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180 K. ROEGNER

If there were an admissible isotropic subgroup J of 10G(Az)+ 2G(Es) not in
~ the orbit of H, it would have to fold to an isotropic subgroup J' of 12G(A)
in an orbit different from H’. Necessarily, J' contains roots, and these will
have the form aj ., + aé,mrz + a5 | o, With distinct i,j € {1,...,10} and
k € {11,12}. These roots can then be seen as roots of Eg. The only root
system of a complete even unimodular lattice in dimension 24 with root
system containing a summand Eg is 4Fg. But to transform 124, to 4Fg
would require roots as above in which k ¢ {11,12}. Applying ! to a
root of this kind yields an element of norm 2 in J. Thus, there can be no
admissible isotropic subgroup in an orbit different from the one containing H ;
hence, there is exactly one isometry class of even unimodular lattices with
root system 104, + 2E¢.

3. ELEMENTARY ISOFANS AND ISOFOLDS

In the previous section, it was shown that ¢p,, k > 2, is an isofan, as
was noted by Venkov [V]. Conway and Pless [CP] found several other isofans
- that aided them in obtaining some of their codes from already known codes.
The associated i1sofolds for these are:

Mg, : GRE;) — G(Dg); e, —ds1, €51 — dg3;
Npe+E, - G(De + E7) — G(A1 + Dy4); €71 ary +dap,
dejr— a1 +daj, je {1, 3}
mps - G(2Dg) — G(4A1); dé,1 = ai,1+ai1 + azl’,l ; dé,.% = a},l + a%,l + 0411,1 ;
g, aj +a; +ai, dgy—ai +ai +dj ;.

There are, however, other isofolds. The purpose of this section is to determine
all possible isofolds.

DEFINITION. Let R = I;+---+1; be the concatenation of indecomposable
root systems I;, 1 <i<1[. Let n: G(R) — G(R') be an isofold for some root
system R’. One says that the isofold n is imprimitive if there exists an
i €{l,...,1} such that

» nIG(Iz)(G(Ii)) ~ G(I,) . and . n(x) = ll(?’]'(;([i)(x)) for all x € G(Il) :

In effect, this means that ; is a summand of R’, and 7 restricted to G(I;)
preserves norms, although it may not be the identity.
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If 1 is not imprimitive, then it is said to be primitive. A primitive isofold
is called an elementary isofold if and only if it is not the composition of two
or more primitive isofolds. Finally, two isofolds 7;,m2: G(R) — G(R") are said
to be equivalent if and only if there exists a norm preserving automorphism
ny of G(R') with the property 713 o1, = 1 and inequivalent otherwise.

As an example, the isofold
n: G(Dy) — G(Dg); dpsjt—dg;, 0<i<3

is primitive since n(d4,1) > n(ds,1). It is not elementary as it is the composition
of two elementary isofolds: 7 = <p581 o @511 (see the previous section for the
definition of ¢p, ). The isofold

n': G(D1g) — G(Ds)

die,0 — dg,0, dis,1 = dg 3, dig2 > dg 2, di3 — dg 1

1s easily seen to be equivalent to gpggl.

Any primitive 1sofold that is not elementary is equivalent to the composition
of elementary isofolds by definition. The remainder of the section will be
devoted to proving the next theorem.

THEOREM 1. Let ng: G(R) — G(R') be an elementary isofold. Then ng

is equivalent to one of the elementary isofolds listed in Table 2 (recall that
D, stands for 2A;).

TABLE 2
Elementary isofolds

R R’ Definition of nz (j € {1, 3})
Dyys(k > 2) Dy NDiy s (dict8,7) = dij
Diva+ Dea | Di+De | Moy s40pys(dipa)) = diy +ds,
(k, £ > 2) MDyra+Dg 4 (d%+4J) = d/l,z + d%,j
Diy2 + E7 D+ Ar | Nppyy+E,(dit2ay) = dij+ ain
(k> 2) NMDyyr+E,(€7,1) = dr2 + ai
2E; Ds e, (e71) = ds,1
T, (€7,1) = do 3
2Fs 245 M€ ) =ay, +a3;, i=1,2
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The proof of the theorem requires several technical lemmata:

1. R has no summand of the form A;, i > 1, and R’ has no summand of
the form A;, i > 4;

2. R’ has no summand of the form Eg, E7, Eg ;

3. the maximal rank taken over all the indecomposable summands of R is
greater than the rank of any indecomposable summand of R’;

4. if n 1s an elementary isofold, there exists an element g € G(R) such that
n(g) > n(n(g)).

The proofs of the lemmata will be deferred until after the proof of the theorem.

Proof. 1t is a routine exercise to verify that the above mappings are
1sofolds. They are elementary since the change in rank is 8, whereas the
change in rank of the composition of two or more primitive isofolds is at
least 16.

Assume the lemmata above hold. By (4), there exists g € G(R) such that
n(g) > n(n(g)). Write g as an orthogonal sum g = g;.L---Llg,, m > 1,
whereby the g; are elements of distinct word groups of indecomposable root
systems. If n(g;)) = n(n(g;), 1 < i < m, then 7n(g;) + --- + n(gn) cannot
be an orthogonal sum, or the norm does not decrease under 7. Thus, either
n(g;) > n(n(g:)), 1 <i<m, or n(g;Lg;) >n(n(gily)), 1 <i<j<m.

Suppose first that n(g) > n(n(g)) with g a representative of the word
group of an indecomposable root system. The smallest norm possible for a
representative of a word group is 3. Consequently, n(g) > 2 = 1 mod 2Z.
From this and (1), it follows that g = diy; € G(Dy), k > 10,j = 1 or 3.
Suppose g = di; (the case g = di3 is analogous). We show that 7 is
equivalent to 7p, .

Set n1 = np,, and extend 7; to all of G(R) by letting it act as the identity
on G(R\Dy). Set m|cw\py = Now\py and m(di—s;) = n(de;), j =0,1,2,3.
Then 1 = mon;, and 72: G(R\ Dy + Dy—g) — G(R') is a group*isomorphism
which preserves norms modulo 2Z. To show 7, is an isofold, it remains
to check that n(h;) > n(mp(hy)) for all hy € GR \ Dy + Dy_g). Let
hi € GR\ Dy + Dy_g) and h = 0y (k1) € G(R). By the definition of
m, either m(k) = n(ny(h)) or n(h) — 2 =n(n(h)). If n(h) > n(n(h)), then

n(h1) > n(h) —2 = n(nh) = n(n(h)) .

If n(h) = n(n(h)), then by construction n(h) = n(hy) = n(12(hy)). Therefore,
n, is an isofold. Since 7, m; are both elementary, 7, must be imprimitive.
Therefore, 1 is equivalent to 7p, .
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Next let ¢ = g1 Lg, be the orthogonal sum of representatives of word
groups of indecomposable root systems Ri, R whereby n(g) > n(n(g)) and
n(g;)) = n(n(g;)), i = 1,2. There are four possibilities for g, hence 7 : set

TDy+De if g=dij, +dej, 1, )2 €{1,2,3}

Y = TRE; if g=ej+e7 3
b NDy+E; if g=dpj+er1,j€{1,2,3};
ThEs if g=ef )+

Extend n; to all of G(R) by letting it act as the identity on G(R \ (R +Ry)).
As before, define

Ml 6®R\® +R) = NGR\®R+R2)» T2m(GRI+Ry)) -

Again, n =m on and 7, is an isofold, hence imprimitive.  []

LEMMA 2. Let 1n: G(R) — G(R') be an elementary isofold. Then R
contains no summand of the form A;, i > 1, and R’ contains no summand of
the form A;, i > 4.

Proof. Suppose first that R has a summand A;. Recall that for i > 1,
G(A;) ~Z/(i+ 1)Z. Since n(a; ) = h+1 < 1, it follows that n(n(a; 1)) = h+1
Moreover, the smallest norm of a representative of any word group is % . Thus,
n(a;,1) must be a representative of the word group of an indecomposable root
system. The norms of representatives from G(Dy), k > 4, G(E¢), G(E7) are
all at least 1. The norm n(ay ;) > % is an increasing function in £ as well as
in j, 0 <j<|%] implies that n(a;1) = +a;;. But then 7 is an equivalence,
hence not elementary.

The second statement of the lemma now easily follows. R has no summands
of type A; for all j € Z, whence G(R) ~ (Z/2Z)" x (Z/3Z)" x (Z./4Z)™
for ny,no,n3 € Z2°. Since G(R) ~ G(R'), only those A; with i € 1, 2, 3 are
possible summands of R'. [

LEMMA 3. If n: G(R) — G(R') is an elementary isofold for root systems
R, R, then R’ has no summand of type E;, i =6, 7, 8.

Proof.  Eg is obvious as it is the only indecomposable root system with
trivial word group.

Next, assume that E7; is a summand of R’. By Lemma 2, R is the
orthogonal sum of root systems of type E;, j = 6,7,8, and/or Dy, k > 4.

Due to norm considerations, at least one summand must be either E; or
Dy, k=2 mod 4.
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Clearly, 7~'(ej ) # €5 | or it would be imprimitive. If ~'(e] ) = €3, L g
for some nontrivial ¢, then n(g) = Omod 2Z. Since 7 is an isofold,
n(n(e7 D)) = —32— Consequently, n(e(7,1)?) cannot contain the orthogonal
summand e7 1» forcing n(g) = e7 LA, for some h € G(R'), n(h) = mod 27.

On the other hand,

er1 =nn""(er1)) =n(e3 ) +1(g) =n(eF )+ ey +h.

Since e%l,e%l are of order 2, so is h. But then h = 7(ej;), an

nh) = mod 27., a contradiction.
We are now reduced to the case that ?7_1(67’1) = dy11Lg, where k = 2
mod 4 and ¢ may be trivial. Because 7 is an isofold,

1 =n(dy2) > n(n(dr2)) >0,

from which it follows that n(n(dx2)) = 1. Since e;; is of order 2, so is g,
so that

n(di2) = n(dr1 +di s + g+ g) = nlde1 + g) + 77(dk,3 +9)=e71+h,

whereby n(di3 + g) = h. Since n(e;; + h) = h = e71lhy with
n(hy) = 1; in other words nh) = § and n(dy, 3J_g) 5 mod 2Z.. On the
other hand, n(d; 1 1lg) = mod 27, Wthh would mean that n(dy,1) 7# n(dy3),
a contradiction.

Finally, assume Eg is a summand of R'. G(E¢) ~ Z/3Z, and the only
root system with word group of order divisible by 3 which can appear as a
summand of R is Eg. Since 7 is primitive, 77_1(66 1) # ec +1. Thus, without
loss of generality, 7™ '(eg ) =g +eg; + -+ e3k+2 k>1.

ek, +eay + et =mnled ) +nleg) + -+ e = e,

means that there is some j € {2,...,3k + 2} such that nej, = e}, Lh.
Norm requirements force 4 to be trivial, so that  must be imprimitive. [

LEMMA 4. Let n: G(R) — G(R') be an elehzentary isofold, and let
k, k' denote the maximal ranks of indecomposable summands S, S’ of R, R,
respectively. Then k > k.

Proof. Assume that k < k’. From the previous lemmas, R may not have
any summands of the form A;, Ay, A3, and R’ may not have any of the form
A;, i > 4, Eg, E7, Eg. Consequently, Dy is a summand of R’ with k' > 4.

Let R = I; + --- + I, be the concatenation of indecomposable root
systems I;, i € {1,...,m}. Since n is a group isomorphism, there exists
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some i € {1,...,m} such that for some g; € G(I;), dp 1 18 an orthogonal
summand of 7(g;). g; # dej, j € {1,3}, for any £(< k < k') because then
either n(d; 1) < n(dy,1) or we get an equivalence. g; # dy o, since then
k' = 4, which implies £ = 4, and we have an equivalence. g; # e7, 1 for then
k' > 7 and

nle; ) == <-<n(dp;). [

b W
B

LEMMA 5. Let n: G(R) — G(R') be an elementary isofold. There exists
g € G(R) such that n(n(g)) < n(g).

Proof. We produce a g € G(R) which satisfies the lemma. By definition,
n(n(h)) < n(h) for all &~ € G(R). Note that n(aq;;) < 1 for all i, whereas
nh) > 1 for all & € G(R). Thus if A; is a summand of R’, then set
g:=n""(ai).

Since R’ has no summands of the form E;, j = 6,7,8, it suffices to
consider R' := I, + --- + I, where I;, i € {1,...,m} is a root system of
type Dip. G(I;) 1s a group of order 4 implies that only summands of type
Dy and E; are possible for R. Suppose first that £7 is a summand of R.
Since n(e7;) = %, it follows that n(n(e7)) = % The only elements in
G(R") of norm % are dg 1, ds3. Without loss of generality, n(e; 1) = dg 1. Let
h=n"1(ds3), so that

n dsp) =n""(de1) + 1 (dss) =er1 +h.

If h=e71Lho, then n(hy) = 0 mod 2Z, implying that the norm of ds, # 1.
Thus, setting g := e71 + h, we see that n(g) > n(n(g)).

We are thus reduced to the case that R, R’ contain only summands of type
Dj, j> 4. Let k, respectively k' denote the maximal rank over all summands
D; of R, respectively R’.

nlde1) =y1L-- Lyn, yi € GU), i € {1,...,m}.

There is at least one £ € {1,...,m} such that 5~ '(y,) = d,Lh or
n~'(ye) = dr3Lh. In any event,

n(y) < n(dy 1) < n(dy1) < 0~ (),

so that we may take g :=n"'(y,). []
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A simple corollary of the theorem is stated below.

COROLLARY 6. A root system of rank n whose word group is not the
domain of an isofold must have one of the following forms:

Z 01A; + 04D4 + 05D5 + 5ij + e6Eg

i=1

z a;A; + eEe + e7E7

i=1

where the coefficients «;, 04, 05 are arbitrary nonnegative integers and
d;, €6, €7 € {0, 1} for j€ {6, 7, 8, 9}.
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