f")) < A
pour tout f € T, alors T n’admet pas de minimal exceptionnel.

Les conditions ||f”] = sup.qi |f"(®)| < do ou var(log(f')) < Xo
expriment que les applications f € T'!' sont proches des rotations. En effet,
on a || f”] =0 ou var(log(f')) = 0 si et seulement si f est une rotation.
De plus, on montre ais€ément que

(1) sup |f(x) ~ (x p(f))| <l-—e" var (log(/")) :
x€eS!

ou p(f) est le nombre de rotation de f (voir le §1).
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Pour un groupe de rotations du cercle, ou bien toutes les orbites sont
finies ou bien toutes les orbites sont denses et son action est ergodique (par
rapport a la mesure de Lebesgue). On peut donc consicérer les théoremes A
et B comme étant des résultats de stabilité topologique par des perturbations
petites (au sens C?). En ce qui concerne les constantes qui apparaissent dans
les énoncés, nous montrons que )\ = log(1.22074) ~ 0.199 suffit pour le
théoreme B, que dy = A\o/(1 + X\g) ~ 0.165 suffit pour le théoreme A, et
que A; = Ag/4 suffit pour le théoreme C. Bien que les valeurs optimales
semblent difficiles a déterminer, nous montrons que la constante )\, ne peut
pas étre plus grande que 4log((v/5 + 1)/2). 1l serait peut-étre intéressant
de trouver la meilleure constante du théoréme C restreint aux sous-groupes
de PSL(2,R).

Comme nous ’avons indiqué plus haut, la preuve du théoreme de Duminy
n’a pas ¢été publiée. Néanmoins, on dispose de résultats plus précis pour des
groupes de type fini engendrés par des éléments proches de 1'identité dans
le groupe Diff(S') des difféomorphismes analytiques réels et directs du
cercle. En effet, inspiré en partie par le théoréme nor publié de Duminy,
E. Ghys a démontré dans [10] qu’il existe un voisinage de I’identit¢ dans
Diffi’(Sl) tel que, si I est un groupe engendré par un nombre fini d’éléments
dans ce voisinage, alors I' n’a pas de minimal exceptionnel. Il obtient
aussi des résultats de récurrence pour I’action d’un tel groupe, lesquels
ont €t¢ récemment améliorés notamment par J. Rebelo, qui a démontré des
propriétés d’ergodicité et de rigidité pour de telles actions (voir [24], [25],
[26] et [27]). Dans notre contexte, nous obtenons le théoreme d’ergodicité
suivant.

THEOREME D. Soit T un groupe de difféomorphismes du cercle engendré
par une famille T' d’éléments qui vérifient ||f"|| < do pour tout f € T', oi
do est la constante donnée par le théoréme de Duminy. Supposons de plus
que I' n’a pas d’orbite finie et que les points périodiques d’au moins ['un de
ses générateurs sont isolés. Alors T agit sur S' de maniére ergodique (par
rapport a la mesure de Lebesgue).

Notons que d’apres le théoreme de Duminy, 1’hypotaése suivant laquelle
I' n’a pas d’orbite finie est équivalente au fait que toutes ses orbites sont
denses.

On ne connait pas d’exemple d’un groupe de type fini de difféomor-
phismes de classe C* du cercle dont les orbites soient denses et dont ’action
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ne soit pas ergodique sur S'; le théoréme précédent dit qu’il est impossible
de fabriquer de tels exemples avec des générateurs proches des rotations.
En ce qui concerne la rigidité, nous donnons en classe C', 2 < r < w,
une version faible des résultats obtenus par J. Rebelo dans le cas analytique
réel.

THEOREME E. Soient T'y et Ty deux groupes de difféeomorphismes directs
du cercle vérifiant les hypotheses du théoreme D (par rapport a une constante
§1 éventuellement plus petite). Soient T} = {f;1 :i € I} et T ={fir:i € I}
des familles des générateurs proches des rotations de 1'y et 1y respectivement.
Supposons que 'y et T'y soient conjugués par un homéomorphisme direct
de S', de sorte que f;, = pofi10 o~ pour tout i € T. Si ¢ est absolument
continu, alors ¢ est un difféomorphisme de classe C*. De plus, si chaque
fij, i €I, j= 1,2, est de classe C', avec 2 < r < w, alors ¢ est un
difféeomorphisme de classe C'.

Pour r > 2, si deux groupes de difféomorphismes directs et de classe C" du
cercle dont les orbites sont denses et qui ne sont pas conjugués a des groupes
de rotations sont C! -conjugués, alors il sont C"-conjugués (voir [13]). Le
résultat ci-dessus est une version plus fine de ce fait sous ’hypothese que les
générateurs soient proches des rotations. Signalons par ailleurs que le probleme
de la différentiabilit¢ de la conjugaison pour des groupes topologiquement
conjugués a des groupes de rotations est d’une nature différente. Concernant
ce sujet, nous renvoyons le lecteur int€ressé a [1], [16] et [23].

Nous ignorons si dans le cas d’orbites finies on peut obtenir des résultats
génériques d’ergodicité et de rigidité locaux analogues a ceux de [24] et
[25]. Ce probleme semble relié a celui de savoir s’il existe un analogue
du théoreme de Duminy pour des groupes de difffomorphismes de la droite
engendrés par des éléments proches des translations (ou, plus généralement,
pour des pseudo-groupes de difféomorphismes de dimension 1).

REMERCIEMENTS. Etienne Ghys m’a expliqué 1’idée principale de la
preuve du théoreme de Duminy et m’a donné une copie du manuscrit [8].
Thierry Barbot et Pierre de la Harpe ont fait des corrections aux versions
préliminaires de I’article, et avec Jan Kiwi et Juan Rivera j’ai eu de fructueuses
discussions sur le sujet. Je les remercie tous pour leur gentillesse. Je remercie
également le rapporteur anonyme pour son travail de lecture minutieuse, ses
remarques et ses corrections a ’article.
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1. QUELQUES FAITS CLASSIQUES

On munit le cercle unité S' de I’orientation canonique. Les intervalles
de S' sont munis de I’orientation induite. Au cours de ce travail nous ne
considérons que des homéomorphismes et des difféomorphismes de S' qui
préservent 1’orientation.

Sur le cercle on considere la mesure de Lebesgue normalisée, que 1’on
note Leb. Sauf mention du contraire, la longueur des intervalles du cercle est
aussi normalisée, de sorte que la longueur totale de S' est 1. On désigne par
1| la longueur de I’intervalle /. La distance entre deux points p et g de S!
est le minimum entre les longueurs des intervalles (p,q) ct (q,p). Elle est
notée dist(p, q).

Pour f € Homeo, (S') on fixe un point x € R et un relevement de f a la
droite, que 1’on désigne encore par f. Dans R/Z on considere le nombre de
rotation de f défini par

n

p(f) = lim Ji@ mod Z.
n—+tocc n

On sait que la limite de la définition existe et sa valeur (modulo Z) ne dépend

pas des choix du relevement f et de x. De plus, il est connu depuis les travaux

de Poincaré que p(f) contient plusieurs informations str la dynamique de f.

Pour le résultat suivant on peut consulter [22].

THEOREME 1.1. Pour f € Homeo,(S') les affirmations suivantes sont
vérifiées :

(a) le nombre p(f) est rationnel si et seulement si f possede (au moins)
un point périodique ;

(b) si p(f) est rationnel et K un sous-ensemble fermé de S' invariant
par f, alors f posseéde (au moins) un point périodique sur K ;

(c) on a légalité p(f) = p(pofoe") pour tout y € Homeo (S!).

Lorsque f appartient a Diffi)g(Sl) et lorsque p(f) est irrationnel, alors
non seulement il n’y a pas d’orbite finie, mais toutes les orbites sont denses, et
[ est topologiquement conjugué a la rotation d’angle p(f). C’est le théoreme
de Denjoy. De plus, f agit de maniére ergodique sur S' (voir la remarque
4.2 du §4).

Rappelons que tout difféomorphisme de classe C? du cercle appartient 2
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Difffg(Sl) : pour f € Diffi(S‘) on a

1" ()
J(s)
Dans cette direction, le théoreme de Denjoy est optimal. En effet, dans le
§ X de [16], M. Herman démontre que pour chaque 0 < « < 1, chaque 6
irrationnel, et chaque voisinage V de la rotation d’angle ¢ dans Difff”‘(S'),
il existe un élément dans V de nombre de rotation € et sans orbite dense
(Diff fo‘ (S1) désigne le groupe des difféomorphismes directs du cercle dont la
dérivée est Holder continue d’exposant «). Le lecteur trouvera dans [18] une
version plus précise de la classe de differentiabilité optimale pour le théoreme
de Denjoy.

ds .

var (log(f")) = /S |

Le cas d’une action d’un groupe non cyclique est beaucoup plus compliqué.
Pour la commodité du lecteur, nous avons inclus la preuve de la propriété de
trichotomie du début de I’introduction.

Preuve de la propriété de trichotomie. On considere la collection des
sous-ensembles fermés non vides et invariants de S!, que I’on munit de
I’ordre donné par I’inclusion. Puisque l’intersection de compacts emboités
non vides est non vide, on peut appliquer le lemme de Zorn. Soit donc K un
ensemble minimal pour cet ordre. Le bord 9K et I’ensemble K’ des points
d’accumulation de K étant aussi fermés et invariants, on a les possibilités
suivantes :

(a) K’ est I’ensemble vide: dans ce cas, K est une orbite finie;

(b) OK est I’ensemble vide : dans ce cas K = S!, et donc toutes les orbites
sont denses;

(¢) K =K' et 0K = K, c’est-a-dire K est un fermé d’intérieur vide et
sans points isolés. En d’autres termes, K est un ensemble de Cantor.

Dans le dernier cas, montrons que K est contenu dans I’adhérence de toute
orbite, ce qui implique I'unicité. Si x € K, alors il est clair que I'orbite de x
est dense dans K. Soit donc x € S! — K et soit y un point arbitraire de K.
On note I la composante connexe de S! — K contenant x et on note @ un
point dans la fronticre de /. L’orbite de a étant dense dans K et K n’ayant
pas de points isolés, il existe une suite (f,) dans T telle que f,(a) tend vers
y et telle que les intervalles f,(1) sont disjoints. Comme la longueur de f,(I)
doit tendre vers zéro, la suite (/,(x)) tend aussi vers y. []

Lorsque I' est un sous-groupe de Diffﬂfg(Sl) qui agit avec un minimal
exceptionnel, le théoreme de Denjoy impose une contrainte: le nombre de
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rotation de chaque élément de I' est rationnel, et donc tout élément possede
des points périodiques. Cette remarque sera utilisée plusieurs fois dans la
preuve des théorémes.

Nous finissons ce paragraphe avec quelques considérations sur la variation
totale du logarithme de la dérivée d’une application. Pour f € Difflfg(Sl)
on désigne par W(f) la variation totale du logarithme de la dérivée de f,

c’est-a-dire
n—1

W() = sup Y _ |log(f'(ai1)) — log(f'(a)

i=0

b

ou le supremum est pris sur sur tous les n-uples de points ay < --- < a, = ay
cycliquement ordonnés sur S' et sur tous les entiers positifs n. Notons que
pour tout f € Diff'fr’g(S]) il existe nécessairement un point p € S' tel que
f'(p) = 1. On obtient ainsi
(2) inf f'(x) > e sup fl(x) < M

xes! xes!

Si f est une fonction définie sur un intervalle 7, ou si / est un sous-
intervalle du domaine de définition de f, on désigne par W(f;[) la variation
du logarithme de la dérivée de f sur 7. Il est important de remarquer que si
J et g sont des difffomorphismes alors on a I’inégalité

3) W(fog: ) <W(g:D)+ W(fi9(),
ainsi que 1’égalité
“ W=D = W(fs /=)

Finalement, si /; et /> sont des intervalles contenus dans un intervalle / du
domaine de définition de f, alors on a

U —wepy o LSO U iy

5
W in) =T S )

Comme application de ces propriétés, montrons I’inézalité (1). Soit xy un
point qui réalise le maximum 7 de la fonction 7/(x) = | f(x) — (x + p(/))]|.
Supposons que f(xg) > xo + p(f), Dautre cas étant analogue. Il existe
nécessairement un point yy € [xo,Xo + 1] tel que 7(v9) = 0. En effet,
dans le cas contraire il existerait 1 > ¢ > 0 tel que 1 —¢ > n(x) > £ pour
tout x € S'. Donc, en passant au relévement, on aurait

|l —e > &
n

- P(.f)‘ 2

pour tout n € N, ce qui contredit la définition de p(f).
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= f'(p) pour un certain p € S', d’aprés (2) on

Puisque L0V ~/G0)
0

® y B )CO
obtient

yo — Xo — 1 = f(yo) — f(x0) = e VD (yo — x0)
et donc 7 < (yo —x0)(1 — e W) <1 — =MD,

2. UNE APPLICATION DE RETOUR DILATANTE: LES LEMMES DE DUMINY

La preuve des résultats de ce travail s’appuie sur le manuscrit [8],
ot G. Duminy étudie les orbites semi-exceptionnelles de feuilletages de
codimension 1 (les résultats de [8] ont été récemment redémontrés dans [4]).
Les lemmes que nous présentons ci-dessous sont des versions modifi€es de
quelques lemmes qui se trouvent dans ce manuscrit.

bl g I

FIGURE 1 FIGURE 2

LEMME 2.1. Soient a,d ,b,b',c des nombres réels tels que a < d' < ¢’ <
c<beta<b <b. Soient f:la,cl — [a,b] et g: [c,b] — [a,b'] deux
difféomorphismes de classe C°¢ tels que f(x) > x pour x # a et g(x) < x
pour tout x, avec f(c') > c et g(c) = d (voir la figure 1). Supposons que
[u,v] C [c,b] et m,n € N sont tels que I’application QZ =g "o fT" est
définie sur [u,v]. Alors

b)) _ ) —f'Gw) b-g7'@
v—u T w—fT) flgTN @) e

% (1 _ _1_) M Filach+Wigile b))
sup f'(x)

x€la,c]

(6)
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Preuve. Par commodlte on note f Sl et g= g~ (voir la figure 2).
Rappelons que W(f la,b]) = W(f;la,c]) et W(g;[d,b']) = W(g;[c,b]). Tl
s’agit alors de montrer 1’inégalité

b(w) — P(u) _ 4@ @) b g

(7) < —
v v—f)  FNGa) —c
x (1— inf ) WV TLabD+ WGl b))
(1= &, 7'

Pour cela, on remarque d’abord que

m—1

W™ ), v]) < 3 WP @), FA o)) < W la, b]) .

k=0
Comme f(v) <c<Lu<w,ona
fm(U) fm(u) fm(v) fm—H(U) W(j o) < f (v) fm I(U) W(f [a,b])

v—u - U—f(u) - v —f(v)
De plus,

f’"“(v) —a :f(f’”(v)) _]/"\(a) > (fm(v) - a)xei{tlzf.‘b]f/(X) >

d’ou on obtient
Fmw) = ") < () — a)(1 - eil{]fb]f'(x)) .

Il en résulte alors

) =) ) —a, s wies
- v—u : v —f(v) ( xellﬁfb]f ()e '

De méme, puisque g¢g" est définie sur []/‘\m(u),f”‘(v)] et que d < ]?’”(u) <
f"w) < ¢ =gla), on a
g (f"(w)) — A”(f'”(u)) 7"(f"(v)) — §"(a) MN@Gld B
@) — fmiu) T ") —a
On obtient alors, d’apres (8) et (9),

€)

b) — ) _ P) ~ fE) ) - §la)
vou T 0= f) W) = J)

1= inf (o))" FlabD+W@gild b')
x (1= inf f'(0)e
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Si f((v) < Gla) alors (1h(v) — c)/(@(v) — Fab(v))) < 1, ce qui rend
évidente l’infgalité (7) dans ce cas. Sinon, c’est que (v) appartient a
'intervalle [f~'(g(a)),b], et donc

b)) -g@ _ _b-ga
b(v) = f@) ~ fHG@) — ¢

d’oul on obtient encore (7). [

REMARQUE 2.2. Si g(c) = a, le lecteur vérifiera sans difficult¢ que
’inégalité (6) est stricte lorsque v n’appartient pas a I’orbite de a par le
pseudo-groupe engendré par f et g.

Etant données deux applications f et g comme dans le lemme pré-
cédent, pour chaque x €]c,b] il existe un entier positif n = n(x) tel que
g (x) €]c,b] et ¢"(x) €]ld’,c]. De méme, pour y cld’, c] il existe m = m(y)
tel que f""(y) €ld’,c]l et f™(y) €lc,bl. L'application de premier retour
¥ e, b] —]c, b] est définie par

m(g" ™ (x n(x
Y =" 0 ¢ ().

Notons que cette application a un ensemble au plus dénombrable de points
de discontinuité, lequel est fini lorsque g(c) > a. En effet, les points de
discontinuité sont les points de I’ensemble {g~"(f~"(c)N[d’,c]) : m,n € N}
qui sont contenus dans ]c, b]. Si g(c) > a alors 1) peut étre considérée comme
une application de 'intervalle fermé [c,b] sur lui-méme.

Par commodité, on pose

~

b—g '(a SUP, (e, 5 (X — f(X))
9 )" M(f) = Pretet /)
flg= (@) —c infyepe,p)(x — (X))
On peut montrer directement que M(f) est proche de 1 si la dérivée de f est

proche de 1 et la variation W(f;[a,c]) est petite (voir le lemme 5.1 au §5).
Néanmoins, pour le moment le lemme suivant nous suffira.

(10) m(f,q) =

LEMME 2.3. Sous les hypothéses du lemme 2.1, supposons de plus que

(11) m(f g)(l — —1__._)€W(f;[a,c])-l—W(g;[c,b]) <1
’ sup f(x)
x€la,c]
Alors pour tout T > 1 il existe un entier N € N tel que (YV)(x) > 7 pour

tout point x dans le domaine de différentiabilité de PN
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Preuve. Soit N € N tel que

1

sup f(x)
x€Ela,c]

N
) NWSila,c)+W(g:le,bD) <& 1
-

12)  M(pm(f, g7 (1~

Nous affirmons que chaque branche de ¢V est 7-dilatante. Pour montrer cela,
soit x un point a I'intérieur de 1’une des composantes connexes du domaine de
différentiabilité de «/". Fixons un petit intervalle [x,x+ €] contenu dans cette
composante connexe. On pose [ug, vo]l = [x,x + €] et [u, vi] = V¥ ([ug, vo]),
k=0,...,N — 1. L’inégalité (6) appliquée 2 ¢ = ¢»~! donne

Vr — Uy < Vg —f*'(vk)
Ukl — U1 Vkept — F H(0pg

(1~

) WUlac)+Wigile,b)

sup f/(x)
x€la,c]

En prenant le produit de k=0 2 k=N — 1 on obtient

1

sup f'(x)
x€la,c]

Yo~y _ Vo — Y (wo)

N
NW(f:laseD+W(gsle.bD)
o _ l e b
oy —uy ~ vy —f o)

m(f, g (1 -
et donc, d’apres (12),

9
e+ =V 7

c’est-a-dire
PN(x+e) — YN (x)
> T.

-

c

Puisque ceci est vrai pour tout ¢ > 0 petit, on en déduit que (YV)(x) > 7. [

REMARQUE 2.4. Notons que si

1

sup f'(x)
x€la,c]

7

)eW(f;[a,anrW(g;[c,bJ) -1
=

a3 M, g)(1-
alors la preuve du lemme précédent montre que chaque branche de I’application
Y est T-dilatante.

Dans une premiére lecture, les lemmes de Duminy risquent de paraitre
trop techniques. Pour mieux comprendre ces lemmes, on peut considérer le
cas particulier ou les applications f et g sont affines, disons f(x) = vx
pour x € [0,1/v], avec v > 1, et g(x) = n(x — 1/v) pour x € [1/v,1],
avec n(l — 1/v) < 1. Dans ce cas, l'application de premier retour
Y: [1/v,1] — [1/v,1] est donnée sur chaque intervalle de la forme
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g ' ([1/v"T1/v"]), n € N, par 9(x) = f" o g(x). Puisque pour tout
xe g N ([1/v"t 1/v"]) on a

1 1 1
on obtient
(14) VW=t > — > ]
DAX) = N %
L

Notons d’autre part que M(f) = v. L’inégalité (14) peut ainsi €tre lue comme

S 7))

x€[0,1/v]

W > 1 / M (1 -

Les valeurs de W(f) et W(g) étant nulles dans le cas affine, on reconnaitra la
similitude entre cette dernicre inégalité et les inégalités qui apparaissent dans
les lemmes de Duminy.

3. NON EXISTENCE DE MINIMAL EXCEPTIONNEL

3.1 EN CLASSE C°f: LE THEOREME B

Pour illustrer 1’idée de la démonstration du théoréme B, supposons qu’un
groupe agisse sur le cercle avec un minimal exceptionnel K et que deux
générateurs f et g sont comme dans la figure 1 sur un sous-intervalle [a,b]
de S' non disjoint de K, avec g(c) = a. Les points a, ¢ et b appartiennent
a K. En effet, si y est un point de [a,b] N K alors f~"(y) s’accumule
sur @ pour n > 0, et donc a appartient 2 K ; par suite, g~ '(a) = c et
f(c) = b appartiennent aussi a K. Soit Ju, v[ C ]c, b[ une composante connexe
de S' — K de longueur maximale. Si I'inégalité (11) est vérifiée, alors pour
N € N suffisamment grand, 1" (Ju, v[) est une composante connexe de S' — K
de taille plus grande que celle de Ju,v[, et on a donc une contradiction. Un
examen attentif des arguments de la preuve des lemmes de Duminy (voir la

remarque 2.2) permet d’obtenir aussi une contradiction lorsque

(1 . ___1’_)eW(f;[a,cDJrW(g;[c,bl) —1.
sup f'(x)

x€la,c]
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Donc, I’inégalité suivante doit étre satisfaite :

1 :
15 (1 _ ____) W(Fila,cD+Wigileb) |
1 sup f(x)/ ¢ g

x€Ela,c]
Cette inégalité entraine, d’apres (2),

(1 — e~ W) N filaeD+Wigilep)) ~,

Si W(f) < Xet W(g) < \alors (1—e M)e? > 1, ¢’est-a-dire e**—e*—1 > 0,
ce qui n’est pas possible pour A < log((\fS—f— 1)/2) (nous verrons dans le
§3.4 que I’apparition du nombre d’or n’est pas mystérieuse : il semblerait étre
relié a la constante optimale du théoreme B).

Malheureusement, le cas général présente des problemes techniques: il
n’existe pas toujours deux générateurs reliés comme dans la situation des
lemmes de Duminy. Nous verrons néanmoins que 1’on peut surmonter cette
difficulté lorsqu’on suppose que l'un des générateurs de I' a ses points
périodiques isolés. Avant de passer a la preuve du théor¢éme B remarquons
que, grace a I’égalité (4), il n’y a pas de perte de généralité pour ce théoreme
si on suppose I'' symétrique. Nous ferons dans la suice de ce paragraphe
cette hypothése, ¢’est-a-dire nous supposerons que si f € I'! alors f~! € I'!.

Preuve du théoreme B. Supposons que I' possede ur minimal exception-
nel K. D’apres le théoreme de Denjoy, ’ensemble des points périodiques de
chaque élément de I' est non vide. Par hypothese, il existe un générateur g
de I' dont tous les points périodiques sont isolés. On note Per(g) I’ensemble
des points périodiques de g, et on note P(g) = Per(g) N K. D’apres I’assertion
(b) du théoreme 1.1, ’ensemble P(g) est non vide. Si k € N est 'ordre des
points périodiques de g, alors on pose G = g€. Nous zffirmons maintenant
qu’il existe un point p € P(g) et un élément f € I'! tels cue f(p) € S' —P(g).
En effet, dans le cas contraire, I’ensemble P(g) serait invariant par I', ce qui
contredirait la minimalit¢ de K.

On désigne par u et v les points périodiques de g a gauche et a droite
de f(p) respectivement. L’ application F = fo ¢ o f~! posséde au moins un
point fixe dans [u,v], a savoir, f(p). Soit a le point fixe de cette application
a gauche de v, et g le point fixe a droite de a. Remarquons que les points
a, u, v, p et g appartiennent tous a K. Quitte a remplacer G par G~ et F
par F~1, on peut supposer que G(x) < x et F(x) > x pour tout x €]a,v|
(voir la figure 3).
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FIGURE 3

Nous affirmons maintenant que, si A est assez petit, alors le point
b = F(G~'(a)) € K appartient a lintervalle ]a,v[. Pour démontrer cela,
on remarque d’abord que

k—1

W(F™ la,qD) = W(F:la,q) <3 W(fogof i fog of  (la,ql)

j=0

<W(fogof ) <3A.
De la méme fagon on obtient W(G~';[u,v]) = W(G;[u,v]) < X. Soient
X0 € (a,v) et yy € (a,q) tels que

F~Y(v) —a

(F Y (x) = . F Yoo =1.

On a évidemment Ilog((F_l)’(yo))—log((F"l)’(xo))l < WF Y [a,q)), et
donc

(16) Flwy—a>eMNv—a).
De la méme facon on obtient
(17) v—G Y a)> e Mv—a).

Si b n’était pas dans ]a,v[ on aurait F~'(v) < G~!(a). Ceci impliquerait,
d’apres (16) et (17),

v—a>F ') —a)+w—-G) > +e MW —a),

3

et donc e — e** > 1, ce qui n’est pas possible pour A < log(1.46557) ~

0.382.
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On peut alors appliquer les lemmes de Duminy & F et G sur I'intervalle
la,b]. Notons que pour tout x € [a,q] on a [log(F'(x)) — log(F'(vy))| <
W(F:la,q]) < 3X, et donc sup,, , F'(x) < . Pour ¢ = G~'(a), I'inégalité
(15) appliquée a F et G donne

I > log(

Supxem,c] F/(X:

3AA > W(F: [a, )+ W(G; (e, b]) > 1og(1 )

4\

et donc on a ¢ —¢* > 1, ce qui est impossible pour A < log(1.22074) ~

0.199. [

REMARQUE 3.1. Notons qu’au cours de la preuve on n’a utilisé 1’hypothése
de points périodiques isolés de g que pour s’assurer que les points de P(g)
sont isolés dans Per(g).

3.2 EN CLASSE C?: LE THEOREME A

Pour la preuve du théoreme A, remarquons d’abord que pour tout f € I’
et tout x € S',

(18) =" <ff@ <1+ 117
En effet, pour tout point p € S' on a
') —f'(p) :
LSRN <5,

et donc, en prenant p tel que f/(p) = 1, on obtient (18). Par conséquence, si
11 5
L) ds <

f"|l <o alors
W(f) = —.
V) /51 flo T 1=0

Par suite, si 1|f”|| < 9y = )\0/(1 + X)) ~ 0.165, alors W(f) < Ay ~ 0.199.
Le théoreme A découle ainsi du théoréme B.

3.3 EN CLASSE CY : LE THEOREME C

Soit T un sous-groupe de Homeo,(S') et soit T' = {f : i € 7} une
partie génératrice de I'. On suppose que f; # f; pour i # j dans Z. Pour
k € N on définit les sous-ensembles T* de I' par

rk:{f-erzf:ﬁno...ol.]’ ﬁjerl7 ngk}

Le lemme suivant porte un intérét général. Il sera essentiel pour se débarrasser,
dans le cas analytique réel, de 1’hypothese suivant laquelle les points
périodiques de I'un des générateurs sont isolés.
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LEMME 3.2. Supposons que T agisse avec des orbites denses et qu’il ne
soit pas topologiquement conjugué a un groupe de rotations. Alors il existe
un élément g dans T* qui n’est pas conjugué a une rotation.

Preuve. D’aprés la proposition 6.5 du premier appendice, il existe deux
¢léments f; et f; dans I'' qui ne commutent pas. Si ff;j n’est pas conjugué
a une rotation, alors g = fif; € I'? satisfait I’affirmation du lemme.

Supposons maintenant que f;f; est conjugué a une rotation. Nous affirmons
qu’il existe a € S' tel que fifi(a) = f;fi(a). Pour démontrer cette affirmation,
prenons un homéomorphisme direct ¢ de S' tel que ¢fif; ¢~ ! soit une
rotation de S', disons d’angle #. Si I’affirmation n’est pas vraie, alors il
existe 0 < ¢ < 1 tel que pour tout x € S' on a

e<|pfifioTt ) —x+0|<1—c.

Cette inégalité entraine ‘p(go fifie™hH — 9{ > &, ce qui est absurde, car
ofifio~" et fifio~" sont topologiquement conjugués.

L application ffif~' ;' € T"* possede donc des points fixes sur S!. Cette
application n’est pas ’identité, car f; et f; ne commutent pas. Ceci acheve la
preuve du lemme. [

Supposons maintenant que I' agisse sur S!' en admettant un minimal
exceptionnel K. En suivant [11] et [21], on retire du cercle chaque composante
connexe de S' — K et puis on identifie les extrémités de ces composantes. On
obtient ainsi un cercle topologique, que I’on note Si. Le groupe T agit sur ce
cercle de maniére naturelle par homéomorphismes, et toute orbite par I’action
induite est dense. Pour chaque f € I', on note ¢(f) I’homéomorphisme de
Sk induit par f.

PROPOSITION 3.3. Soit T' un sous-groupe de Difffg(sl) qui admet un
minimal exceptionnel. Supposons qu’il existe une constante C > 0 telle que
W(f) < C pour tout i € L. Alors il existe un élément g dans I tel que
d(g) posséde des points périodiques et n’est pas conjugué a une rotation.

Preuve. D’abord, si I' est un sous-groupe de Difflfg(S‘) qui agit en
admettant un minimal exceptionnel K, alors d’apres le théoreme de Denjoy et
I’item (b) du théoréme 1.1, chaque f; possede des points périodiques dans K.
La proposition est donc banale s’il existe un élément f dans T' tel que
I’homéomorphisme ¢(f) de S n’est pas topologiquement conjugué a une
rotation d’ordre fini. Cependant, le premier exemple du §3.5 montre qu’il
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existe des groupes engendrés par des éléments d’ordre fini et qui préservent
un ensemble minimal exceptionnel.

Pour la preuve de la proposition nous montrerons que sous nos hypothéses,
’action du groupe ¢(I') sur S} n’est pas conjuguée a celle d’un groupe de
rotations. Le lemme précédent permet dans ce cas d’obtenir la conclusion.

Remarquons d’abord que I’ensemble ¢(I'') engendrz ¢(I'). Néanmoins,
les éléments de ¢(I'') ne sont pas nécessairement différents. On choisit un
ensemble d’indices J C Z tel que ¢(f) # ¢(f;) pour i # j dans 7, et tel
que les ¢(f), j € J, engendrent ¢(I).

Supposons que J soit fini, disons J = {1,...,n}, et que &) soit
conjugué a un groupe de rotations. Alors chaque orbite dans Sk pour I’action
d(I") est finie, de la forme

orbyry(x) = { ([ )% - f@}, 0 <my <y,

ou ny est 'ordre de ¢(f,) (rappelons que le nombre de -otation de chaque E
est rationnel). Cependant, ceci contredit le fait que les orbites par ¢(I') sont
denses dans S} .

Supposons maintenant que J soit infini et que ¢(I") soit conjugué a un
groupe de rotations. Alors les intervalles fi(I), j € J, sont deux a deux
disjoints. Prenons une suite (jy)ren telle que

(19) Jim [0 =0.

Notons que pour chaque & € N il existe une composante connexe |cy,d;| de
S' — K telle que | filler, dil)| > |lek, dil| (on peut considérer, par exemple,
une composante connexe J de S' — K de longueur maximale et définir
e, dil= fjk_](J)). D’apres ’inégalité (5) on obtient

i) > e—W(j;k)[ﬁk(]Ckadkm > e €,
i [lex, del]  —

ce qui contredit (19) pour k assez grand. []

REMARQUE 3.4. Pour référence future, nous dirons qu’un sous-groupe
de Diff'!(S") engendré par une famille T! = {f : i € 7} qui vérifie
sup{W(f) : f; € T'} < oo est engendré a distorsion finie.

La preuve du théoreme C devient maintenant facile. En effet, puisque le
difféomorphisme g € I'* est analytique réel et n’est pas d’ordre fini, ses points
périodiques sont isolés. D’autre part, on a W(g) < 4\. On peut ainsi appliquer
le théoréme B en considérant T'' U {g} comme partie génératrice de I .
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3.4 UNE IDEE POUR LE CAS GENERAL

Pour essayer d’obtenir une version générale du théorcme B, il est
raisonnable d’essayer d’améliorer le lemme 3.2. La question suivante devient
ainsi naturelle.

QUESTION. Existe-t-il une constante N € N telle que pour tout sous-
groupe I' de Homeo, (S') sans orbite finie et non semi-conjugué a un groupe
de rotations, pour tout systtme de générateurs I'' de T, et pour tout point
p € S', il existe au moins un élément f € TV tel que p n’est pas périodique
pour f?

Dans la suite, nous montrerons qu’une réponse affirmative a cette question
permettrait de démontrer le théoreme B en supprimant I’hypothese de points
périodiques isolés pour 'un des générateurs. En effet, supposons que T" soit
un sous groupe de Diff'"(S') qui préserve un minimal exceptionnel K et qui
est engendré par une famille de difféomorphismes proches des rotations. En
admettant une réponse affirmative a la question ci-dessus pour le sous-groupe
&) de Homeo, (Sk) (voir les commentaires avant la proposition 3.3), posons

L= sup{|[a,b]l : Ja,b[NK # @ et il existe h € TV
tel que Per(h) N [a,b] = {a,b}}.

Fixons un élément f € TV et un intervalle [a,b] C S' de taille supérieure
a L/2 tels que Per(f)N[a,b] = {a,b}. Fixons par ailleurs un élément g € I'V
tel que a ne soit pas périodique pour g, et notons u et v les points périodiques
de G a gauche et a droite de a respectivement. Remarquons que |[u,v]| <L,
et donc |[a,b]|/|[u,v]| > 1/2. Remarquons aussi que si W(h) < 4 pour tout
h e T, alors il existe des itérés f et g de f et § qui fixent [a,b] et [u,v]
respectivement et tels que W(f;[a,b]) < N6 et W(g;[u,v]) < NJ. Quitte a
remplacer f et g par leurs inverses, on peut supposer que f(x) > x pour tout
x €la, b[ et g(x) < x pour tout x €lu,v[. Il peut se présenter deux cas.

PREMIER CAS: par rapport a lorientation canonique du cercle on a
u<a<b<uwv.

Puisque |[a,b]| > |[u,v]|/2, si § est suffisamment petit, alors f et g
sont comme dans les lemmes de Duminy sur !’intervalle [a, fg~"a)] (voir
la figure 4). Une application de ces lemmes (comme celle de la preuve du
théoreme B) donne une contradiction dés que § est plus petit qu’une certaine
constante positive qui ne dépend que de N.
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f f
g
g
uoa f97 '@ b v u o a fg97 (@) voob
FIGURE 4 FIGURE 5
Premier cas Deuxieme cas

DEUXIEME CAS: ona u<a<uwv<b.

Si 4 est suffisamment petit alors f et g sont comrae dans les lemmes
de Duminy sur Iintervalle [a,fg~'(a)] (voir la figure 5). De nouveau, une
application de ces lemmes donne la contradiction cherchée pour § < &(N)
suffisamment petit.

Pour conclure ce paragraphe, signalons que si la résonse a la question
posée précédemment éEtait positive, alors on pourrait se débarrasser aussi
de I’hypothese de points fixes isolés pour 1'un des générateurs dans les
théoremes D et E (dans ce dernier, il faudrait supposer néanmoins que les
groupes en question ne sont pas abéliens). Pour aboutir a cela, il suffirait
simplément d’introduire, au milieu des démonstrations de ces théorémes, des
idées analogues a celles qui ont été utilisées plus haut. Signalons cependant
qu’une telle amélioration n’est envisageable qu’en classe C2, et pas en
classe C'%. Ceci est dii a la nature des arguments qui seront donnés aux
paragraphes suivants (dans ce sens, les propositions 4.3 et 6.9 imposent des
contraintes).

3.5 QUELQUES EXEMPLES

Le groupe modulaire PSL(2,Z) = <g,h g =h = id> agit de manicre
naturelle sur le cercle avec des orbites denses. Cette action est obtenue en
identifiant les générateurs g et s de ce groupe a deux isométries de type
elliptique du disque de Poincaré, a savoir celle d’angle 27/3 et centrée
en un point O du disque, et celle d’angle 7 et centrée en un point O’ a
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distance hyperbolique log(v/3) de O respectivement. Si au lieu du point O’ on
considere un point O” du disque a distance hyperbolique de O plus grande
que log(\/g), alors on obtient une action de PSL(2,Z) avec un minimal
exceptionnel (voir la figure 6). Remarquons que 1’élément f = gh possede un
unique point fixe sur S!.

h(A)

~2\

FIGURE 6

h(B)

Dans la suite nous considérerons des versions “affines par morceaux” de
I’exemple précédent, et puis nous ferons des petites perturbations de sorte que
les applications ainsi obtenues deviennent différentiables. Par ce procédé nous
montrerons que la constante )y optimale du théoreme B ne peut pas étre plus
grande que 410g((\/§ +1)/ 2). Signalons en passant que 1’exemple original
de R. Sacksteder a été construit en suivant cette idée (voir [28]). Par ailleurs,
une conjecture de P. Dippolito stipule que tout groupe de difféomorphismes
de classe C* du cercle admettant un minimal exceptionnel devrait pouvoir
étre approché (en topologie C”) par un groupe d’homéomorphismes affines
par morceaux de S' de sorte que la dynamique sur le Cantor minimal reste
la méme (a conjugaison topologique pres). Dans 1’appendice de [7] le lecteur
trouvera une version plus précise de cette conjecture.

Pour illustrer I’idée générale, commencons par considérer le groupe des
homéomorphismes affines par morceaux d’un cercle de longueur 3 engendré
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par les éléments f et g, de 1a~ﬁgure 7. Les orbites par I’action de ce groupe
sont denses. De plus, bien que f;, ne soit pas un difféomorphisme, la variation
totale du logarithme de sa dérivée est bien définie, égale 2 41log(2). D’autre
part, on a W(g,) =0.

FIGURE 7

Pour construire une action avec un minimal exceptionnel nous allons
“éclater” 1’orbite du point p = 1. Cette procédure consiste a remplacer
chaque point de l'orbite par un petit intervalle (de sorte que la somme
totale des longueurs soit finie), et puis d’étendre les applications originales de
maniere affine a ces intervalles. Il est facile de voir que par ce procédé on
obtient un groupe conjugué au groupe IN‘E qui est engendré par les homéo-
morphismes affines par morceaux fg et g. de la figure 8. Notons qu’on a
W(}‘;) = 4log(2) + w(e), ou w(e) tend vers zéro lorsque & tend vers zéro.

Désignons par I. Pintervalle 11 — £/2,1+ €/2[. Le groupe IN“E agit en
préservant un minimal exceptionnel, a savoir

K.=8'— U Wi.).

her,

Pour obtenir I’estimée 41log((v/5 + 1)/2) nous allons suivre un processus
similaire, mais a partir d’'une autre action. Pour simplifier, désignons par ®
le nombre d’or.

Commengons par considérer le groupe I'. engendré par les applications
f. et g. de la figure 9. Ce groupe agit sur un cercle de longueur 2 + 1 /D
avec des orbites denses. De plus, W( fs) et W(g-) sont égales a 4log(®).
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FIGURE 8

Eclatons une nouvelle fois I’orbite du point p = 1 pour obtenir ainsi
une action conjuguée a celle donnée par un groupe (désigné par T'.) qui est
engendré par des homéomorphismes affines par morceaux f. et g. dont la
dérivée (ou elle est bien définie) est égale & ®+¢c, (P+¢)~! ou 1, selon le
pmmCNMLEnmmmmmnLWﬂ):DWQ):4bg®y+w@L0ﬁw@)mmi
vers zéro lorsque € tend vers zéro. Notons K. 1’ensemble de Cantor minimal
pour 1’action de T., et notons I. la composante connexe de S' — K. qui
correspond au point p.

Remplacons maintenant f. et §. par des difféomorphismes lisses f. et
ge dont les dérivées sont monotones sur I. U §.(I.) U g2(I.), et qui leur
sont respectivement identiques sur le complémentairc dc cct cnsemble. On
a encore que W(f.) et W(g.) tendent vers 4log(®) lorsque ¢ tend vers
zéro, et le groupe I'c engendré par f. et g. a encore K. comme minimal

exceptionnel.
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0 p=1 l+(}—) 24 L

FIGURE 9

Puisque chaque f. possede exactement un point fixe, on conclut, d’apres
la construction précédente, que la meilleure constante )y pour le théoréme B
n’est pas plus grande que 4log(®). D’autre part, pour une petite variation
de cet exemple, le lemme de Duminy s’applique de rnaniére optimale sur
certains intervalles. Par cette raison, nous croyons raisonnable de penser que
la meilleure constante du théoreme pourrait étre exactemznt égale a 4 log(®).

REMARQUE 3.5. Le lecteur aura not¢ que les arguments de la preuve
du théoreme B peuvent &tre appliqués (avec des légeres modifications) pour
démontrer que ce résultat reste valable pour des groupes d’homéomorphismes
affines par morceaux du cercle. Puisque la dynamique combinatoire de ces
groupes est relativement simple, il est envisageable d’obtznir dans ce contexte
la constante optimale du théoreme. Une réponse affirmative (“en topologie
C'°¢”) 4 la conjecture de Dippolito mentionnée précédemment montrerait alors
que cette constante serait optimale méme dans le cas général.

4. ERGODICITE

4.1 DEUX CRITERES GENERAUX

Rappelons que I’action de T sur S!' est ergodigue (par rapport a la mesure
de Lebesgue) si les sous-ensembles mesurables de S! invariants par I' ont une
mesure nulle ou totale. Pour montrer que 1’action d’un groupe sur le cercle a
orbites denses est ergodique, deux principes sont plus au moins canoniques.
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IlIs sont reliés aux idées d’équicontinuité et d’expansivité, mais au niveau
différentiel. Une version du premier principe se traduit dans la proposition
ci-dessous.

PROPOSITION 4.1.  Soit T un sous-groupe de Diff *(S") dont les orbites
sont denses et dont tout élément est d’ordre fini. Si T' est engendré a distorsion
finie, alors Uaction de T est ergodique.

Preuve. D’abord, notons que I' est conjugué a un groupe de rotations (de
type non fini). Pour montrer cela on peut utiliser le lemme 3.2. De manicre
alternative, on pourrait utiliser le théoréme de Holder (voir la proposition 6.11
dans [11]). On note ord(f) 'ordre de I’élément f € I'.

Soit A C S' un ensemble mesurable invariant et de mesure positive. Nous
montrerons que Leb(A) = 1. Soit p un point de densité de A. Il est facile de
voir qu’il existe une suite (f,) dans I’ ' et une suite d’intervalles de la forme
I, = |p—e¢n,p+en) telles que ¢, tend vers zéro, et telles que 7, 7105 R
ord(f)=1(r ) sont deux a deux disjoints et recouvrent S'. Fixons ¢ > 0 et
prenons n € N tel que

Leb(l, N (S' — 4) _
Leb(l,) =%

Soit C > 0 une constante telle que W(f) < C pour tout f € I''. Notons que
pour tout k < ord(f,) on a

k—1

WS L) <Y W fil)) < W) < C.
i=0

Ceci entraine
Leb(f (1 N (8' = A) _ $UP.e;, (/) () Leb(l, N(S' —4) _ ¢
Leb(fF ) = infuy, (SO Leb,) - ©

L’ensemble A étant f,-invariant, a partir de cette inégalité on déduit aisément
que

Leb(S' — A) < ¢“cLeb(S') = e‘e.

Puisque ceci est vrai pour tout £ > 0, on conclut que Leb(S!' — A) = 0, et
donc Leb(A)=1. []

REMARQUE 4.2. Tout f € Diff]fg(S‘) avec nombre de rotation irrationnel
agit de maniere ergodique sur S'. La preuve de ce fait utilise une idée analogue
a celle de la proposition précédente. Dans ce cas, on peut obtenir une sorte
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d’équicontinuité locale grace a la connaissance, d’apres la théorie du nombre
de rotation de Poincaré, de la dynamique combinatoire du difféomorphisme
(voir [15] ou [16] pour les détails). Comme conséquence de ce fait et de la
proposition précédente, on déduit que 1’action sur le cercle de tout sous-groupe
de Difffg(S') topologiquement conjugué a un sous-groupe dense du groupe
des rotations et engendré a distorsion finie est ergodique.

Le deuxiéme principe d’ergodicité, contenu dans la proposition suivante,
semble €galement bien connu. Néanmoins, il est difficile de donner une
référence précise. Nous suivrons essentiellement une idée qui se trouve dans
[30]. Rappelons qu’on note Difff“(Sl) le groupe des difféomorphismes
directs et de classe C' du cercle dont la dérivée est Holder continue
d’exposant «.

PROPOSITION 4.3.  Soit T un sous-groupe de Difff“’(Sl) dont les orbites
sont denses, avec o > 0. Supposons que pour tout point p € S' il existe un
élément g € T tel que ¢'(p) > 1. Alors Uaction de T est ergodique.

La preuve sera faite en plusieurs étapes. D’abord, notons que sous
les hypotheéses de la proposition, un argument simple de compacité donne
I’existence d’un nombre fini d’éléments g¢;,...,q, dans T', d’une collection
Ii,...,I, d’intervalles ouverts de S', et de constantes ¢y > 0 et 7 > 1,
tels que pour tout i = 1,...,n et tout x € I, on a g/(x) > 7, et tels que
pour tout point p € 8! il existe I, = ip) (pas nécessairement unique) tel que
[p —€0,p+e0] C 1.

Pour p € S' fixé on note J; = Lipy, ho = Id. On définit par récurrence
hi = gi, o hg—1, ou iy = i(he_(p)), et on définit J; = I;, . Remarquons que
h.(p) > 7" pour tout n € N.

LEMME 4.4. 1l existe une constante C > 0 telle quz si n € N et € >0
sont tels que Jyyy contient ly(lp — e,p + €[) pour tout k =0,1,....n—1,
alors on a h,(x)/h,(y) < C pour tout x,y €lp —&,p + €[.

Preuve. Notons d’abord que chaque g|; étant «-Holder continue et
supérieure ou égale & T, il existe une constante C > 0 telle que pour tout
x,y€l; ona N

|log(g;(x)) — log(g; ()| < Cdist*(x,y).

Donc, d’apres ’hypothese, pour tout k =0,...,n—1 et tout x,y €lp—e, p+el,
la valeur de ’10g(g{k+] (he(x))) — log(g{k+I (hk(y)))‘ est inférieure ou égale a
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C dist® (e (x), () < Cr~ dist® (giy., , (e ()), Gir, T (1))
= Cr~* dist® (g1 (%), a1 () < -+
< 00 dist® (, (), ha(y)) < C7~ 0.

On obtient alors

n—1

3 [log(g,,, () — log(g},.., ()|

k=0
n—1 0o s
~ ~ cr”
—a(n—k) —ak __
SECT SCET = a1
k=0 k=0

Donc, pour C = exp(CT(r® — )™ on a K,()/H,n <C. O

/
hﬂ ('x) <

log A I

Le lemme suivant donne des conditions sous lesquelles les hypotheses du
lemme précédent sont vérifiées.

LEMME 4.5. Si € < g9/Ch,(p) alors h; envoie lp—e,p+el dans Jy pour
tout k=0,...,n—1. De plus, Uintervalle 1h(p)—hj(p)e/C, hi(p)+h(p)e/Cl
est contenu dans h(lp —e,p + €l) pour tout k=0,...,n—1.

Preuve. Supposons le contraire et soit k < n le plus petit entier pour
lequel Ai(Jp—e,p+el) n’est pas contenu dans Ji. Soit 0 < &) < go/CH,(p) la
plus petite constante pour laquelle on a soit i (p—e1) ¢ Jy soit i(p+e1) ¢ Ji.
Le lemme précédent nous donne hj(x) < Ch,(p) pour tout x € [p—¢e1,p+ei1l,
et donc

hllp — €1,p + €11) Clu(p) — £1Chi(p), li(p) + e1Chy ()]
C [(p) — €0, li(p) + €0] C Ji,

ce qui est une contradiction. La preuve de la deuxieéme partie est analogue et
nous la laissons au lecteur. L]

Preuve de la proposition 4.3. Soit A C S' un ensemble mesurable
I -invariant et de mesure positive. Nous montrerons que Leb(A) = 1. Pour
cela, prenons un point de densité p de A. On considere la suite d’éléments
(h,) de T donnée par la construction précédente. Soit (/,, ) une sous-suite
telle que A, (p) converge vers un point g € S'. Pour chaque k > 1 on fixe
un nombre réel e €leg/2Ch;, (p),c0/Ch,, (p)[. D’apres les lemmes précédents
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on a:
Leb((S! — A)Nlp — et p + &l)
Leb(lp — ex, p + &xl)
< infxep—cipren 1, (0) Leb((8' — A) N hy(Ip — ex, p + exD)
© SUDycip—ey ptegf i (X) Leb(hy(Ip — 21, p + exD))
o1 Leb((S' — ANk, (p) — ekl (p)/C, by, (p) + e1h), (p)/CI)
- C Leb (14, (p) — Cerlt, (p), hu, (p) + Cerltl, (p)])

1 2
> 5z, Leb((8" = ANV, () — 20/2C7, Iy (p) + £0/2C71).

Puisque ]g —&/4C?, g+ £0/4C?[ est contenu dans 1 (9) — £0/2C?, hy, (p) +
£0 /2C2[ pour k assez grand, on déduit que

(20)  Leb((S' — A)Nlg — 20 /4C?, g + £ /4C?])
Leb((S! — ANp — e, p + i)
Leb(lp — e, p + &l)

pour k grand. On sait que & tend vers zéro lorsque k tend vers 1’infini.
Donc, p étant un point de densité de A, on conclut d’apres (20) que

< 2C¢gg

Leb((S' — A)Nlg — £0/4C?,q + £ /4C?[) = 0.

Comme les orbites de I' sont denses, on obtient Leb(S' — A) = 0, et donc
Leb(A)=1. [

REMARQUE 4.6. 1l n’est pas difficile de modifier la preuve précédente
pour démontrer le résultat suivant: si & > 0 et si ' est un sous-groupe de
Diffﬂf“(S‘) qui admet un minimal exceptionnel K de sorte que pour tout
point p € K il existe un élément g € T vérifiant ¢’(p) > |, alors la mesure de
Lebesgue de K est nulle. Ce fait est tres intéressant, car le probleme de savoir
st des ensembles de Cantor minimaux de mesure positive peuvent apparaitre
pour des sous-groupes de type fini de Diffi(S]) est ouvert.

4.2 PREUVE DE L’ERGODICITE

Pour démontrer le théoréeme D, fixons d’abord le générateur g € T a
points périodiques isolés donné par I’hypothése. Notons k I'ordre de ces
points périodiques et posons G = g*. Un argument analogue a celui du début
de la preuve du théoréme B montre qu’il existe F € T" et un intervalle [a, #]
de S! tels que F et G (ou éventuellement G~') sont comme dans les lemmes
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de Duminy sur lintervalle [a,b'] et vérifient W(F;[a, 1) < 300 /(1 — o) et
W(G;[a,b']) < 8o/(1 — o). Nous considérerons une petite perturbation de cet
intervalle, de sorte que 1’application de retour induite ait un nombre fini de
branches (voir la figure 10).

b=F(c)

b’:

ad=a+e

FIGURE 10

Pour ¢ > 0 notons @ = a +¢. Soient ¢ = G~ !(a') et b = F(c). Par
rapport a la notation (10), il n’est pas difficile de vérifier que m(F,G) tend
vers 1 lorsque ¢ tend vers 0. En utilisant le lemme 2.3 on montre que
si 5o < 0.165 et ¢ est suffisamment petit, alors chaque branche d’un iteré
suffisamment grand de ’application de retour induite : [c,b] — [c,b] est
dilatante (remarquons que la constante 0.165 est la méme qui apparait dans
la preuve du théoreme A).

Puisque les orbites de T' sont denses, il existe une famille finie d’intervalles
Ii,...,I, qui recouvrent S', et une famille g,...,g, d’éléments de T,
tels que gi(x) € [c,b] pour tout x € I et tout i € {1,...,n}. Soit
M = inf{g/(x) : x € [, 1 <i<n}, et soit N un entier suffisamment grand de
sorte que chaque branche de " soit 1/M-dilatante. Pour g; = YyNog el
on a g/(x) > 1 pour tout x € [; (si x est tel que g;(x) n’est pas un point de
continuité de /", alors on peut considérer I’'une quelconque des branches de
zp'N dont ’adhérence du domaine de définition contient x). Ainsi, pour obtenir
’ergodicité, on peut appliquer le principe d’expansivit€ de la proposition 4.3.

REMARQUE 4.7. Notons que la perturbation de l'intervalle [a,/] a été
prise de sorte & obtenir une application de retour bien définie aux extrémités,
ce qui permet d’appliquer la proposition 4.3.
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5. RIGIDITE

Dans ce paragraphe nous donnons la démonstration du théoreme E pour
la constante §; = 0.062. Désignons par g le générateur a points périodiques
isolés du groupe T donné par I'hypothese, et notons & == sup{||1”|| : h € r'}
et A = 0/(1—9). Comme dans la preuve du théoréme D, il est facile de montrer
que si A < log(1.46557) ~ 0.382, alors & partir de ¢ on peut construire deux
€léments F) et G| de I'; qui sont reliés comme dans les lemmes de Duminy
sur un intervalle [a,b'] de S', et qui de plus vérifient W(F|;[a,b']) < 3\ et
W(G;la,b']) < \. Pour chaque ¢ > 0 notons a’Ev1 =a-+te, = Grl(ag,l),
be,1 = Fi(cep).

LEMME 5.1.  Si la constante € > 0 est assez petite, alors chaque branche
de U'application de premier retour 1 : [ce,1, 6211 = [ce1,b21]1 induite par
Fy et Gy est 2-dilatante.

Preuve. Pour € > 0 petit notons, comme dans (10),

—1
SUPreic. b, 1 (X — £ (X))

) 1 -
lnfxe[cz:,lybs,l](’x - Fl (‘x))

bei — Gy Na. )
Fi(Gy ' (ac1)) — ce

m(Fy,Gy) = " M(F,) =

D’apres la remarque 2.4, il faut vérifier que

1
sup  Fj(x)

x€layce 1]

) W, DAWGrilee i beal) o L

M(F)m(F,, Gy) ( 1 :

pour ¢ assez petit. Puisque m(F,,G;) tend vers 1 lorsque ¢ tend vers zéro,
cecl revient a montrer que

1 S Jeet be D) 1
21 M(F (1 _ ) W(Fysla,ce 1 D4+W(Gilce,1.be ) =y
1) (F)) o ) .
x€la,ce 1]

Remarquons que d’apres la construction de F; et Gy, pour tout £ > 0
suffisamment petit,

W(Fi,la,c1]) < 3X, W(Gy, [ce1,b:1]1) < A,

inf  Fi(x) > e, sup  Fi(x) < .

xelacel x€la,ce 1]

Pour x € [c.1,b.1] on a
Fil = Fi ' ee) + (0 — e DETY (9)

pour un point p € [cc,1,x] qui dépend de x et c. ;. On obtient ainsi
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x—F7 ) = cey — Fy ' (ce) + (= ce, )1 = FT D (),

et donc |
R gy T e,
ce,t — F (ce1) cs,1 — Fy (ce,1)
Notons que
— b,y —
(22) adnth .+ W QU i Tl
Ce,l — F[ (Cs,l) F] (be,l) 4F1 (Cc,l)
A partir de cette inégalité on obtient
B
(23) a 1_1(") <141 -y =",
Ce,l — F] (Cs,l)
De maniere analogue,
-1
kiGN PR Sl )
Ce,l — F] (Cs,\) Ce,l — F] (CE,I)
et d’aprés (22) on obtient
— F1
(24) R e o).
Ce,l _Fl (Ce,l)
D’apres (23) et (24) on conclut
3A
M(Fy) < .
D) 1 —e3Me3r - 1)
On a alors
M(Fl)(l _ : ) WFrlasce (D+W(Grilee,1,be,11)
sup Fj(x)
x€la,ce,1]
e3/\ €7>\(e3)\ _ 1)

< 1 — -3\ 4/\:
T o e e

1 —eMer —1)

et il est facile de vérifier que le membre de droite de cette inégalité est inférieur
ou égal a 1/2 pour A < log(1.07) ~ 0.067, c’est-a-dire pour § <0.062. L[]

On note maintenant a.p = @(ac,1), a., = P, ;), bep = @b 1),
cen = plce), Fo = poFyo 90“' et G, = poGjo (p‘l. L’application
de retour s [cc2,bep] — [ce2,be 2] induite par F, et G, vérifie alors
Uy, = porprop~!. Les branches de cette application sont elles aussi 2-dilatantes
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pour ¢ > 0 assez petit. De plus, le nombre de ces braaches est fini et tend
vers I'infini lorsque ¢ tend vers zéro (toujours avec & > 0).

Pour £ > 0 petit, nous avons alors que @ lee1,be1) — [cc2,b-2] est un
homéomorphisme absolument continu qui conjugue les applications 1y et 1, .
Ces applications vérifient les propriétés (25) et (26) du deuxieme appendice.
Le théoreme 6.11 de cet appendice montre que la restriction de ¢ a ’intervalle
Ice,1,be 11 est un difféomorphisme de classe C”.

Remarquons maintenant que d’aprés 1’égalité Jizop=ypofi,,i€T,on
voit que I’ensemble des points de S' au voisinage desquels @ est un difféo-
morphisme local de classe C" est I'y-invariant. Puisque les orbites par T
sont denses, ¢ est un difféomorphisme de classe C" du cercle sur lui-méme.

6. APPENDICE

6.1 GROUPES LIBRES D’HOMEOMORPHISMES DU CERCLE: UN THEOREME DE
MARGULIS

En réponse & une question posée par E. Ghys, G. Margulis a démontré le
théoréme suivant (voir [11] et [21]).

THEOREME (G. Margulis). Soit T un sous-groupe de Homeo,(S'). Si I’
ne préserve aucune mesure de probabilité sur S', alors 1" contient un groupe
libre a deux générateurs.

Il est tres instructif de lire la preuve de ce théorerae, car elle contient
quelques faits généraux sur la structure des actions des groupes par homéo-
morphismes du cercle. Nous donnerons dans la suite les idées essentielles de
la démonstration.

DEFINITION 6.1. On dit que 'action sur le cercle d’un sous-groupe I' de
Homeo (S') est équicontinue si pour tout 0 < ¢ < 1/2 il existe 0 < & < 1/2
tel que si dist(x,y) < &’ alors dist(g(x), g(y)) < ¢ pour tout g € I'.

DEFINITION 6.2.  On dit que I’action sur le cercle d’un sous-groupe I’
de Homeo,(S") est contractive s’il existe 0 < ¢ < 1/2 tel que pour tout
x,y € ST satisfaisant dist(x, y) < ¢, il existe une suite (¢n) dans T' telle que
dist(g,(x), g.(y)) tend vers zéro lorsque n tend vers I’infini.
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Supposons que 1’action sur le cercle d’un sous-groupe I de Homeoy(S')
soit équicontinue. D’apreés le théoreme d’Ascoli, la fermeture T' de T’ dans
Homeo_ (S') est compacte. On peut alors définir une mesure de probabilité
p sur S' par

H(A) = /_ Leb(g(A)dg
r

ou dg désigne la mesure de Haar sur T et ACS' est Lebesgue mesurable. La
mesure g est invariante par 1’action de I' sur S!. De plus, p ne possede pas
d’atome et son support est total (on a p(A) > 0 pour tout ensemble mesurable
A d’intérieur non vide). En utilisant z on peut reparamétrer le cercle de fagon
a conjuguer T' 2 un groupe de rotations. On a alors la proposition suivante.

PROPOSITION 6.3. Soit T un sous-groupe de Homeo(S"). Si l'action de
T sur S' est équicontinue, alors T est topologiquement conjugué a un groupe
de rotations.

Le cas contractif ¢’est le cceur de [21]. Dans cet article, en utilisant le
lemme du ping-pong de Klein (voir [14]), G. Margulis démontre le résultat
suivant.

PROPOSITION 6.4. Soit T un sous-groupe de Homeo,(S'). Si I'action de
T sur S' est contractive et si toutes ses orbites sont denses, alors T' contient
un sous-groupe libre a deux générateurs.

A partir de ces propositions il n’est pas difficile de finir la preuve du
théoreme de Margulis. En effet, voyons les trois possibilités données par la
propriété de trichotomie. S’il existe une orbite finie alors il y a une mesure
de probabilité sur S' invariante par T', & savoir la moyenne des masses Dirac
concentrées sur les points de cette orbite. Si toutes les orbites sont denses
alors il n’est pas difficile de montrer que I’action de I' est équicontinue
ou contractive. On peut donc utiliser la proposition 6.3 ou 6.4, selon le
cas. Supposons finalement qu’il existe un Cantor minimal K. On remplace
par un point chaque composante connexe de S! — K pour obtenir un cercle
topologique SL. Sur ce cercle, le groupe I' agit de maniere naturelle par
homéomorphismes, et les orbites de cette action sont denses. On est alors
ramené au cas ol les orbites sont denses, pour lequel on a déja démontré le
théoreme.

Notons aussi que des résultats précédents, on obtient directement la
proposition suivante.
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PROPOSITION 6.5. Soit T un sous-groupe commutatif de Homeo, (S').
Si les orbites de T sont denses, alors T est topologiquement conjugué a un
groupe de rotations.

Cette proposition reste vraie pour des sous-groupes moyennables de
Homeo (S'). Remarquons que pour la démonstration il n’est pas nécessaire
d’utiliser le théoréme de Margulis en toute sa puissance. En effet, si T' est
un sous-groupe moyennable de Homeo, (S'), alors il préserve une mesure
de probabilité 1 sur S'. Si les orbites par T' sont denses, alors {4 est sans
atomes et son support est total. En reparamétrant le cercle, on obtient que T’
est conjugué a un groupe de rotations.

Comme application de cet ensemble d’idées, nous démontrons maintenant
un résultat annoncé dans 1’introduction de cet article.

THEOREME 6.6.  Soit T un sous-groupe de type fini de Difflfg(S]). Si T
admet un minimal exceptionnel alors il contient un sous-groupe libre & deux
générateurs.

Preuve.  On démontrera que ' agit de facon contractive sur le cercle
topologique S} obtenu en remplacant chaque intervalle du complémentaire
de K par un point, comme ce qui a été fait pour la preuve du théoréme de
Margulis. Le théoréeme découlera donc de la proposition 6.4.

Supposons que I’action (minimale) de I' sur Si ne soit pas contractive.
Alors elle est équicontinue, et il existe une mesure invariante sans atomes et
de support total qui permet de conjuguer I’action de T sur S, a une action par
des rotations. Soit {fj,...,f,} un ensemble de générateurs de I'. Si chaque
fi agissant sur Sp est d’ordre fini alors chaque orbite dans Sk est finie, ce
qui contredit la minimalité¢ de K. D’autre part, si I’'un des f; n’est pas d’ordre
fini sur S, alors le nombre de rotation de ce Ji (vu comme difféomorphisme
de classe C'°¢ de S') est irrationnel. Comme fi a des orbites non partout
denses (celles contenues dans K), ceci contredit le théoréme de Denjoy. [

REMARQUE 6.7. Pour des sous-groupes de type fini de Diffjr"(Sl), on
dispose d’un résultat plus fort: si I' est un tel groupe qui admet un minimal
exceptionnel, alors il contient un sous-groupe libre d’indice fini (voir [9]).

L’hypothese suivant laquelle I' est de type fini dans le théoréme 6.6
est bien nécessaire. En effet, d’apres une construction d’un feuilletage de
codimension 1 de M. Hirsch, on peut obtenir une action de Z[1/2] par
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difféomorphismes analytiques réels de S! qui admet un minimal exceptionnel
(voir [17]).

Néanmoins, le théoréme reste valable pour des groupes engendrés a
distorsion finie (notons en passant qu’'un phénoméne analogue se produit
pour le théoreme de R. Sacksteder). Pour montrer cela, il suffit de montrer
de nouveau que ’action de T' sur Sg est contractive. Sinon cette action est
équicontinue, et donc conjuguée a une action par des rotations. Cependant,
ceci contredit la proposition 3.3.

6.2 UN THEOREME DE CONJUGAISON DIFFERENTIABLE

Une application #: [0,1] — [0, 1] est de classe Cl°¢ par morceaux s’il
existe une partition finie 0 = P <pl << pF =1 de [0,1] telle que
la restriction de v 2 chaque intervalle ]p’,p"![ s’étend en une application
de classe C°¢ a [p/,p't!] pour tout i = 0,...,k — 1. L’application ¢ est
dilatante par morceaux s’il existe une constante 7 > 1 telle que P(x) > T
pour tout point x € [p',p"™!], i=0,...,k—1.

On dit que 1 est fopologiquement transitive (resp. topologiquement
mélangeante) si pour toute paire d’ouverts non vides A et B dans [0,1]
il existe n € N tel que ¥"(A) N B est non vide (resp. il existe ny € N tel
que ¥"(A) N B est non vide pour tout n > ny). Une mesure de probabilite
p sur [0, 1] est invariante par 1 si w(p~1(A)) = uw(A) pour tout ensemble
p-mesurable A C [0, 1]. Le théoreme suivant, dii a A. Lasota et J. Yorke, est
déja classique (voir [19] et [20]).

THEOREME 6.8. Soit 1 une application dilatante par morceaux de
Uintervalle unité. 1l existe une mesure de probabilité sur [0,1] invariante
par ), absolument continue par rapport a la mesure de Lebesgue, et dont
la fonction densité est a variation bornée. De plus, si 1 est topologiquement
transitive, alors la mesure de probabilité invariante absolument continue est
unique, et si 1 est topologiquement mélangeante, alors sa fonction densité o
satisfait les inégalités 1/C < o < C pour une certaine constante C > 0.

Avant d’énoncer un autre résultat connu dont nous aurons besoin, on fixe
quelques notations. Pour r > 1 on note G, (R,0) le groupe des germes en
0 de difféomorphismes locaux de classe C" de R qui fixent O et préservent
Porientation. On note G, (R,0) le groupe des germes en 0 d’homéomor-
phismes locaux de [0,00[ qui fixent O et qui sont différentiables (a droite)
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en 0. Pour r > 1 on définit G7(R,0) comme étant le groupe des germes en
0 de difféomorphismes locaux de classe C de [0, 00[ qui fixent 0. Notons
qu’il existe une projection naturelle de g\ (R,0) sur G/(R,0). On dit qu’un
germe 7 dans G’ (R,0) est hyperbolique si v'(0) # 1.

Le résultat suivant est une formulation plus précise du corollaire 2.2 de
[13]. Bien que la preuve soit la méme, la forme ci-dessous est plus adaptée

a notre situation. Nous refaisons la démonstration pour la commodité du
lecteur.

PROPOSITION 6.9. Soient ~, et 7, deux germes hyperboliques dans
GL(R,0), avec 2 <r < w. Si ¢ est un germe dans G. (R,0) qui conjugue
Y1 et 2 en tant qu’éléments de GL(R,0), alors ¢ appartient a G'(R,0).

Preuve.  Supposons d’abord que 2 < r < oo. Soit A = +/(0) = ~}(0).
Quitte a changer les ; par leurs inverses, on peut supposer que A < 1. D’apres
le théoréme de linéarisation de Sternberg (voir [31] et aussi 1’appendice de
[32]), il existe ¢; et ¢, dans G" (R,0) tels que pour i = 1,2, le germe
de @;o0v;0¢; ! a lorigine est égal a celui de I’application x — Ax. On
peut donc supposer que ¢ conjugue ce dernier germe avec lui-méme, ce qui
revient a dire que pour tout x > 0 suffisamment petit on a p(\x) = \x. Ceci
entraine que ¢(x) = @(A\"x)/A" pour tout n € N. Notons que pour x > 0
cette dernicre expression converge vers ¢'(0)x lorsque n tend vers 1’infini.
Ainsi, I’élément ¢ € G (R, 0) coincide avec le germe de I’application linéaire
x = ¢'(0)x (vu comme un élément de G, (R,0)). Ceci finit la preuve dans le
cas ou 2 <r < oo. Si r =w alors on reprend les arguments précédents en
utilisant le théoreme de linéarisation de Koenigs au lieu de celui de Sternberg
(voir [5], page 31). [

Dans la suite, on considérera des applications : [0,1] — [0, 1] dilatantes
par morceaux, dont le nombre de branches est au moins trois, et qui vérifient
(voir la figure 11):

(25)  ¢'(x) > 2 pour tout x € [p',p'], i=0,....k—1, (k>3);
(26) »(p', p™') =10, 1[ pour tout i =1,...,k—2.

LEMME 6.10. Sous ces hypotheéses, pour tout intervallz ouvert 1 C [0,1] il
existe un entier positif ny = no(l) tel que " (I) contient "0, 1{. En particulier,
Y est topologiquement mélangeante.
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FIGURE 11

Preuve. Soit ¢ > 0 tel que ¥/'(x) > 2 + ¢ pour tout x € [p/,pt],
i=0,...,k— 1. Soit ny tel que

2+€no
EEEy s,

Nous affirmons qu’il existe n < ny tel que "(I) contient un intervalle du
type 1p',p't![, avec i = 1,...,k — 2. Supposons le contraire et pour chaque
n < no prenons une composante connexe /, de "(I) de taille maximale.
Alors I, est contenu dans un intervalle 1p/,p'*t![, avec i =0,...,k— 1, ou
bien I, ne contient qu’un seul point p', avec i = 1,...,k—2. Dans le premier
cas on a |¢¥(l,)| > (2 + ¢)|l,|. Dans le deuxieme cas, I, est coupé en deux
intervalles par p‘. L'un de ces intervalles a une taille supérieure ou égale a
la moitié de celle de I,, et donc son image par v a une taille supérieure ou

égale a (2£9)|1,|. Par récurrence on obtient

24+¢en
ol > (F15) 11> 1,

ce qui est absurde.

On a alors démontré qu’il existe n < ny tel que "(/) contient un
intervalle du type 1p',p't![, avec i = 1,...,k — 2. Donc, "t!(I) contient
»(p', pTD =10, 1], et ceci finit la preuve du lemme. L]

On peut maintenant énoncer et démontrer le résultat principal de cet
appendice. Bien qu’une version plus générale puisse &étre donnée pour des
applications dilatantes par morceaux et topologiquement mélangeantes de
I’intervalle a ’aide des résultats de [3], ce n’est que cette version qui a
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¢€t€ utilisée a la fin de la preuve du théoreme D. L’argument de la preuve
ci-dessus est & comparer avec 1’'un des arguments principaux de [30].

THEOREME 6.11. Soient ; et 1, deux applications dilatantes par
morceaux de ['intervalle unité qui satisfont les propriétés (25) et (26). On
suppose que iy et o sont de classe C', 2 < r < w, et qu’'elles sont
conjuguées par un homéomorphisme direct ¢ de [0,1]. Si ¢ est absolument
continu, alors la restriction de ¢ a 10, 1[ est un difféomorphisme de classe C”.

Preuve. Soient g; et g, les densités des uniques mesures de probabilité
absolument continues invariantes par ¢, et 1, respectivement. Puisque ¢
est absolument continu, ¢ envoie la mesure du; = g;d(Leb) sur la mesure
diy = prd(Leb). Pour x € [0, 1] on définit

X

Usx) = ([0, 1) = / Colds,  i=1.2.

0
Puisque ¢; et p, sont positives, les fonctions U; et U, sont inversibles, et
on a

(27) ) = U ' o Uy(x).

Les fonctions p; et g, sont a variation bornée, et donc les limites latérales
o; (x) = limy_,,— 0i(y) et o (x) = lim,_, + 0:(y) existent pour i = 1,2 et tout
x €]0,1]. Pyuisque 0> est inférieurement bornée par une constante positive,
d’apres (27) on voit que ¢ est différentiable a droite et a gauche en tout
point, avec

WL® i
(U)o (U o Ui(0) 05 ((0)

ou ¢ (resp. ¢’ ) désigne la dérivée a droite (resp. a gauche) de ¢ (et
de maniere analogue pour U, et U,). Notons maintenant que par hypothése
I’application | posseéde au moins une branche avec un point fixe hyperbolique.
La proposition 6.9 implique que ¢ est un difffomorphisme local de classe
C" sur un voisinage [ a droite de ce point. Soit ny = ng(I) I’entier donné par
le lemme 6.10. L’égalité ¢ o |° = ¥,° o ¢ entraine que ¢ est un difféomor-
phisme de classe C" au voisinage de tout point x €]0, 1] — UZ(’:B] Uk ().
Pour obtenir que ¢ est un difffomorphisme de classe C” au voisinage de tout
point x € UZ";O1 Uy 1" (p"), on raisonne par récurrence en utilisant I’égalité
@ o 1/)1_1 = zbz“l o, ou u’)l_l et wz_l désignent les inverses des branches

conjuguées de v et i), respectivement. [ ]

Pl (x) =
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