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SUR LES GROUPES DE DIFFÉOMORPHISMES DU CERCLE

ENGENDRÉS PAR DES ÉLÉMENTS PROCHES DES ROTATIONS
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Introduction

Soit T un sous-groupe du groupe Homeo^S1) des homéomorphismes

directs du cercle. Un sous-ensemble K de S1 est invariant par T si f(x)
appartient à K pour tout x G K et tout / ET. Un ensemble compact non

vide et invariant K est minimal si les seuls sous-ensembles fermés invariants

de K sont l'ensemble vide et K. Il est bien connu qu'on a toujours une (et

seulement une) des possibilités suivantes (voir le § 1 pour la preuve) :
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(a) il y a (au moins) une orbite finie;
(b) toutes les orbites sont denses;

(c) il existe un ensemble fermé invariant minimal homéomorphe à
l'ensemble de Cantor; cet ensemble est unique et il est contenu dans
1 adhérence de toute orbite. On l'appelle un minimal exceptionnel.

Lorsque le groupe T est cyclique infini et lorsque son générateur a une
certaine régularité (par exemple, il est de classe C2), le cas (c) ci-dessus ne
peut pas se produire: c'est essentiellement le théorème de Denjoy. Cependant,
des ensembles de Cantor minimaux peuvent apparaître pour des sous-groupes
non cycliques de difféomorphismes de S1 de classe C°° ou même analytiques
réels. Quelques exemples apparaissent de manière naturelle dans l'étude des

groupes fuchsiens. Un autre exemple intéressant est construit dans [12]. Dans
[28] le lecteur trouvera un exemple d'intérêt historique, et nous en étudierons
d'autres au §3.4.

L'un des objectifs de ce travail est d'expliciter quelques restrictions à
l'existence de minimaux exceptionnels pour des groupes agissant sur le cercle
par difféomorphismes de classe C2. Par exemple, un théorème classique de
R. Sacksteder fournit la contrainte suivante: s'il existe un Cantor minimal et
si le groupe est de type fini, alors il existe un élément avec un point fixe
hyperbolique (voir [29]). Il y a aussi une contrainte de type algébrique : sous
les hypothèses précédentes, le groupe contient un sous-groupe libre à deux
générateurs (voir le premier appendice).

Nous nous intéressons plutôt à des propriétés reliées aux générateurs du

groupe. Nous montrerons que si les générateurs satisfont certaines conditions,
alors il ne peut pas y avoir de minimal exceptionnel. De plus, nous étudierons
dans ce cas des propriétés dynamiques.

Avant d'être plus précis, citons d'abord un exemple. Dans la théorie des

groupes fuchsiens on démontre, en utilisant l'inégalité de Jörgensen, que si
un sous-groupe discret à deux générateurs de PSL(2, R) admet un minimal
exceptionnel, alors le déplacement de l'un des générateurs est "grand". Cela
signifie qu'il est impossible de conjuguer simultanément dans PSL(2,R) les
deux générateurs d'un tel groupe en des éléments "proches des rotations"
(voir [2], pages 105 et 321). Le premier but de ce travail est de donner
une preuve complète d'une extension de ce résultat à des groupes engendrés
par des éléments proches des rotations dans le groupe Diff^S1) des

difféomorphismes directs et de classe C2 du cercle. Le théorème suivant a été

originalement démontré par G. Duminy aux environs de 1977. Cependant, à

notre connaissance, aucune preuve n'en a été publiée.
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Théorème A (G. Duminy). Il existe une constante ù0 > 0 telle que,

si T est un sous-groupe de Diff^S1) engendré par un ensemble T1 (pas

nécessairement fini) de difféomorphismes, dont au moins l'un d'entre eux a un

nombre fini de points périodiques, et tels que \f"(x) | < ôo pour tout f G T1

et tout x G S1, alors T n'admet pas de minimal exceptionnel.

Ce théorème reste valable pour des sous-groupes du groupe Diff^g(S1)

des difféomorphismes directs du cercle dont la variation totale du logarithme

de la dérivée est finie. En fait, le théorème A découle presque directement du

résultat suivant.

THÉORÈME B. Il existe une constante Ao > 0 telle que, si T est un sous-

groupe de Diff+^S1) engendré par un ensemble T1 de difféomorphismes,

dont au moins l'un d'entre eux a un nombre fini de points périodiques, et tels

que var(log(/')) < A0 pour tout f G T1, alors T n'admet pas de minimal

exceptionnel.

Les points périodiques des difféomorphismes "génériques" sont isolés (voir

[22]). Il est donc raisonnable d'espérer que les théorèmes A et B soient encore

valables sans l'hypothèse d'un nombre fini de points périodiques pour l'un des

générateurs. Cependant, dans l'étude du cas général on trouve des problèmes de

nature combinatoire. Nous reviendrons plus loin sur cette question. Signalons

pour le moment que dans le cadre des difféomorphismes analytiques réels du

cercle on peut résoudre aisément ces difficultés, ce qui permet d'établir le

résultat suivant.

THÉORÈME C. Il existe une constante \\ > 0 telle que, si T est un sous-

groupe du groupe des difféomorphismes directs et analytiques réels du cercle

qui est engendré par un ensemble T1 d'éléments satisfaisant var(log(//)) < Ai

pour tout f G T1, alors T n 'admet pas de minimal exceptionnel.

Les conditions ||//,|| sup^gi \ f"(x)\ < ôo ou var(log(/')) < A0

expriment que les applications / G T1 sont proches des rotations. En effet,

on a H/"H 0 ou var(log(/')) 0 si et seulement si / est une rotation.

De plus, on montre aisément que

(1) sup | fix)~(x +<l-e~ varciogc/'))
;

.r<ES"

où p(f) est le nombre de rotation de / (voir le § 1).
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Pour un groupe de rotations du cercle, ou bien toutes les orbites sont
finies ou bien toutes les orbites sont denses et son action est ergodique (par
rapport à la mesure de Lebesgue). On peut donc consicérer les théorèmes A
et B comme étant des résultats de stabilité topologique par des perturbations
petites (au sens C2). En ce qui concerne les constantes qui apparaissent dans
les énoncés, nous montrons que A0 log( 1.22074) - 0.199 suffit pour le
théorème B, que ôo Ào/( 1 -h Ao) ~ 0.165 suffit pour le théorème A, et
que Ai Ao/4 suffit pour le théorème C. Bien que les valeurs optimales
semblent difficiles à déterminer, nous montrons que la constante Ao ne peut
pas être plus grande que 41og((v/5 + l)/2). Il serait peut-être intéressant
de trouver la meilleure constante du théorème C restreint aux sous-groupes
de PSL(2, R).

Comme nous l'avons indiqué plus haut, la preuve du théorème de Duminy
n'a pas été publiée. Néanmoins, on dispose de résultats plus précis pour des

groupes de type fini engendrés par des éléments proches de l'identité dans
le groupe Diff^(S1) des difféomorphismes analytiques réels et directs du
cercle. En effet, inspiré en partie par le théorème non publié de Duminy,
E. Ghys a démontré dans [10] qu'il existe un voisinage de l'identité dans

Diffij^S1) tel que, si T est un groupe engendré par un nombre fini d'éléments
dans ce voisinage, alors T n'a pas de minimal exceptionnel. Il obtient
aussi des résultats de récurrence pour l'action d'un tel groupe, lesquels
ont été récemment améliorés notamment par J. Rebelo, qui a démontré des

propriétés d'ergodicité et de rigidité pour de telles actions (voir [24], [25],
[26] et [27]). Dans notre contexte, nous obtenons le théorème d'ergodicité
suivant.

THÉORÈME D. Soit T un groupe de difféomorphismes du cercle engendré

par une famille T1 d'éléments qui vérifient ||/,,|[ < h0 pour tout f G T1, où
ho est la constante donnée par le théorème de Duminy. Supposons de plus
que T n'a pas d'orbite finie et que les points périodiques d'au moins l'un de

ses générateurs sont isolés. Alors T agit sur S1 de manière ergodique (par
rapport à la mesure de Lebesgue).

Notons que d'après le théorème de Duminy, l'hypothèse suivant laquelle
T n'a pas d'orbite finie est équivalente au fait que toutes ses orbites sont
denses.

On ne connaît pas d'exemple d'un groupe de type fini de difféomorphismes

de classe C2 du cercle dont les orbites soient denses et dont l'action
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ne soit pas ergodique sur S1 ; le théorème précédent dit qu'il est impossible
de fabriquer de tels exemples avec des générateurs proches des rotations.

En ce qui concerne la rigidité, nous donnons en classe Cr, 2 < r < lj
une version faible des résultats obtenus par J. Rebelo dans le cas analytique
réel.

THÉORÈME E. Soient Y\ et Y2 deux groupes de difféomorphismes directs

du cercle vérifiant les hypothèses du théorème D (par rapport à une constante
Ô\ éventuellement plus petite). Soient T{ {fi,\ : i G X} et {fi,2 u' 6 1}
des familles des générateurs proches des rotations de Y1 et Y2 respectivement.

Supposons que Ti et Y2 soient conjugués par un homéomorphisme direct p
de S1, de sorte que fi,2 — P °fi. 1 op~] pour tout i G X. Si p est absolument

continu, alors p est un dijféomorphisme de classe C2. De plus, si chaque

fij, i G X, j — 1,2, est de classe Cr, avec 2 < r < lu alors p est un

dijféomorphisme de classe Cr.

Pour r > 2, si deux groupes de difféomorphismes directs et de classe Cr du

cercle dont les orbites sont denses et qui ne sont pas conjugués à des groupes
de rotations sont C1-conjugués, alors il sont Cr -conjugués (voir [13]). Le
résultat ci-dessus est une version plus fine de ce fait sous l'hypothèse que les

générateurs soient proches des rotations. Signalons par ailleurs que le problème
de la différentiabilité de la conjugaison pour des groupes topologiquement
conjugués à des groupes de rotations est d'une nature différente. Concernant

ce sujet, nous renvoyons le lecteur intéressé à [1], [16] et [23].

Nous ignorons si dans le cas d'orbites finies on peut obtenir des résultats

génériques d'ergodicité et de rigidité locaux analogues à ceux de [24] et

[25]. Ce problème semble relié à celui de savoir s'il existe un analogue
du théorème de Duminy pour des groupes de difféomorphismes de la droite

engendrés par des éléments proches des translations (ou, plus généralement,

pour des pseudo-groupes de difféomorphismes de dimension 1).

Remerciements. Étienne Ghys m'a expliqué l'idée principale de la

preuve du théorème de Duminy et m'a donné une copie du manuscrit [8].

Thierry Barbot et Pierre de la Harpe ont fait des corrections aux versions

préliminaires de l'article, et avec Jan Kiwi et Juan Rivera j'ai eu de fructueuses
discussions sur le sujet. Je les remercie tous pour leur gentillesse. Je remercie

également le rapporteur anonyme pour son travail de lecture minutieuse, ses

remarques et ses corrections à l'article.
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1. Quelques faits classiques

On munit le cercle unité S1 de l'orientation canonique. Les intervalles
de S1 sont munis de l'orientation induite. Au cours de ce travail nous ne
considérons que des homéomorphismes et des difféomorphismes de S1 qui
préservent l'orientation.

Sur le cercle on considère la mesure de Lebesgue normalisée, que l'on
note Leb. Sauf mention du contraire, la longueur des intervalles du cercle est
aussi normalisée, de sorte que la longueur totale de S1 est 1. On désigne par
|/| la longueur de l'intervalle /. La distance entre deux points p et q de S1

est le minimum entre les longueurs des intervalles (p,q) et (q,p). Elle est

notée dist(p,q).
Pour / G Homeo+(S1) on fixe un point xeR et un relèvement de / à la

droite, que l'on désigne encore par /. Dans R/Z on considère le nombre de

rotation de / défini par

fn(x)
p(f) lim —— mod Z.

«—>•±00 n

On sait que la limite de la définition existe et sa valeur (modulo Z ne dépend

pas des choix du relèvement / et de x. De plus, il est connu depuis les travaux
de Poincaré que p(f) contient plusieurs informations sur la dynamique de /.
Pour le résultat suivant on peut consulter [22].

THÉORÈME 1.1. Pour f G Homeo+(S1) les affirmations suivantes sont

vérifiées :

(a) le nombre p(f) est rationnel si et seulement si f possède (au moins)

un point périodique;

(b) si p(f est rationnel et K un sous-ensemble fermé de S1 invariant

par /, alors f possède (au moins) un point périodique sur K ;

(c) on a l'égalité p(f) p(p 0/0 p~x) pour tout p G Homeo^S1).

Lorsque / appartient à Diff+^S1) et lorsque p(f) est irrationnel, alors

non seulement il n'y a pas d'orbite finie, mais toutes les orbites sont denses, et

/ est topologiquement conjugué à la rotation d'angle p(f). C'est le théorème

de Denjoy. De plus, / agit de manière ergodique sur S1 (voir la remarque
4.2 du §4).

Rappelons que tout difféomorphisme de classe C2 du cercle appartient à
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var(log(/')) [
J s1

ds.

Diff+g(S') : pour / G Diff^S1) on a

A)
fis)

Dans cette direction, le théorème de Denjoy est optimal. En effet, dans le

§X de [16], M. Herman démontre que pour chaque 0 < a < 1, chaque 9

irrationnel, et chaque voisinage V de la rotation d'angle 0 dans Diff!t+a(S1),
il existe un élément dans V de nombre de rotation 6 et sans orbite dense

(Difflt+ûi(S1) désigne le groupe des difféomorphismes directs du cercle dont la

dérivée est Holder continue d'exposant a). Le lecteur trouvera dans [18] une

version plus précise de la classe de differentiabilité optimale pour le théorème

de Denjoy.
Le cas d'une action d'un groupe non cyclique est beaucoup plus compliqué.

Pour la commodité du lecteur, nous avons inclus la preuve de la propriété de

trichotomie du début de l'introduction.

Preuve de la propriété de trichotomie. On considère la collection des

sous-ensembles fermés non vides et invariants de S1, que l'on munit de

l'ordre donné par l'inclusion. Puisque l'intersection de compacts emboîtés

non vides est non vide, on peut appliquer le lemme de Zorn. Soit donc K un
ensemble minimal pour cet ordre. Le bord dK et l'ensemble K' des points
d'accumulation de K étant aussi fermés et invariants, on a les possibilités
suivantes :

(a) K' est l'ensemble vide: dans ce cas, K est une orbite finie;
(b) dK est l'ensemble vide : dans ce cas K S1, et donc toutes les orbites

sont denses;

(c) K — K' et dK — K, c'est-à-dire K est un fermé d'intérieur vide et

sans points isolés. En d'autres termes, K est un ensemble de Cantor.

Dans le dernier cas, montrons que K est contenu dans l'adhérence de toute

orbite, ce qui implique l'unicité. Si x G K, alors il est clair que l'orbite de x
est dense dans K. Soit donc x G S1 — K et soit y un point arbitraire de K.
On note / la composante connexe de S1 — K contenant x et on note a un
point dans la frontière de 7. L'orbite de a étant dense dans K et K n'ayant
pas de points isolés, il existe une suite (fn) dans T telle que fn(a) tend vers

y et telle que les intervalles /„(/) sont disjoints. Comme la longueur de fn(I)
doit tendre vers zéro, la suite (/«(x)) tend aussi vers y.

Lorsque T est un sous-groupe de Diff!^g(S1) qui agit avec un minimal
exceptionnel, le théorème de Denjoy impose une contrainte: le nombre de
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rotation de chaque élément de T est rationnel, et donc tout élément possède
des points périodiques. Cette remarque sera utilisée plusieurs fois dans la

preuve des théorèmes.

Nous ûnissons ce paragraphe avec quelques considérations sur la variation
totale du logarithme de la dérivée d'une application. Pour / G Diff^g(S1)
on désigne par W(f) la variation totale du logarithme de la dérivée de /,
c'est-à-dire

n— 1

W(f) sup^] | log(/'(a,+ 1)) - log(/'(«;)) |,
1=0

où le supremum est pris sur sur tous les w-uples de point s ao < • • • < an ao

cycliquement ordonnés sur S1 et sur tous les entiers positifs n. Notons que
pour tout / G Diff^S1) il existe nécessairement un point p G S1 tel que
/'(/?) 1. On obtient ainsi

(2) inf f'(x) > sup f'{x) < eWi^
A-es1 xÇSi

Si / est une fonction définie sur un intervalle /, ou si / est un sous-
intervalle du domaine de définition de /, on désigne par la variation
du logarithme de la dérivée de / sur I. Il est important de remarquer que si

/ et g sont des difféomorphismes alors on a l'inégalité

(3) W(J o g-1) < W(g; /) + W(f; g(I)),

ainsi que l'égalité

(4)

Finalement, si I\ et h sont des intervalles contenus dans un intervalle I du

domaine de définition de /, alors on a

rsï <r UM |/(/2)|
|/il " M ~ IG

Comme application de ces propriétés, montrons l'inégalité (1). Soit xo un

point qui réalise le maximum g de la fonction rjf(x) -- \ f(x) - - (x F p(f)) \.

Supposons que /(.xo) > xo + p(f), l'autre cas étant analogue. Il existe

nécessairement un point yo C [xo,xo + 1] tel que rjjiyo) 0. En effet,
dans le cas contraire il existerait 1 > e > 0 tel que 1 — e > ///(v) > e pour
tout v G S1. Donc, en passant au relèvement, on aurait

r\x)- £> -Pif) >

pour tout n G N, ce qui contredit la définition de p(f).
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Puisque f'{p) pour un certain p e S1, d'après (2) on
yo - *o

obtient

yo-xo-rj =f(yo) -f(xo) > e~W{f\yç) - x0) f

et donc rj < (yo — -*o)(l — e~w^) < 1 — e~w^.

2. Une application de retour dilatante : les lemmes de Duminy

La preuve des résultats de ce travail s'appuie sur le manuscrit [8],

où G. Duminy étudie les orbites semi-exceptionnelles de feuilletages de

codimension 1 (les résultats de [8] ont été récemment redémontrés dans [4]).

Les lemmes que nous présentons ci-dessous sont des versions modifiées de

quelques lemmes qui se trouvent dans ce manuscrit.

LEMME 2.1. Soient a, a':b,bf, c des nombres réels tels que a < a' < c' <
c < b et a < b' < b. Soient /: [a, c] [a,b] et g: [c',b] —> [a, b'] deux

difféomorphismes de classe Clog tels que f(x) > x pour x ^ a et g(x) < x

pour tout x, avec f(c') > c et g(c) a' (voir la figure d). Supposons que

[u,v] C [c,b] et m,n C N sont tels que l'application îjj g~n of~m est

définie sur [w, v]. Alors

jjjv)-îp(u)
<

$(v) - /-1 (tjj(y)) - ~1

v-u ~ v-f~l{v) f{g~\a))-c
v eW(f-,[a,c])+W(g-,[c,b})

V sup f'(x)J
x(E[a,c]
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Preuve. Par commodité on note / =/"' et g g~l (voir la figure 2).
Rappelons que W(f;[a,b]) W(J\[a,c\) et [d,n'\) II
s'agit alors de montrer l'inégalité

^ #g) - $(u) <$(v)-f(ip(v)) b -
v « v-f(v) f~1(g(a)) —

X fl - inf /'(*))
V xÇ_[a,b] /

Pour cela, on remarque d'abord que

m — 1

W(fm; \f(v),u])< J2 W(f- \fk),< ; [a, b]).
k=0

Comme f(v) < c < u < v, on a

-/"(») <fm(v)-r+l(v).w<
^ ~ u v —f{v) V - f{v)

De plus,

/"'+1(^ - a =/(/>)) -/(a) > (/» - a) inf /'(x),
x£[a,b]

d'où on obtient

fm(v) -fm+\v)<- a)(l - inf 7'(.V))
v xe[a,b] y

Il en résulte alors

(8) H.)-fc) <rw^,,_ lnf
v-u V~f(v) xeteM

De même, puisque gn est définie sur |fm(u)Jm(v)] et que d < fm(u) <
f"\v) <c= g(d),ona

(9) rVy>)) ~ £"(/'"(«)) <
9*(fm{v)) -

fm(v) -fm(u) ~ - a

On obtient alors, d'après (8) et (9),

xf)(y) - -0(«) V(w) - f(ip(v)) V'C») - 5(a)

v -f(v) ip(-/(7(f))

x (1 - infV
,v. |,/./>|

y
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Si /(LOO) < g(a) alors $(v) - c) / ($(v) -f($(v))) ^ 1, ce qui rend

évidente l'inégalité (7) dans ce cas. Sinon, c'est que $(v) appartient à

l'intervalle |f~l(g(a)),b], et donc

ij;(v) - g(a) < b- g(a)

d'où on obtient encore (7).

Remarque 2.2. Si g(c) a, le lecteur vérifiera sans difficulté que

l'inégalité (6) est stricte lorsque v n'appartient pas à l'orbite de a par le

pseudo-groupe engendré par / et g.

Étant données deux applications / et g comme dans le lemme

précédent, pour chaque x E]c,b] il existe un entier positif n n(x) tel que

gn~\x) E]c,b] et gn(x) E]a\c]. De même, pour y E]af,c] il existe m m(y)

tel que E]a',c] et fm{y) E]c,b\. L'application de premier retour

i/j : ]c, b] -A]c, b] est définie par

xjj(x) o gn(x\x).

Notons que cette application a un ensemble au plus dénombrable de points

de discontinuité, lequel est fini lorsque g(c) > a. En effet, les points de

discontinuité sont les points de l'ensemble {g~n(fm(c) n [af,c]) : m,n E N}
qui sont contenus dans ]c, b]. Si g{c) > a alors ip peut être considérée comme

une application de l'intervalle fermé [c, b] sur lui-même.

Par commodité, on pose

V b-g'Ha) supx6[Cift](x-7(x))
(10) m(/, g) _u M(f) — zx—

f(g l(a)) - c mfxe[cM(x -
On peut montrer directement que M(f) est proche de 1 si la dérivée de / est

proche de 1 et la variation W(f\{a,c\) est petite (voir le lemme 5.1 au §5).

Néanmoins, pour le moment le lemme suivant nous suffira.

Lemme 2.3. Sous les hypothèses du lemme 2.1, supposons de plus que

xÇL[a,c\

Alors pour tout r > 1 il existe un entier N E N tel que (^/(v) > r pour
tout point x dans le domaine de différentiabilité de ipN.



40 A. NAVAS

Preuve. Soit iVeN tel que

(12) g)N1 V'"''""'F'-IA < I
V sup f'(x)J

xE[a,c]

Nous affirmons que chaque branche de est r -dilatante. Pour montrer cela,
soit x un point à l'intérieur de l'une des composantes connexes du domaine de
différentiabilité de ipN.Fixonsun petit intervalle contenu dans cette
composante connexe. On pose [mo,uo] et G([«o,«o]),
k 0,... ,N —1. L'inégalité (6) appliquée à X1 donne

vk ~ Uk
^

Vk ~/ (Vk)./ j
1 \ IV(/;[fl,r])+W(<,;[r,t.])

Vk+1 — Uk+] Vk+X-f~\vk+\)'V sup /'(.VI /
xE[a,c]

En prenant le produit de£ 0à& lV-l on obtienl

—— —< — ZLqf(l ^«(W'(/;la,d)+W'(ff;[c,fc]>)
vN-uN- vN-/-'(^) V1

sup
e

x£[a,c]

et donc, d'après (12),

e 1

i/jn(x + e) — ipN(x) ^ r '

c'est-à-dire
1pN(x + s) - vN(x)

> r.£

Puisque ceci est vrai pour tout 6 > 0 petit, on en déduit que (^'(jc) > r.

Remarque 2.4. Notons que si

(13) 1 L— \ew<I
V sup f'{x)J T

xE[a,c]

alors la preuve du lemme précédent montre que chaque branche de l'application
iß est r-dilatante.

Dans une première lecture, les lemmes de Duminy risquent de paraître
trop techniques. Pour mieux comprendre ces lemmes, on peut considérer le

cas particulier où les applications / et g sont affines, disons fix) vx
pour v G [0, l/u], avec v > 1, et g(x) rj(x — \/v) pour x G [1/^,1],
avec 77(1 — \/v) < 1. Dans ce cas, l'application de premier retour
iß: [l/u, l] -a [l/z/,1] est donnée sur chaque intervalle de la forme
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g~l([l/isn+\l/vn]), n G N, par iß(x) fn o g(x). Puisque pour tout

x£ g~l(ll/vn+\ l/vnD on a

1 / 1\ 1

> Tj(x > —r
j,n — jJ — 7/"+1

on obtient

(14) ip'(x)r]vn > — > —
v(x-±) 1/(1--)

Notons d'autre part que M(f) v. L'inégalité (14) peut ainsi être lue comme

y'w > i/«(/)(. -
xG[0,lM

Les valeurs de W(/) et étant nulles dans le cas affine, on reconnaîtra la
similitude entre cette dernière inégalité et les inégalités qui apparaissent dans

les lemmes de Duminy.

3. Non existence de minimal exceptionnel

3.1 En classe Clog : le théorème B

Pour illustrer l'idée de la démonstration du théorème B, supposons qu'un
groupe agisse sur le cercle avec un minimal exceptionnel K et que deux

générateurs / et g sont comme dans la figure 1 sur un sous-intervalle [a,b]
de S1 non disjoint de K, avec g(c) a. Les points a. c et b appartiennent
à K. En effet, si y est un point de [a,b] Ci K alors f~n(y) s'accumule

sur a pour n > 0, et donc a appartient à K; par suite, g~\a) — c et

f(c) b appartiennent aussi à K. Soit ]w, v[ C ]c, b[ une composante connexe
de S1 — K de longueur maximale. Si l'inégalité (11) est vérifiée, alors pour
TV E N suffisamment grand, ipN(]u, v[) est une composante connexe de S1 — K
de taille plus grande que celle de ]w,v[, et on a donc une contradiction. Un
examen attentif des arguments de la preuve des lemmes de Duminy (voir la

remarque 2.2) permet d'obtenir aussi une contradiction lorsque

\ 1 V W(f-,[a,_1

f'(x)Jsup
xGlrt.c]
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Donc, l'inégalité suivante doit être satisfaite :

(15) f1

1
\eW(f\a,1

V sup f'(x)J>'

A'G[a,c]

Cette inégalité entraîne, d'après (2),

_ e ~ W( f) j e
W( f: | a. c] )+ W( <j:\r.b\) ^ ^

Si W(/) < À et W(g) < À alors (1— e~x)e2x > 1, c'est-à-dire e2X —ex — 1 > 0,
ce qui n'est pas possible pour À < log((\/5 + l)/2) (nous verrons dans le

§3.4 que l'apparition du nombre d'or n'est pas mystérieuse: il semblerait être

relié à la constante optimale du théorème B).

Malheureusement, le cas général présente des problèmes techniques: il
n'existe pas toujours deux générateurs reliés comme dans la situation des

lemmes de Duminy. Nous verrons néanmoins que l'on peut surmonter cette
difficulté lorsqu'on suppose que l'un des générateurs de T a ses points
périodiques isolés. Avant de passer à la preuve du théorème B remarquons
que, grâce à l'égalité (4), il n'y a pas de perte de généralité pour ce théorème
si on suppose F1 symétrique. Nous ferons dans la sui:e de ce paragraphe
cette hypothèse, c'est-à-dire nous supposerons que si / G T1 alors /_1 G T1.

Preuve du théorème B. Supposons que T possède un minimal exceptionnel

K. D'après le théorème de Denjoy, l'ensemble des points périodiques de

chaque élément de T est non vide. Par hypothèse, il existe un générateur g
de T dont tous les points périodiques sont isolés. On note Per(g) l'ensemble
des points périodiques de g, et on note P(g) Per(g)nK. D'après l'assertion

(b) du théorème 1.1, l'ensemble P(g) est non vide. Si k G N est l'ordre des

points périodiques de g, alors on pose G gk. Nous affirmons maintenant

qu'il existe un point p G P(g) et un élément / G T1 tels que f(p) G S1 — P(g).
En effet, dans le cas contraire, l'ensemble P(g) serait invariant par T, ce qui
contredirait la minimalité de K.

On désigne par u et v les points périodiques de g à gauche et à droite
de f(p) respectivement. L'application F / o cf of~l possède au moins un

point fixe dans [m, u], à savoir, f(p). Soit a le point fixe de cette application
à gauche de v, et q le point fixe à droite de a. Remarquons que les points
<2, v, p et q appartiennent tous à K. Quitte à remplacer G par G-1 et F
par F-1, on peut supposer que G(x) < x et F(x) > x pour tout x G]a, v[
(voir la figure 3).
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Figure 3

Nous affirmons maintenant que, si À est assez petit, alors le point
b — F(G~{(a)) G K appartient à l'intervalle ]a, v[. Pour démontrer cela,

on remarque d'abord que

k-1

W(F-
1

; [a,q])W(F; [a,q\)<^ W(fo go/"1 ; / o gi o/"1 ([a, <?]))

7=0

< W{fo

De la même façon on obtient fP(G_1; [w, vj) W(G\[u,v]) < À. Soient

io E (fl, u) et yo G (a, g) tels que

(F"')'(*,)
F 'W~a (/••"')'(.v„) - 1.

v — a

On a évidemment |log((F_l)'(vo)) — log((F~
1

y(Ao))| < W(F~l ; [a, q\), et

donc

(16) F~\v)-a > e~3X(v-a).

De la même façon on obtient

(17) v — G~l(a) > e~x(v — a).

Si b n'était pas dans ]a,v[ on aurait F~l(v) < G~l(a). Ceci impliquerait,
d'après (16) et (17),

v — a > (F~l{v) — a) + (v — G~x{a)) > (e~x + e~3X)(v — a),

et donc e3X — e2X > 1, ce qui n'est pas possible pour À < log( 1.46557) ~
0.382.
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On peut alors appliquer les lemmes de Duminy à F et G sur l'intervalle
[a,b]. Notons que pour tout x G [a,q] on a |log(F'(x)) - log(F'(yo))| <
W(F; [a,q]) < 3A, et donc sup^^j F'(x) < e3X. Pour c G~l(a), l'inégalité
(15) appliquée à F et G donne

3A+A > W(F-,[a,c])+W(G-,[c,b])>log(- ] > iog(
1

SUPa-G[a,ci F'{X>

et donc on a ^4A-gA > 1, ce qui est impossible pour À < log( 1.22074) ~
0.199.

Remarque 3.1. Notons qu'au cours de la preuve on n'a utilisé l'hypothèse
de points périodiques isolés de g que pour s'assurer que les points de P(g)
sont isolés dans Per(g).

3.2 En classe C2 : le théorème A

Pour la preuve du théorème A, remarquons d'abord que pour tout f ET
et tout x G S1,

(18) l-ll/l </«< l + ll/l-
En effet, pour tout point p G S1 on a

/'(*) -f'(p)
x — p

< il/"

et donc, en prenant p tel que f'(p) — 1, on obtient (18). Par conséquence, si

II/"Il < ^ al°rs

W(f) L f"(s)
fis)

ds <
1-6

Par suite, si \\f"\\ < ô0 A0/(l + A0) - 0.165, alors W(f) < A0 - 0.199.
Le théorème A découle ainsi du théorème B.

3.3 En classe C : le théorème C

Soit T un sous-groupe de Homeo+(S1) et soit r1 {/• : i G 1} une
partie génératrice de E. On suppose que f / f- pour i ^ j dans X. Pour
k E N on définit les sous-ensembles Tk de T par

rk {f er :f=fno• • • o/-,,

Le lemme suivant porte un intérêt général. Il sera essentiel pour se débarrasser,
dans le cas analytique réel, de l'hypothèse suivant laquelle les points
périodiques de l'un des générateurs sont isolés.
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LEMME 3.2. Supposons que Y agisse avec des orbites denses et qu'il ne

soit pas topologiquement conjugué à un groupe de rotations. Alors il existe

un élément g dans Y4 qui n'est pas conjugué à une rotation.

Preuve. D'après la proposition 6.5 du premier appendice, il existe deux

éléments f) et f) dans T1 qui ne commutent pas. Si fifi n'est pas conjugué

à une rotation, alors g fif) G T2 satisfait l'affirmation du lemme.

Supposons maintenant que ffj est conjugué à une rotation. Nous affirmons

qu'il existe a G S1 tel que fiffia) fifi{a). Pour démontrer cette affirmation,

prenons un homéomorphisme direct de S1 tel que pfifjP~x soit une

rotation de S1, disons d'angle 0. Si l'affirmation n'est pas vraie, alors il
existe 0 < s < 1 tel que pour tout x e Sx on a

e < I-(x + 0)| < l - e.

Cette inégalité entraîne \p(<pfjfi P~x) — 0\ > c, ce qui est absurde, car

pfifjP~x et pfjfip~x sont topologiquement conjugués.

L'application ffifirX ffX C T4 possède donc des points fixes sur S1. Cette

application n'est pas l'identité, car f] et fi ne commutent pas. Ceci achève la

preuve du lemme. Q

Supposons maintenant que Y agisse sur S1 en admettant un minimal

exceptionnel K. En suivant [11] et [21], on retire du cercle chaque composante

connexe de S1 — K et puis on identifie les extrémités de ces composantes. On

obtient ainsi un cercle topologique, que l'on note Sj^. Le groupe Y agit sur ce

cercle de manière naturelle par homéomorphismes, et toute orbite par l'action
induite est dense. Pour chaque / G Y, on note </>(/) l'homéomorphisme de

Sj^ induit par /.

Proposition 3.3. Soit Y un sous-groupe de Diffus1) qui admet un

minimal exceptionnel. Supposons qu'il existe une constante C > 0 telle que

W(fi) < C pour tout i G T. Alors il existe un élément g dans Y4 tel que
ci)(g) possède des points périodiques et n'est pas conjugué à une rotation.

Preuve. D'abord, si Y est un sous-groupe de Diff^S1) qui agit en

admettant un minimal exceptionnel K, alors d'après le théorème de Denjoy et

l'item (b) du théorème 1.1, chaque f possède des points périodiques dans K.
La proposition est donc banale s'il existe un élément / dans F1 tel que

l'homéomorphisme é(f) de Sj^ n'est pas topologiquement conjugué à une

rotation d'ordre fini. Cependant, le premier exemple du §3.5 montre qu'il
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existe des groupes engendrés par des éléments d'ordre fini et qui préservent
un ensemble minimal exceptionnel.

Pour la preuve de la proposition nous montrerons que sous nos hypothèses,
l'action du groupe </>(T) sur Sj^ n'est pas conjuguée à celle d'un groupe de
rotations. Le lemme précédent permet dans ce cas d'obtenir la conclusion.

Remarquons d'abord que l'ensemble 0(r]) engendra Néanmoins,
les éléments de <j)(Tl) ne sont pas nécessairement différents. On choisit un
ensemble d'indices J C X tel que fi(fi) ^ cß(fj) pour i f=. j dans J, et tel
que les fi(fj), j J, engendrent </>(T).

Supposons que J soit fini, disons J {1,et que fiÇT) soit
conjugué à un groupe de rotations. Alors chaque orbite dans Sj^ pour l'action
</>(T) est finie, de la forme

oibm(x) - m-"/;"2 ' ' -J5?) W} » 0<mk< nk

où nk est l'ordre de (rappelons que le nombre de rotation de chaque fj
est rationnel). Cependant, ceci contredit le fait que les orbites par </>(r) sont
denses dans Sj^.

Supposons maintenant que J soit infini et que à(r) soit conjugué à un
groupe de rotations. Alors les intervalles ,/•(/), j e J, sont deux à deux
disjoints. Prenons une suite (jk)keN telle que

(19) lim \fjkd)
k—>-\-oo

Notons que pour chaque k G N il existe une composante connexe ]ck,dk[ de
S1 —K telle que \fjk(]ck,dk[)\ > \\ck,dk[\ (on peut considérer, par exemple,
une composante connexe J de S1 — K de longueur maximale et définir
\ck,dk\ fj~1 (./)). D'après l'inégalité (5) on obtient

lÀffll -w(fjj \fjkQck,dk[)\ c
\I\ - '

\]Ck,dk[\ - '

ce qui contredit (19) pour k assez grand.

Remarque 3.4. Pour référence future, nous dirons qu'un sous-groupe
de Diffi^S1) engendré par une famille T1 {/• : i G 1} qui vérifie
sup{W(/-) : fi G r1} < oo est engendré à distorsion finie.

La preuve du théorème C devient maintenant facile. En effet, puisque le

difféomorphisme g e T4 est analytique réel et n'est pas d'ordre fini, ses points
périodiques sont isolés. D'autre part, on a W(g) < 4À. On peut ainsi appliquer
le théorème B en considérant T1 U {g} comme partie génératrice de T.



SUR LES GROUPES DE DIFFÉOMORPHISMES DU CERCLE 47

3.4 Une idée pour le cas général

Pour essayer d'obtenir une version générale du théorème B, il est

raisonnable d'essayer d'améliorer le lemme 3.2. La question suivante devient

ainsi naturelle.

Question. Existe-t-il une constante N G N telle que pour tout sous-

groupe T de Homeo+CS1) sans orbite finie et non semi-conjugué à un groupe
de rotations, pour tout système de générateurs T1 de T, et pour tout point

p G S1, il existe au moins un élément / G TN tel que p n'est pas périodique

pour /
Dans la suite, nous montrerons qu'une réponse affirmative à cette question

permettrait de démontrer le théorème B en supprimant l'hypothèse de points

périodiques isolés pour l'un des générateurs. En effet, supposons que T soit

un sous groupe de Diff+^S1) qui préserve un minimal exceptionnel K et qui
est engendré par une famille de difféomorphismes proches des rotations. En

admettant une réponse affirmative à la question ci-dessus pour le sous-groupe

0(r) de Homeo+(S^) (voir les commentaires avant la proposition 3.3), posons

L sup{ | [a, b] | : ]a, b[ fi K / 0 et il existe h G TN

tel que Per(h) D [a, b] {a, b}]

Fixons un élément / G TN et un intervalle [a, b] C S1 de taille supérieure
à L/2 tels que Per(/)n [a, b] {a,b}. Fixons par ailleurs un élément g G TN

tel que a ne soit pas périodique pour g, et notons u et v les points périodiques
de g à gauche et à droite de a respectivement. Remarquons que |[w,v]| < L,
et donc \[a,b]\/\[u,v]\ > 1/2. Remarquons aussi que si W{h) < Ö pour tout
h G T1, alors il existe des itérés / et g de / et g qui fixent [<a, b] et [u, v]

respectivement et tels que b]) < Nö et W(g;[u,v]) < NÔ. Quitte à

remplacer / et g par leurs inverses, on peut supposer que f(x) > x pour tout

x e]a,b[ et g(x) < x pour tout v e]u,v[. Il peut se présenter deux cas.

PREMIER CAS: par rapport à Vorientation canonique du cercle on a

u < a < b < v.
Puisque |[a,Z?]| > |[w, uJ]/2, si ö est suffisamment petit, alors / et g

sont comme dans les lemmes de Duminy sur l'intervalle [a,fg~l(a)] (voir
la figure 4). Une application de ces lemmes (comme celle de la preuve du

théorème B) donne une contradiction dès que ô est plus petit qu'une certaine

constante positive qui ne dépend que de N.
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Figure 4 Figure 5

Premier cas Deuxième cas

Deuxième cas : on a u < a < v < b.

Si ô est suffisamment petit alors / et g sont comme dans les lemmes
de Duminy sur l'intervalle [ajg~x(a)\ (voir la figure 5). De nouveau, une
application de ces lemmes donne la contradiction cherchée pour S < S(N)
suffisamment petit.

Pour conclure ce paragraphe, signalons que si la réponse à la question
posée précédemment était positive, alors on pourrait se débarrasser aussi
de l'hypothèse de points fixes isolés pour l'un des générateurs dans les
théorèmes D et E (dans ce dernier, il faudrait supposer néanmoins que les

groupes en question ne sont pas abéliens). Pour aboutir à cela, il suffirait
simplément d'introduire, au milieu des démonstrations de ces théorèmes, des

idées analogues à celles qui ont été utilisées plus haut. Signalons cependant
qu'une telle amélioration n'est envisageable qu'en classe C2, et pas en
classe Clog. Ceci est dû à la nature des arguments qui seront donnés aux
paragraphes suivants (dans ce sens, les propositions 4.3 et 6.9 imposent des

contraintes).

3.5 Quelques exemples

Le groupe modulaire PSL(2, Z) (gJi : g3 h2 id) agit de manière
naturelle sur le cercle avec des orbites denses. Cette action est obtenue en
identifiant les générateurs g et h de ce groupe à deux isométries de type
elliptique du disque de Poincaré, à savoir celle d'ang]e 27r/3 et centrée

en un point O du disque, et celle d'angle ir et centrée en un point O' à
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distance hyperbolique logCV^) de O respectivement. Si au lieu du point Ü on

considère un point O" du disque à distance hyperbolique de O plus grande

que log(V3), al°rs on obtient une action de PSL(2,Z) avec un minimal

exceptionnel (voir la figure 6). Remarquons que l'élément / gh possède un

unique point fixe sur S1.

Dans la suite nous considérerons des versions "affines par morceaux" de

l'exemple précédent, et puis nous ferons des petites perturbations de sorte que
les applications ainsi obtenues deviennent différentiables. Par ce procédé nous

montrerons que la constante Ào optimale du théorème B ne peut pas être plus

grande que 41og((\/5 + l)/2). Signalons en passant que l'exemple original
de R. Sacksteder a été construit en suivant cette idée (voir [28]). Par ailleurs,

une conjecture de P. Dippolito stipule que tout groupe de difféomorphismes
de classe C°° du cercle admettant un minimal exceptionnel devrait pouvoir
être approché (en topologie C°) par un groupe d'homéomorphismes affines

par morceaux de S1 de sorte que la dynamique sur le Cantor minimal reste

la même (à conjugaison topologique près). Dans l'appendice de [7] le lecteur

trouvera une version plus précise de cette conjecture.

Pour illustrer l'idée générale, commençons par considérer le groupe des

homéomorphismes affines par morceaux d'un cercle de longueur 3 engendié

Figure 6
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par les éléments /0 et g0 de laJigure 7. Les orbites par l'action de ce groupe
sont denses. De plus, bien que /0 ne soit pas un difféomorphisme, la variation
totale du logarithme de sa dérivée est bien définie, égale à 41og(2). D'autre
part, on a W(g0) 0.

Figure 7

Pour construire une action avec un minimal exceptionnel nous allons
"éclater" l'orbite du point p — 1. Cette procédure consiste à remplacer
chaque point de l'orbite par un petit intervalle (de sorte que la somme
totale des longueurs soit finie), et puis d'étendre les applications originales de

manière affine à ces intervalles. Il est facile de voir que par ce procédé on
obtient un groupe conjugué au groupe T£ qui est engendré par les homéo-

morphismes affines par morceaux f£ et g£ de la figure 8. Notons qu'on a

W(f£) =s 41og(2) + w(e), où w(e) tend vers zéro lorsque s tend vers zéro.

Désignons par I£ l'intervalle ]1 — e/2,1 + s/2[. Le groupe T£ agit en

préservant un minimal exceptionnel, à savoir

£e S' - U h(ïe).

her£

Pour obtenir l'estimée 41og((>/5 + l)/2) nous allons suivre un processus
similaire, mais à partir d'une autre action. Pour simplifier, désignons par O
le nombre d'or.

Commençons par considérer le groupe Te engendré par les applications
f£ et g£ de la figure 9. Ce groupe agit sur un cercle de longueur 2 + I/O
avec des orbites denses. De plus, W(f£) et W(g£) sont égales à 41og(0).
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/ /
/ / // / /// / /J / /[/

-H-4—i-B— /<
(—) U

0 ^^ ^
2 3

Figure 8

Éclatons une nouvelle fois l'orbite du point p 1 pour obtenir ainsi

une action conjuguée à celle donnée par un groupe (désigné par Te) qui est

engendré par des homéomorphismes affines par morceaux f£ et g£ dont la
dérivée (où elle est bien définie) est égale à 0 + £, (O + e)-1 ou 1, selon le

point choisi. En particulier, W(f£) W(g£) 4 log(O) + w(e), où w(e) tend

vers zéro lorsque e tend vers zéro. Notons Ke l'ensemble de Cantor minimal

pour l'action de T£, et notons I£ la composante connexe de S1 — Ke qui
correspond au point p.

Remplaçons maintenant f£ et g£ par des difféomorphismes lisses f£ et

g£ dont les dérivées sont monotones sur I£ U g£{I£) U g£(I£), et qui leur
sont respectivement identiques sur le complémentaire de cet ensemble. On

a encore que W(f£) et W(g£) tendent vers 41og(d>) lorsque 5 tend vers

zéro, et le groupe T£ engendré par f£ et g£ a encore K£ comme minimal

exceptionnel.
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Figure 9

Puisque chaque f£ possède exactement un point fixe, on conclut, d'après
la construction précédente, que la meilleure constante Ao pour le théorème B
n'est pas plus grande que 41og(<I>). D'autre part, pour une petite variation
de cet exemple, le lemme de Duminy s'applique de manière optimale sur
certains intervalles. Par cette raison, nous croyons raisonnable de penser que
la meilleure constante du théorème pourrait être exactement égale à 4 log(O).

Remarque 3.5. Le lecteur aura noté que les arguments de la preuve
du théorème B peuvent être appliqués (avec des légères modifications) pour
démontrer que ce résultat reste valable pour des groupes d'homéomorphismes
affines par morceaux du cercle. Puisque la dynamique combinatoire de ces

groupes est relativement simple, il est envisageable d'obtenir dans ce contexte
la constante optimale du théorème. Une réponse affirmative ("en topologie
Clog ") à la conjecture de Dippolito mentionnée précédemment montrerait alors

que cette constante serait optimale même dans le cas général.

4. Ergodicite

4.1 Deux critères généraux

Rappelons que l'action de F sur S1 est ergodique (par rapport à la mesure
de Lebesgue) si les sous-ensembles mesurables de S1 invariants par r ont une

mesure nulle ou totale. Pour montrer que l'action d'un groupe sur le cercle à

orbites denses est ergodique, deux principes sont plus au moins canoniques.
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Ils sont reliés aux idées d'équieontinuité et d'expansivité, mais au niveau

différentiel. Une version du premier principe se traduit dans la proposition

ci-dessous.

PROPOSITION 4.1. Soit r un sous-groupe de Diff^g(S]) dont les orbites

sont denses et dont tout élément est d'ordre fini. Si T est engendré à distorsion

finie, alors l'action de F est ergodique.

Preuve. D'abord, notons que F est conjugué à un groupe de rotations (de

type non fini). Pour montrer cela on peut utiliser le lemme 3.2. De manière

alternative, on pourrait utiliser le théorème de Holder (voir la proposition 6.11

dans [11]). On note ord(/) l'ordre de l'élément / 6 T.

Soit A C S1 un ensemble mesurable invariant et de mesure positive. Nous

montrerons que Leb(A) 1. Soit p un point de densité de A. Il est facile de

voir qu'il existe une suite (/„) dans T1 et une suite d'intervalles de la forme

In [p - sn^p + sn) telles que en tend vers zéro, et telles que In, /„(/„),
/•ork./;,)- ' (/„) sont deux à deux disjoints et recouvrent S1. Fixons c > 0 et

prenons n G N tel que

Leb(/„ Pi (S1 — A))

Leb(/„) " £ '

Soit C > 0 une constante telle que W(f) < C pour tout / G T1. Notons que

pour tout k < ord(fn) on a

k-\
W(fnk-,in) <J2W«;/X))< W(fn) < C.

i=0

Ceci entraîne

I.eb<./;*</„ n (S1 - A))) ^ sup xeiSiïtV)Leb</„n (S1 - A)) „
Leb(/f(/„)) - inf xei,W(VLeb(7«)"

L'ensemble A étant /„-invariant, à partir de cette inégalité on déduit aisément

que
Leb(S] - A) < Leb(S1 ece

Puisque ceci est vrai pour tout c > 0, on conclut que Leb(S1 — A) 0, et

donc Leb(A) 1. P

Remarque 4.2. Tout / G Diff^S1) avec nombre de rotation irrationnel

agit de manière ergodique sur S1. La preuve de ce fait utilise une idée analogue

à celle de la proposition précédente. Dans ce cas, on peut obtenir une sorte
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d'équicontinuité locale grâce à la connaissance, d'après la théorie du nombre
de rotation de Poincaré, de la dynamique combinatoire du difféomorphisme
(voir [15] ou [16] pour les détails). Comme conséquence de ce fait et de la
proposition précédente, on déduit que l'action sur le cercle de tout sous-groupe
de Diff+g(S1) topologiquement conjugué à un sous-groupe dense du groupe
des rotations et engendré à distorsion finie est ergodique.

Le deuxième principe d'ergodicité, contenu dans la proposition suivante,
semble également bien connu. Néanmoins, il est difficile de donner une
référence précise. Nous suivrons essentiellement une idée qui se trouve dans
[30]. Rappelons qu'on note Diff^+a(S1) le groupe des difféomorphismes
directs et de classe C1 du cercle dont la dérivée est Holder continue
d'exposant a.

PROPOSITION 4.3. Soit r un sous-groupe de Diff^S1) dont les orbites
sont denses, avec a > 0. Supposons que pour tout point p G S1 il existe un
élément g GT tel que g'(p) > 1. Alors Faction de T est ergodique.

La preuve sera faite en plusieurs étapes. D'abord, notons que sous
les hypothèses de la proposition, un argument simple de compacité donne
l'existence d'un nombre fini d'éléments gu„ ,,gn dans T, d'une collection
h d'intervalles ouverts de S1, et de constantes £0 > 0 et r > 1,
tels que pour tout i 1,... ,n et tout x G h on a g\(x) > r, et tels que
pour tout point p G S1 il existe lt Ii{p) (pas nécessairement unique) tel que
[p - £o,P + so\ C It.

Pour p G S1 fixé on note J\ //(/;), ho Id. On définit par récurrence
ht gik ° hk~i, où ik i(hk-\(p)), et on définit J\ — Iih. Remarquons que
K(p) > rn pour tout n G N.

Lemme 4.4. Il existe une constante C > 0 telle que si n G N et e > 0

sont tels que Jk+] contient hkQp — e,p + e[) pour tout k 0, 1,..., n — 1,
alors on a h'n(x)/h'n(y) < C pour tout x,y G]p — e.p -j- s[.

Preuve. Notons d'abord que chaque g\\jt étant a;-Holder continue et
supérieure ou égale à r, il existe une constante C > 0 telle que pour tout
v, y G h on a

|l°g($;(x)) - l°g(ft'Cy))| < Cdista(x,y).

Donc, d'après l'hypothèse, pour tout k— 0,..., 1 et tout x,y ]p-s,p+e[,
la valeur de |log(^+|(^(x))) - log (g'il+t(hkestinférieure ou égale à
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Cdista(hk(x),hk(y)) < Cr~a dist a(g

— Cr~a dist"(/îi+i(x),hk+1(y)) < • • '

< CT~ai"-k) dhta(hn(x),hn(y)) < CT-a[n~k).

On obtient alors

log
K(x)
K(y)

n— 1

< y^Jlog(gLi^^x») ~~

Cra

k=0
n — 1

<Y^Ct " < — otk

k=0 £=0
Ta- 1

Donc, pour C exp(Cr"(r" - 1)"') on a h'Jxl/h'Jy) <C.

Le lemme suivant donne des conditions sous lesquelles les hypothèses du

lemme précédent sont vérifiées.

Lemme 4.5. Si e < so/Chfn(p) alors hk envoie ]p-£,p + s[ dans Jk pour
tout k 0,..., n— 1. De plus, l'intervalle \hk(p)-h'k{p)s/C, hk(j?) + h'k(p)£/C[

est contenu dans hk(]p - e,p + ^[) pour tout k 0,..., n — 1.

Preuve. Supposons le contraire et soit k < n le plus petit entier pour

lequel hk(\p—efp+£[) n'est pas contenu dans Jk. Soit 0 < £\ < £o/Chfn(p) la

plus petite constante pour laquelle on a soit hk(p — £\) £ Jk soit hk(p+£\) £ Jk-

Le lemme précédent nous donne h'k{x) < Ch'k(p) pour tout x G \p-£\1p + £\],
et donc

hk(lP - £\,P + £\]) C]hk(p) £\ Ctik(p),hk(p) + £\Chfk(p)[

C [hk{p) - £o,hk(p) + £o] C Jk

ce qui est une contradiction. La preuve de la deuxième partie est analogue et

nous la laissons au lecteur.

Preuve de la proposition 4.3. Soit A C S1 un ensemble mesurable

r-invariant et de mesure positive. Nous montrerons que Leb(A) 1. Pour

cela, prenons un point de densité p de A. On considère la suite d'éléments

(hn) de r donnée par la construction précédente. Soit (hHk) une sous-suite

telle que hk(p) converge vers un point q G S1. Pour chaque k > 1 on fixe

un nombre réel ek e\£Q/2Ctink(p),£Q/Ctink(p)[. D'après les lemmes précédents
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on a:

Leb((S1 - A)n]p - £k,p + sk\)
Leb (]p- sklp + sk[)

p—£k,p+£kl hnk(x) Leb((S1 — A) D hnki]p — sk^p + £&[))

suPx]/?-£a,/?+£a[ hnk(x) Leb [hnkQp — zk,p + %[))

>
1 Leb((S1 - A)C\]hrik(p) - skh'nk(p)/C, hnk(p) + SkKk(p)/C\)

~ C Leb(]hnk(p) - Cekh'nk(p), hnk(p) + C^(p)[)
~ 2^ Leb^(Sl ~ A)n]/L» - £o/2C2, /*„» + so/2C2[).

Puisque ]<7-£o/4C2,4 + £0/4C2[ est contenu dans ^e0/2C2, h„k(p) +
So/2C2[ pour k assez grand, on déduit que

(20) Leb((S] - A)D]q - e0/4C2, q + s0/4C2[)

< 2CcuLeb^Sl ~ A >n^ ~ £k'p + £k^
LébQp -£k,p + ek[)

pour k grand. On sait que sk tend vers zéro lorsque k tend vers l'infini.
Donc, p étant un point de densité de A, on conclut d'après (20) que

Leb ((S1 - A)n]<? - £0/4C2, q + e0/4C2[) - 0

Comme les orbites de T sont denses, on obtient Leb(S! - A) 0, et donc
Leb(A) ml. Q

Remarque 4.6. Il n'est pas difficile de modifier la preuve précédente

pour démontrer le résultat suivant: si a > 0 et si T est un sous-groupe de
DiffH-Q^s1) qUj a(jmet un minimal exceptionnel K de sorte que pour tout
point p G K il existe un élément g G F vérifiant g'{p) > I, alors la mesure de

Lebesgue de K est nulle. Ce fait est très intéressant, car le problème de savoir
si des ensembles de Cantor minimaux de mesure positive peuvent apparaître
pour des sous-groupes de type fini de Diff^S1) est ouvert.

4.2 Preuve de l'ergodicité

Pour démontrer le théorème D, fixons d'abord le générateur g G Ll à

points périodiques isolés donné par l'hypothèse. Notons k l'ordre de ces
points périodiques et posons G gk. Un argument analogue à celui du début
de la preuve du théorème B montre qu'il existe T7 G F et un intervalle [a, b']
de S1 tels que F et G (ou éventuellement G-1 sont comme dans les lemmes
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de Duminy sur l'intervalle \a,b'] et vérifient W(F\ [a, bf]) < 3<50/(l - et

W(G\ [a,bf]) < 50/(l - So). Nous considérerons une petite perturbation de cet

intervalle, de sorte que l'application de retour induite ait un nombre fini de

branches (voir la figure 10).

Figure 10

Pour s > 0 notons d — a + s. Soient c G~l(d) et b F(c). Par

rapport à la notation (10), il n'est pas difficile de vérifier que m(F,G) tend

vers 1 lorsque c tend vers 0. En utilisant le lernme 2.3 on montre que
si <5o < 0.165 et c est suffisamment petit, alors chaque branche d'un itéré

suffisamment grand de l'application de retour induite iß: [c,b] — [c,b] est

dilatante (remarquons que la constante 0.165 est la même qui apparaît dans

la preuve du théorème A).

Puisque les orbites de T sont denses, il existe une famille finie d'intervalles

/i..... /„ qui recouvrent S1, et une famille gn d'éléments de T,
tels que gt{x) G [c, b] pour tout x G I, et tout i G {1,...,^}. Soit

M inf{ ry-(x) : x G //, 1 < i < n}, et soit N un entier suffisamment grand de

sorte que chaque branche de ipN soit 1 /M-dilatante. Pour gt ißN o gt G T

on a g- (x) > 1 pour tout x G /, (si x est tel que p/(x) n'est pas un point de

continuité de ipN, alors on peut considérer l'une quelconque des branches de

ipN dont l'adhérence du domaine de définition contient x). Ainsi, pour obtenir

l'ergodicité, on peut appliquer le principe d'expansivité de la proposition 4.3.

Remarque 4.7. Notons que la perturbation de l'intervalle [a, bf] a été

prise de sorte à obtenir une application de retour bien définie aux extrémités,

ce qui permet d'appliquer la proposition 4.3.
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5. Rigidité

Dans ce paragraphe nous donnons la démonstration du théorème E pour
la constante <$i 0.062. Désignons par le générateur à points périodiques
isolés du groupe r, donné par l'hypothèse, et notons -- sup{||/i"|| : G T1}
et A <5/(1 -5).Commedans la preuve du théorème D, il est facile de montrer
que si A < log( 1.46557) ~ 0.382, alors à partir de g on peut construire deux
éléments F\ et G] de Fj qui sont reliés comme dans les lemmes de Duminy
sur un intervalle [a, b']deS1, et qui de plus vérifient ; [a, < 3A et
W(G; [ a,b'])< A. Pour chaque e > 0 notons a'E ] '(</..i).
be,1 Gfej).

Lemme 5.1. Si la constante £ > 0 estassez alors chaque branche
de l'application de premier retour ip{:|ct-j,/?rjl -> [cej &£jl] par
F] et Giest 2-dilatante.

Preuve. Pour £ > 0 petit notons, comme dans (10).

-(r„o,) A,7Gr'(°...)
_

F\(G\(aej))-c£j infxG[c<: ,](x-
D'après la remarque 2.4, il faut vérifier que

M(F\ )mlyF\,G\)(1 < I
V sup F\{x)/ 2

xG[a,c£)1]

pour g assez petit. Puisque m(F\, Gj tend vers 1 lorsque e tend vers zéro,
ceci revient à montrer que

(21) M(F\)( 1 - VWGltf,c£,i])+W(G;[c£ji.fr£jl]) < j
V sup F\(x)J 2 '

xe[a,c£jl]

Remarquons que d'après la construction de Fi et G\, pour tout g > 0
suffisamment petit,

W(Fu[a,eëA]) < 3A, W(Gu[ceiUb£il]) < A,

inf F\ (x) > e~3X sup F\ (x) < e3X
x[a,ce, i] xe\a,c£j j]

Pour x G [c£^\, b£^[] on a

F^(x)Fr'(G,i) + (x-
pour un point p G [c£,i,v] qui dépend de i et c£)i. On obtient ainsi
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— F, 1(.X) 1 — Fj
1

1 + (x ~~ ce,i)(l (Fj (p)),X ~ tx W G,1 _ M

et donc
-U* L. ,(x) < î + —x F;'—r(i -e_3A) •

G

Notons que

Ce,, -Ff'(Ce,l) C£ll -F,'(Ce,,)'

(22) < b--'~c
cÊ,i - /•, '«(.!) - - F,-1'(ce,i)

À partir de cette inégalité on obtient

(23)
X-77' Cr)

< 1 +g3A(1 _ g—3A)^ g3A

Cs.i-F, (ce,i)

De manière analogue,

*-Fj-'(x) > _ s-ce,i (j,A _ ^

C£,1 -Ff'^i) ~~
c£ji -Fj"'(c£,i)

et d'après (22) on obtient

(24) F-1V *Ce,\~F\ (C£,l)

D'après (23) et (24) on conclut

M(F| <
1 — ^3A(^3A — 1)

On a alors

M(F])(l
1 \ eW(F, ;[ce.i ,bc., ])

V sup Fi (x) /sup Fj (x)
xG[a,ce,i]

^3A
-3A, 4A VA " 1)

1 _ e3A(é>3A _ ' _ e3A(e3A _ 1}
'

et il est facile de vérifier que le membre de droite de cette inégalité est inférieur

ou égal à 1/2 pour À < log(1.07) ~ 0.067, c'est-à-dire pour S < 0.062.

On note maintenant a£^ <£>(ae,i), a'e2 <p(a'e^)9 b£o <£>(fce,i),

ce 2 tp(c£i1), F2 (f o Fi o 9?-1 et G2 ip o G\ o (^_1. L'application
de retour ^2: [c£52,^e,2] -» [G,2,^,2] induite par F2 et G2 vérifie alors

xj)2 Les branches de cette application sont elles aussi 2-dilatantes
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pour e > 0 assez petit. De plus, le nombre de ces branches est fini et tend
vers l'infini lorsque e tend vers zéro (toujours avec £ > 0).

Pour £>0 petit, nous avons alors que p: [c£,i A,u -A [r^Anl est un
homéomorphisme absolument continu qui conjugue les applications ijj\ et ip2.
Ces applications vérifient les propriétés (25) et (26) du deuxième appendice.
Le théorème 6.11 de cet appendice montre que la restriction de p à l'intervalle

est un difféomorphisme de classe C.
Remarquons maintenant que d'après l'égalité p/• j, i el, on

voit que l'ensemble des points de S1 au voisinage desquels p est un
difféomorphisme local de classe C est Fj -invariant. Puisque les orbites par T]
sont denses, p est un difféomorphisme de classe C du cercle sur lui-même.

6. Appendice

6.1 Groupes libres d'homéomorphismes du cercle: un théorème de
Margulis

En réponse à une question posée par É. Ghys, G. Margulis a démontré le
théorème suivant (voir [11] et [21]).

THÉORÈME (G. Margulis). Soit F un sous-groupe de Homeo+(S1). Si F
ne préserve aucune mesure de probabilité sur S1, alors T contient un groupe
libre à deux générateurs.

Il est très instructif de lire la preuve de ce théorème, car elle contient
quelques faits généraux sur la structure des actions des groupes par homéo-

morphismes du cercle. Nous donnerons dans la suite les idées essentielles de
la démonstration.

Définition 6.1. On dit que l'action sur le cercle d'un sous-groupe F de

Homeo+lS1) est équicontinue si pour tout 0 < £ < 1/2 il existe 0 < e' < 1 /2
tel que si dist(x, y) < e' alors dist(g(x),g(y)) < £ pour tout g G F.

DÉFINITION 6.2. On dit que l'action sur le cercle d'un sous-groupe F
de Homeo+(S]) est contractive s'il existe 0 < e < 1/2 tel que pour tout

x,y G S1 satisfaisant dist(x,y) < 6, il existe une suite (gn) dans F telle que
dist(gn(x),gn(y)) tend vers zéro lorsque n tend vers l'infini.
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Supposons que l'action sur le cercle d'un sous-groupe T de Homco+iS1

soit équicontinue. D'après le théorème d'Ascoli, la fermeture f de T dans

Homeo+(S1) est compacte. On peut alors définir une mesure de probabilité

g sur S1 par

l-i(A) J_Leb(g(,
où dg désigne la mesure de Haar sur f et A C S1 est Lebesgue mesurable. La

mesure fi est invariante par l'action de T sur S1. De plus, /i ne possède pas

d'atome et son support est total (on a /i(A) > 0 pour tout ensemble mesurable

A d'intérieur non vide). En utilisant p on peut reparamétrer le cercle de façon

à conjuguer T à un groupe de rotations. On a alors la proposition suivante.

Proposition 6.3. Soit T un sous-groupe de Homeo+(S!). Si l'action de

T sur S1 est équicontinue, alors T est topologiquement conjugué à un groupe

de rotations.

Le cas contractif c'est le cœur de [21]. Dans cet article, en utilisant le

lemme du ping-pong de Klein (voir [14]), G. Margulis démontre le résultat

suivant.

PROPOSITION 6.4. Soit T un sous-groupe de Homeo+(S1). Si l'action de

T sur S1 est contractive et si toutes ses orbites sont denses, alors T contient

un sous-groupe libre à deux générateurs.

À partir de ces propositions il n'est pas difficile de finir la preuve du

théorème de Margulis. En effet, voyons les trois possibilités données par la

propriété de trichotomie. S'il existe une orbite finie alors il y a une mesure

de probabilité sur S1 invariante par T, à savoir la moyenne des masses Dirac

concentrées sur les points de cette orbite. Si toutes les orbites sont denses

alors il n'est pas difficile de montrer que l'action de T est équicontinue

ou contractive. On peut donc utiliser la proposition 6.3 ou 6.4, selon le

cas. Supposons finalement qu'il existe un Cantor minimal K. On remplace

par un point chaque composante connexe de S1 — K pour obtenir un cercle

topologique SlK. Sur ce cercle, le groupe T agit de manière naturelle par

homéomorphismes, et les orbites de cette action sont denses. On est alors

ramené au cas où les orbites sont denses, pour lequel on a déjà démontré le

théorème.

Notons aussi que des résultats précédents, on obtient directement la

proposition suivante.
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PROPOSITION 6.5. Soit Y un sous-groupe commutatif de Homeo+CS1).
Si les orbites de F sont denses, alors F est topologiquement conjugué à un
groupe de rotations.

Cette proposition reste vraie pour des sous-groupes moyennables de
Homeo^S1). Remarquons que pour la démonstration il n'est pas nécessaire
d'utiliser le théorème de Margulis en toute sa puissance. En effet, si Y est
un sous-groupe moyennable de Homeo+(S1), alors il préserve une mesure
de probabilité fi sur S1. Si les orbites par Y sont denses, alors pJ est sans
atomes et son support est total. En reparamétrant le cercle, on obtient que Y
est conjugué à un groupe de rotations.

Comme application de cet ensemble d'idées, nous démontrons maintenant
un résultat annoncé dans l'introduction de cet article.

THÉORÈME 6.6. Soit Y un sous-groupe de type fini de Diff^g(S1). Si Y
admet un minimal exceptionnel alors il contient un sous-groupe libre à deux
générateurs.

Preuve. On démontrera que Y agit de façon contractive sur le cercle
topologique obtenu en remplaçant chaque intervalle du complémentaire
de K par un point, comme ce qui a été fait pour la preuve du théorème de

Margulis. Le théorème découlera donc de la proposition 6.4.

Supposons que l'action (minimale) de Y sur Sj^ ne soit pas contractive.
Alors elle est équicontinue, et il existe une mesure invariante sans atomes et
de support total qui permet de conjuguer l'action de Y sur SlK à une action par
des rotations. Soit {/i,... Jn} un ensemble de générateurs de T. Si chaque
fi agissant sur Sj^ est d'ordre fini alors chaque orbite dans Sj^ est finie, ce
qui contredit la minimalité de K. D'autre part, si l'un des fi n'est pas d'ordre
fini sur alors le nombre de rotation de ce ft (vu comme difféomorphisme
de classe CIog de S1 est irrationnel. Comme / a des orbites non partout
denses (celles contenues dans K), ceci contredit le théorème de Denjoy.

Remarque 6.7. Pour des sous-groupes de type fini de Diff^(S'), on
dispose d'un résultat plus fort: si Y est un tel groupe qui admet un minimal
exceptionnel, alors il contient un sous-groupe libre d'indice fini (voir [9]).

L'hypothèse suivant laquelle Y est de type fini dans le théorème 6.6
est bien nécessaire. En effet, d'après une construction d'un feuilletage de
codimension 1 de M. Hirsch, on peut obtenir une action de Z[l/2] par
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difféomorphismes analytiques réels de S1 qui admet un minimal exceptionnel

(voir [17]).

Néanmoins, le théorème reste valable pour des groupes engendrés à

distorsion finie (notons en passant qu'un phénomène analogue se produit

pour le théorème de R. Sacksteder). Pour montrer cela, il suffit de montrer

de nouveau que l'action de Y sur SlK est contractive. Sinon cette action est

équicontinue, et donc conjuguée à une action par des rotations. Cependant,

ceci contredit la proposition 3.3.

6.2 Un théorème de conjugaison différentiable

Une application iß: [0,1] -> [0,1] est de classe Clog par morceaux s'il
existe une partition finie 0 p° < px < • • • < pk 1 de [0,1] telle que

la restriction de iß à chaque intervalle ]p\pl^l[ s'étend en une application

de classe Clog à [p\p^1] pour tout i 0, 1. L'application iß est

dilatante par morceaux s'il existe une constante r > 1 telle que f(x) > r
pour tout point v G [p\pl^{], i 0, ...,&— 1.

On dit que iß est topologiquement transitive (resp. topologiquement

mélangeante) si pour toute paire d'ouverts non vides A et B dans [0,1]
il existe n G N tel que ißn(A) n B est non vide (resp. il existe ^ G N tel

que ißn(Ä) HB est non vide pour tout n > no). Une mesure de probabilité

fi sur [0,1] est invariante par iß si p(iß~l(A)) p(A) pour tout ensemble

(i-mesurable A C [0,1]. Le théorème suivant, dû à A. Lasota et J. Yorke, est

déjà classique (voir [19] et [20]).

THÉORÈME 6.8. Soit iß une application dilatante par morceaux de

Vintervalle unité. Il existe une mesure de probabilité sur [0, 1] invariante

par iß, absolument continue par rapport à la mesure de Lebesgue, et dont

la fonction densité est à variation bornée. De plus, si iß est topologiquement

transitive, alors la mesure de probabilité invariante absolument continue est

unique, et si ip est topologiquement mélangeante, alors sa fonction densité g

satisfait les inégalités 1 /C < g < C pour une certaine constante C > 0.

Avant d'énoncer un autre résultat connu dont nous aurons besoin, on fixe

quelques notations. Pour r > 1 on note C/+(R,0) le groupe des germes en

0 de difféomorphismes locaux de classe Cr de R qui fixent 0 et préservent

l'orientation. On note £/+(R, 0) le groupe des germes en 0 d'homéomor-

phismes locaux de [0, oo[ qui fixent 0 et qui sont différentiables (à droite)
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en 0. Pour r > 1 on définit é^(R,0) comme étant le groupe des germes en
0 de difféomorphismes locaux de classe C de [0, oo[ qui fixent 0. Notons
qu'il existe une projection naturelle de ^(R,0) sur ^(R,0). On dit qu'un
germe 7 dans £+(R,0) est hyperbolique si 7'(0) / 1.

Le résultat suivant est une formulation plus précise du corollaire 2.2 de
[13]. Bien que la preuve soit la même, la forme ci-dessous est plus adaptée
à notre situation. Nous refaisons la démonstration pour la commodité du
lecteur.

PROPOSITION 6.9. Soient 71 et 72 deux germes hyperboliques dans
(?+(R,0), avec 2<r<iü.Si p est un germe dans Q (R.0) qui conjugue
71 et 72 en tant qu'éléments de (/£(R,0), alors p appartient à É?*(R,0).

Preuve. Supposons d'abord que 2 < r < 00. Soit A tJ(0) 7^(0).
Quitte à changer les 7, par leurs inverses, on peut supposer que À < 1. D'après
le théorème de linéarisation de Sternberg (voir [31] et aussi l'appendice de

[32]), il existe p\ et P2 dans C/^(R,0) tels que pour i 1,2, le germe
de pi o 7i o prl à l'origine est égal à celui de l'application r Ai. On
peut donc supposer que p conjugue ce dernier germe avec lui-même, ce qui
revient à dire que pour tout x>0 suffisamment petit on a p(Xx) Av. Ceci
entraîne que p(x) p(Xnx)/Xn pour tout ne N. Notons que pour jc > 0
cette dernière expression converge vers p'(0)x lorsque n tend vers l'infini.
Ainsi, l'élément p e (/+(R,0) coïncide avec le germe de l'application linéaire
v p\0)v (vu comme un élément de £/+(R, 0)). Ceci finit la preuve dans le
cas où 2 < r < 00. Si r — uj alors on reprend les arguments précédents en
utilisant le théorème de linéarisation de Koenigs au lieu de celui de Sternberg
(voir [5], page 31).

Dans la suite, on considérera des applications ip: [0,1 ] —> [0,1] dilatantes

par morceaux, dont le nombre de branches est au moins trois, et qui vérifient
(voir la figure 11):

(25) ip'(x) > 2 pour tout x e lp\pl+{], i 0,... 5
k - 1, (k > 3) ;

(26) ip(]pl,pl+l [) =]0,1[ pour tout / 1, 2

LEMME 6.10. Sous ces hypothèses, pour tout intervalle ouvert I C [0,1] il
existe un entier positif n0 n0(I) tel que ipn°(I) contient ]0,1[. En particulier,

est topologiquement mélangeante.
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Figure 11

Preuve. Soit £ > 0 tel que i//(x) > 2 + e pour tout * G [pl,pl+i],
i 0,..., k — 1. Soit no tel que

Nous affirmons qu'il existe n < no tel que ?/>"(/) contient un intervalle du

type ]//,/y+1 L, avec / 1,... ,k - 2. Supposons le contraire et pour chaque

n < no prenons une composante connexe In de de taille maximale.

Alors ln est contenu dans un intervalle ]p\pl^l[, avec i 0,... ,k — 1, ou

bien In ne contient qu'un seul point pl, avec i — 1,..., k — 2. Dans le premier
cas on a \ip(In)\ > (2 + e)\In\. Dans le deuxième cas, In est coupé en deux

intervalles par pl. L'un de ces intervalles a une taille supérieure ou égale à

la moitié de celle de In, et donc son image par xjj a une taille supérieure ou

égale à (^p)|/„|. Par récurrence on obtient

Uno I ^ (-y-)"0l7l > 1
>

ce qui est absurde.

On a alors démontré qu'il existe n < no tel que ipn{I) contient un
intervalle du type ]p\pl+x[, avec i \.... k — 2. Donc, ^w+1(7) contient
tpQp1,pl+x [) =]0,1[, et ceci finit la preuve du lemme.

On peut maintenant énoncer et démontrer le résultat principal de cet

appendice. Bien qu'une version plus générale puisse être donnée pour des

applications dilatantes par morceaux et topologiquement mélangeantes de

l'intervalle à l'aide des résultats de [3], ce n'est que cette version qui a
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été utilisée à la fin de la preuve du théorème D. L'argument de la preuve
ci-dessus est à comparer avec l'un des arguments principaux de [30].

THÉORÈME 6.11. Soient et f>2 deux applications dilatantes par
morceaux de Vintervalle unité qui satisfont les propriétés (25) et (26). On
suppose que ip\ et f2 sont de classe Cr, 2 < r < uj et qu'elles sont
conjuguées par un homéomorphisme direct (p de [0, 1]. Si p est absolument
continu, alors la restriction de p à ]0,1 [ est un difféomorphisme de classe CL

Preuve. Soient et g2 les densités des uniques mesures de probabilité
absolument continues invariantes par et f2 respectivement. Puisque p
est absolument continu, p envoie la mesure dp\ — pi<7(Leb) sur la mesure
dp2 g2d(Leb). Pour x G [0,1] on définit

Ufx) pf[0, x]) [ Qi(s) ds, i= 1,2.
J0

Puisque q\ et g2 sont positives, les fonctions U[ et U2 sont inversibles, et

on a

(27) p(x) Uf[ oUx(x).

Les fonctions gi et g2 sont à variation bornée, et donc: les limites latérales

gf(x) limv_+Y- gfy) et gf(x) lim_y_>Y+ gfy) existent pour i 1,2 et tout
v G]0,1[. Puisque g2 est inférieurement bornée par une constante positive,
d'après (27) on voit que p est différentiable à droite et à gauche en tout
point, avec

—(u2y±(upo Ui(x))

où p'+ (resp. p'_ désigne la dérivée à droite (resp. à gauche) de p (et
de manière analogue pour U\ et U2). Notons maintenant que par hypothèse
l'application possède au moins une branche avec un point fixe hyperbolique.
La proposition 6.9 implique que p est un difféomorphisme local de classe

Cr sur un voisinage I à droite de ce point. Soit no no(I) l'entier donné par
le lemme 6.10. L'égalité p o o p entraîne que p est un difféomorphisme

de classe Cr au voisinage de tout point v G]0, 1[— u^1 urvr'V).
Pour obtenir que p est un difféomorphisme de classe Cr au voisinage de tout
point v G U^o1 uf=0 ffn(pl), on raisonne par récurrence en utilisant l'égalité
p o i/;f1 o p, où ^1

1

et f2l désignent les inverses des branches

conjuguées de et f2 respectivement. Q
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