3. Elementary isofans and isofolds

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 48 (2002)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:

28.04.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

If there were an admissible isotropic subgroup J of $10 G\left(A_{2}\right)+2 G\left(E_{6}\right)$ not in the orbit of H, it would have to fold to an isotropic subgroup J^{\prime} of $12 G\left(A_{2}\right)$ in an orbit different from H^{\prime}. Necessarily, J^{\prime} contains roots, and these will have the form $a_{2,1 \text { or } 2}^{i}+a_{2,1 \text { or } 2}^{j}+a_{2,1 \text { or } 2}^{k}$ with distinct $i, j \in\{1, \ldots, 10\}$ and $k \in\{11,12\}$. These roots can then be seen as roots of E_{6}. The only root system of a complete even unimodular lattice in dimension 24 with root system containing a summand E_{6} is $4 E_{6}$. But to transform $12 A_{2}$ to $4 E_{6}$ would require roots as above in which $k \notin\{11,12\}$. Applying η^{-1} to a root of this kind yields an element of norm 2 in J. Thus, there can be no admissible isotropic subgroup in an orbit different from the one containing H; hence, there is exactly one isometry class of even unimodular lattices with root system $10 A_{2}+2 E_{6}$.

3. ELEMENTARY ISOFANS AND ISOFOLDS

In the previous section, it was shown that $\varphi_{D_{k}}, k \geq 2$, is an isofan, as was noted by Venkov [V]. Conway and Pless [CP] found several other isofans that aided them in obtaining some of their codes from already known codes. The associated isofolds for these are:

$$
\begin{gathered}
\eta_{2 E_{7}}: G\left(2 E_{7}\right) \rightarrow G\left(D_{6}\right) ; \quad e_{7,1}^{1} \mapsto d_{6,1}, e_{7,1}^{2} \mapsto d_{6,3} ; \\
\eta_{D_{6}+E_{7}}: G\left(D_{6}+E_{7}\right) \rightarrow G\left(A_{1}+D_{4}\right) ; \quad e_{7,1} \mapsto a_{1,1}+d_{4,2} \\
d_{6, j} \mapsto a_{1,1}+d_{4, j}, j \in\{1,3\} ; \\
\eta_{2 D_{6}}: G\left(2 D_{6}\right) \rightarrow G\left(4 A_{1}\right) ; \quad d_{6,1}^{1} \mapsto a_{1,1}^{1}+a_{1,1}^{2}+a_{1,1}^{3}, d_{6,3}^{1} \mapsto a_{1,1}^{1}+a_{1,1}^{2}+a_{1,1}^{4} \\
d_{6,1}^{2} \mapsto a_{1,1}^{1}+a_{1,1}^{3}+a_{1,1}^{4}, d_{6,3}^{2} \mapsto a_{1,1}^{2}+a_{1,1}^{3}+a_{1,1}^{4}
\end{gathered}
$$

There are, however, other isofolds. The purpose of this section is to determine all possible isofolds.

DEFINITION. Let $R=I_{1}+\cdots+I_{l}$ be the concatenation of indecomposable root systems $I_{i}, 1 \leq i \leq l$. Let $\eta: G(R) \rightarrow G\left(R^{\prime}\right)$ be an isofold for some root system R^{\prime}. One says that the isofold η is imprimitive if there exists an $i \in\{1, \ldots, l\}$ such that

$$
\left.\eta\right|_{G\left(I_{i}\right)}\left(G\left(I_{i}\right)\right) \simeq G\left(I_{i}\right) \text { and } \mathbf{n}(x)=\mathbf{n}\left(\left.\eta\right|_{G\left(I_{i}\right)}(x)\right) \text { for all } x \in G\left(I_{i}\right)
$$

In effect, this means that I_{i} is a summand of R^{\prime}, and η restricted to $G\left(I_{i}\right)$ preserves norms, although it may not be the identity.

If η is not imprimitive, then it is said to be primitive. A primitive isofold is called an elementary isofold if and only if it is not the composition of two or more primitive isofolds. Finally, two isofolds $\eta_{1}, \eta_{2}: G(R) \rightarrow G\left(R^{\prime}\right)$ are said to be equivalent if and only if there exists a norm preserving automorphism η_{3} of $G\left(R^{\prime}\right)$ with the property $\eta_{3} \circ \eta_{2}=\eta_{1}$ and inequivalent otherwise.

As an example, the isofold

$$
\eta: G\left(D_{24}\right) \rightarrow G\left(D_{8}\right) ; \quad d_{24, i} \mapsto d_{8, i}, 0 \leq i \leq 3
$$

is primitive since $\mathbf{n}\left(d_{24,1}\right)>\mathbf{n}\left(d_{8,1}\right)$. It is not elementary as it is the composition of two elementary isofolds: $\eta=\varphi_{D_{8}}^{-1} \circ \varphi_{D_{16}}^{-1}$ (see the previous section for the definition of $\varphi_{D_{k}}$). The isofold

$$
\begin{gathered}
\eta^{\prime}: G\left(D_{16}\right) \rightarrow G\left(D_{8}\right) \\
d_{16,0} \mapsto d_{8,0}, d_{16,1} \mapsto d_{8,3}, d_{16,2} \mapsto d_{8,2}, d_{16,3} \mapsto d_{8,1}
\end{gathered}
$$

is easily seen to be equivalent to $\varphi_{D_{8}}^{-1}$.
Any primitive isofold that is not elementary is equivalent to the composition of elementary isofolds by definition. The remainder of the section will be devoted to proving the next theorem.

Theorem 1. Let $\eta_{R}: G(R) \rightarrow G\left(R^{\prime}\right)$ be an elementary isofold. Then η_{R} is equivalent to one of the elementary isofolds listed in Table 2 (recall that D_{2} stands for $2 A_{1}$).

TABLE 2
Elementary isofolds

R	R^{\prime}	Definition of $\eta_{R}(j \in\{1,3\})$
$D_{k+8}(k \geq 2)$	D_{k}	$\eta_{D_{k+8}}\left(d_{k+8, j}\right)=d_{k, j}$
$D_{k+4}+D_{\ell+4}$ $(k, \ell \geq 2)$	$D_{k}+D_{\ell}$	$\eta_{D_{k+4}+D_{\ell+4}}\left(d_{k+4, j}^{1}\right)=d_{k, j}^{1}+d_{\ell, 2}^{2}$ $\eta_{D_{k+4}+D_{\ell+4}}\left(d_{\ell+4, j}^{2}\right)=d_{k, 2}^{1}+d_{\ell, j}^{2}$
$D_{k+2}+E_{7}$ $(k \geq 2)$	$D_{k}+A_{1}$	$\eta_{D_{k+2}+E_{7}}\left(d_{k+2, j}\right)=d_{k, j}+a_{1,1}$ $\eta_{D_{k+2}+E_{7}}\left(e_{7,1}\right)=d_{k, 2}+a_{1,1}$
$2 E_{7}$	D_{6}	$\eta_{2 E_{7}}\left(e_{7,1}^{1}\right)=d_{6,1}$ $\eta_{2 E_{7}}\left(e_{7,1}^{2}\right)=d_{6,3}$
$2 E_{6}$	$2 A_{2}$	$\eta_{2 E_{6}}\left(e_{6,1}^{i}\right)=a_{2,1}^{1}+a_{2, i}^{2}, i=1,2$

The proof of the theorem requires several technical lemmata:

1. R has no summand of the form $A_{i}, i \geq 1$, and R^{\prime} has no summand of the form $A_{i}, i \geq 4$;
2. R^{\prime} has no summand of the form E_{6}, E_{7}, E_{8};
3. the maximal rank taken over all the indecomposable summands of R is greater than the rank of any indecomposable summand of R^{\prime};
4. if η is an elementary isofold, there exists an element $g \in G(R)$ such that $\mathbf{n}(g)>\mathbf{n}(\eta(g))$.
The proofs of the lemmata will be deferred until after the proof of the theorem.
Proof. It is a routine exercise to verify that the above mappings are isofolds. They are elementary since the change in rank is 8 , whereas the change in rank of the composition of two or more primitive isofolds is at least 16.

Assume the lemmata above hold. By (4), there exists $g \in G(R)$ such that $\mathbf{n}(g)>\mathbf{n}(\eta(g))$. Write g as an orthogonal sum $g=g_{1} \perp \cdots \perp g_{m}, m \geq 1$, whereby the g_{i} are elements of distinct word groups of indecomposable root systems. If $\mathbf{n}\left(g_{i}\right)=\mathbf{n}\left(\eta\left(g_{i}\right)\right), 1 \leq i \leq m$, then $\eta\left(g_{1}\right)+\cdots+\eta\left(g_{m}\right)$ cannot be an orthogonal sum, or the norm does not decrease under η. Thus, either $\mathbf{n}\left(g_{i}\right)>\mathbf{n}\left(\eta\left(g_{i}\right)\right), 1 \leq i \leq m$, or $\mathbf{n}\left(g_{i} \perp g_{j}\right)>\mathbf{n}\left(\eta\left(g_{i} \perp g_{j}\right)\right), 1 \leq i<j \leq m$.

Suppose first that $\mathbf{n}(g)>\mathbf{n}(\eta(g))$ with g a representative of the word group of an indecomposable root system. The smallest norm possible for a representative of a word group is $\frac{1}{2}$. Consequently, $\mathbf{n}(g) \geq \frac{5}{2} \equiv \frac{1}{2} \bmod 2 \mathbf{Z}$. From this and (1), it follows that $g=d_{k, j} \in G\left(D_{k}\right), k \geq 10, j=1$ or 3 . Suppose $g=d_{k, 1}$ (the case $g=d_{k, 3}$ is analogous). We show that η is equivalent to $\eta_{D_{k}}$.

Set $\eta_{1}=\eta_{D_{k}}$, and extend η_{1} to all of $G(R)$ by letting it act as the identity on $G\left(R \backslash D_{k}\right)$. Set $\left.\eta_{2}\right|_{G\left(R \backslash D_{k}\right)}=\left.\eta\right|_{G\left(R \backslash D_{k}\right)}$ and $\eta_{2}\left(d_{k-8, j}\right)=\eta\left(d_{k, j}\right), j=0,1,2,3$. Then $\eta=\eta_{2} \circ \eta_{1}$, and $\eta_{2}: G\left(R \backslash D_{k}+D_{k-8}\right) \rightarrow G\left(R^{\prime}\right)$ is a group•isomorphism which preserves norms modulo $2 \mathbf{Z}$. To show η_{2} is an isofold, it remains to check that $\mathbf{n}\left(h_{1}\right) \geq \mathbf{n}\left(\eta_{2}\left(h_{1}\right)\right)$ for all $h_{1} \in G\left(R \backslash D_{k}+D_{k-8}\right)$. Let $h_{1} \in G\left(R \backslash D_{k}+D_{k-8}\right)$ and $h=\eta_{1}^{-1}\left(h_{1}\right) \in G(R)$. By the definition of η_{1}, either $\mathbf{n}(h)=\mathbf{n}\left(\eta_{1}(h)\right)$ or $\mathbf{n}(h)-2=\mathbf{n}\left(\eta_{1}(h)\right)$. If $\mathbf{n}(h)>\mathbf{n}(\eta(h))$, then

$$
\mathbf{n}\left(h_{1}\right) \geq \mathbf{n}(h)-2 \geq \mathbf{n}(\eta(h))=\mathbf{n}\left(\eta_{2}\left(h_{1}\right)\right) .
$$

If $\mathbf{n}(h)=\mathbf{n}(\eta(h))$, then by construction $\mathbf{n}(h)=\mathbf{n}\left(h_{1}\right)=\mathbf{n}\left(\eta_{2}\left(h_{1}\right)\right)$. Therefore, η_{2} is an isofold. Since η, η_{1} are both elementary, η_{2} must be imprimitive. Therefore, η is equivalent to $\eta_{D_{k}}$.

Next let $g=g_{1} \perp g_{2}$ be the orthogonal sum of representatives of word groups of indecomposable root systems R_{1}, R_{2} whereby $\mathbf{n}(g)>\mathbf{n}(\eta(g))$ and $\mathbf{n}\left(g_{i}\right)=\mathbf{n}\left(\eta\left(g_{i}\right)\right), i=1,2$. There are four possibilities for g, hence $\eta_{1}:$ set

$$
\eta_{1}:=\left\{\begin{array}{cl}
\eta_{D_{k}+D_{\ell}} & \text { if } g=d_{k, j_{1}}+d_{\ell, j_{2}}, j_{1}, j_{2} \in\{1,2,3\} ; \\
\eta_{2 E_{7}} & \text { if } g=e_{7,1}^{1}+e_{7,1}^{2} \\
\eta_{D_{k}+E_{7}} & \text { if } g=d_{k, j}+e_{7,1}, j \in\{1,2,3\} ; \\
\eta_{2 E_{6}} & \text { if } g=e_{6, \pm 1}^{1}+e_{6, \pm 1}^{2} .
\end{array}\right.
$$

Extend η_{1} to all of $G(R)$ by letting it act as the identity on $G\left(R \backslash\left(R_{1}+R_{2}\right)\right)$. As before, define

$$
\left.\eta_{2}\right|_{G\left(R \backslash\left(R_{1}+R_{2}\right)\right)}:=\left.\eta\right|_{G\left(R \backslash\left(R_{1}+R_{2}\right)\right)},\left.\eta_{2}\right|_{\eta_{1}\left(G\left(R_{1}+R_{2}\right)\right)} .
$$

Again, $\eta=\eta_{2} \circ \eta_{1}$ and η_{2} is an isofold, hence imprimitive.

Lemma 2. Let $\eta: G(R) \rightarrow G\left(R^{\prime}\right)$ be an elementary isofold. Then R contains no summand of the form $A_{i}, i \geq 1$, and R^{\prime} contains no summand of the form $A_{i}, i \geq 4$.

Proof. Suppose first that R has a summand A_{i}. Recall that for $i \geq 1$, $G\left(A_{i}\right) \simeq \mathbf{Z} /(i+1) \mathbf{Z}$. Since $\mathbf{n}\left(a_{i, 1}\right)=\frac{i}{i+1}<1$, it follows that $\mathbf{n}\left(\eta\left(a_{i, 1}\right)\right)=\frac{i}{i+1}$. Moreover, the smallest norm of a representative of any word group is $\frac{1}{2}$. Thus, $\eta\left(a_{i, 1}\right)$ must be a representative of the word group of an indecomposable root system. The norms of representatives from $G\left(D_{k}\right), k \geq 4, G\left(E_{6}\right), G\left(E_{7}\right)$ are all at least 1. The norm $\mathbf{n}\left(a_{\ell, j}\right) \geq \frac{1}{2}$ is an increasing function in ℓ as well as in $j, 0 \leq j \leq\left\lfloor\frac{\ell}{2}\right\rfloor$ implies that $\eta\left(a_{i, 1}\right)= \pm a_{i, 1}$. But then η is an equivalence, hence not elementary.

The second statement of the lemma now easily follows. R has no summands of type A_{j} for all $j \in \mathbf{Z}$, whence $G(R) \simeq(\mathbf{Z} / 2 \mathbf{Z})^{n_{1}} \times(\mathbf{Z} / 3 \mathbf{Z})^{n_{2}} \times(\mathbf{Z} / 4 \mathbf{Z})^{n_{3}}$ for $n_{1}, n_{2}, n_{3} \in \mathbf{Z}^{\geq 0}$. Since $G(R) \simeq G\left(R^{\prime}\right)$, only those A_{i} with $i \in 1,2,3$ are possible summands of R^{\prime}.

LEmmA 3. If $\eta: G(R) \rightarrow G\left(R^{\prime}\right)$ is an elementary isofold for root systems R, R^{\prime}, then R^{\prime} has no summand of type $E_{i}, i=6,7,8$.

Proof. E_{8} is obvious as it is the only indecomposable root system with trivial word group.

Next, assume that E_{7} is a summand of R^{\prime}. By Lemma $2, R$ is the orthogonal sum of root systems of type $E_{j}, j=6,7,8$, and/or $D_{k}, k \geq 4$. Due to norm considerations, at least one summand must be either E_{7} or $D_{k}, k \equiv 2 \bmod 4$.

Clearly, $\eta^{-1}\left(e_{7,1}^{1}\right) \neq e_{7,1}^{2}$ or it would be imprimitive. If $\eta^{-1}\left(e_{7,1}^{1}\right)=e_{7,1}^{2} \perp g$ for some nontrivial g, then $\mathbf{n}(g) \equiv 0 \bmod 2 \mathbf{Z}$. Since η is an isofold, $\mathbf{n}\left(\eta\left(e_{7,1}^{2}\right)\right)=\frac{3}{2}$. Consequently, $\eta\left(e(7,1)^{2}\right)$ cannot contain the orthogonal summand $e_{7,1}^{1}$, forcing $\eta(g)=e_{7,1}^{1} \perp h$, for some $h \in G\left(R^{\prime}\right), \mathbf{n}(h) \equiv \frac{1}{2} \bmod 2 \mathbf{Z}$. On the other hand,

$$
e_{7,1}^{1}=\eta\left(\eta^{-1}\left(e_{7,1}\right)\right)=\eta\left(e_{7,1}^{2}\right)+\eta(g)=\eta\left(e_{7,1}^{2}\right)+e_{7,1}^{1}+h
$$

Since $e_{7,1}^{1}, e_{7,1}^{2}$ are of order 2 , so is h. But then $h=\eta\left(e_{7,1}^{2}\right)$, and $\mathbf{n}(h) \equiv \frac{3}{2} \bmod 2 \mathbf{Z}$, a contradiction.

We are now reduced to the case that $\eta^{-1}\left(e_{7,1}\right)=d_{k, 1} \perp g$, where $k \equiv 2$ $\bmod 4$ and g may be trivial. Because η is an isofold,

$$
1=\mathbf{n}\left(d_{k, 2}\right) \geq \mathbf{n}\left(\eta\left(d_{k, 2}\right)\right)>0
$$

from which it follows that $\mathbf{n}\left(\eta\left(d_{k, 2}\right)\right)=1$. Since $e_{7,1}$ is of order 2 , so is g, so that

$$
\eta\left(d_{k, 2}\right)=\eta\left(d_{k, 1}+d_{k, 3}+g+g\right)=\eta\left(d_{k, 1}+g\right)+\eta\left(d_{k, 3}+g\right)=e_{7,1}+h
$$

whereby $\eta\left(d_{k, 3}+g\right)=h$. Since $\mathbf{n}\left(e_{7,1}+h\right)=1, h=e_{7,1} \perp h_{0}$ with $\mathbf{n}\left(h_{0}\right)=1$; in other words, $\mathbf{n}(h)=\frac{5}{2}$ and $\mathbf{n}\left(d_{k, 3} \perp g\right) \equiv \frac{1}{2} \bmod 2 \mathbf{Z}$. On the other hand, $\mathbf{n}\left(d_{k, 1} \perp g\right) \equiv \frac{3}{2} \bmod 2 \mathbf{Z}$, which would mean that $\mathbf{n}\left(d_{k, 1}\right) \neq \mathbf{n}\left(d_{k, 3}\right)$, a contradiction.

Finally, assume E_{6} is a summand of $R^{\prime} . G\left(E_{6}\right) \simeq \mathbf{Z} / 3 \mathbf{Z}$, and the only root system with word group of order divisible by 3 which can appear as a summand of R is E_{6}. Since η is primitive, $\eta^{-1}\left(e_{6,1}^{1}\right) \neq e_{6, \pm 1}$. Thus, without loss of generality, $\eta^{-1}\left(e_{6,1}^{1}\right)=e_{6,1}^{2}+e_{6,1}^{3}+\cdots+e_{6,1}^{3 k+2}, k \geq 1$.

$$
\eta\left(e_{6,1}^{2}+e_{6,1}^{3}+\cdots+e_{6,1}^{3 k+2}\right)=\eta\left(e_{6,1}^{2}\right)+\eta\left(e_{6,1}^{3}\right)+\cdots+\eta\left(e_{6,1}^{3 k+2}\right)=e_{6,1}^{1}
$$

means that there is some $j \in\{2, \ldots, 3 k+2\}$ such that $\eta e_{6,1}^{j}=e_{6,1}^{1} \perp h$. Norm requirements force h to be trivial, so that η must be imprimitive.

Lemma 4. Let $\eta: G(R) \rightarrow G\left(R^{\prime}\right)$ be an elementary isofold, and let k, k^{\prime} denote the maximal ranks of indecomposable summands S, S^{\prime} of R, R^{\prime}, respectively. Then $k>k^{\prime}$.

Proof. Assume that $k \leq k^{\prime}$. From the previous lemmas, R may not have any summands of the form A_{1}, A_{2}, A_{3}, and R^{\prime} may not have any of the form $A_{i}, i \geq 4, E_{6}, E_{7}, E_{8}$. Consequently, $D_{k^{\prime}}$ is a summand of R^{\prime} with $k^{\prime} \geq 4$.

Let $R=I_{1}+\cdots+I_{m}$ be the concatenation of indecomposable root systems $I_{i}, i \in\{1, \ldots, m\}$. Since η is a group isomorphism, there exists
some $i \in\{1, \ldots, m\}$ such that for some $g_{i} \in G\left(I_{i}\right), d_{k^{\prime}, 1}$ is an orthogonal summand of $\eta\left(g_{i}\right) . g_{i} \neq d_{\ell, j}, j \in\{1,3\}$, for any $\ell\left(\leq k \leq k^{\prime}\right)$ because then either $\mathbf{n}\left(d_{\ell, 1}\right)<\mathbf{n}\left(d_{k^{\prime}, 1}\right)$ or we get an equivalence. $g_{i} \neq d_{\ell, 2}$, since then $k^{\prime}=4$, which implies $\ell=4$, and we have an equivalence. $g_{i} \neq e_{7,1}$, for then $k^{\prime} \geq 7$ and

$$
\mathbf{n}\left(e_{7,1}\right)=\frac{3}{2}<\frac{7}{4} \leq \mathbf{n}\left(d_{k^{\prime}, 1}\right) .
$$

Lemma 5. Let $\eta: G(R) \rightarrow G\left(R^{\prime}\right)$ be an elementary isofold. There exists $g \in G(R)$ such that $\mathbf{n}(\eta(g))<\mathbf{n}(g)$.

Proof. We produce a $g \in G(R)$ which satisfies the lemma. By definition, $\mathbf{n}(\eta(h)) \leq \mathbf{n}(h)$ for all $h \in G(R)$. Note that $\mathbf{n}\left(a_{i, 1}\right)<1$ for all i, whereas $\mathbf{n}(h) \geq 1$ for all $h \in G(R)$. Thus if A_{i} is a summand of R^{\prime}, then set $g:=\eta^{-1}\left(a_{i, 1}\right)$.

Since R^{\prime} has no summands of the form $E_{j}, j=6,7,8$, it suffices to consider $R^{\prime}:=I_{1}+\cdots+I_{m}$, where $I_{i}, i \in\{1, \ldots, m\}$ is a root system of type $D_{k^{\prime}} . G\left(I_{i}\right)$ is a group of order 4 implies that only summands of type D_{k} and E_{7} are possible for R. Suppose first that E_{7} is a summand of R. Since $\mathbf{n}\left(e_{7,1}\right)=\frac{3}{2}$, it follows that $\mathbf{n}\left(\eta\left(e_{7,1}\right)\right)=\frac{3}{2}$. The only elements in $G\left(R^{\prime}\right)$ of norm $\frac{3}{2}$ are $d_{6,1}, d_{6,3}$. Without loss of generality, $\eta\left(e_{7,1}\right)=d_{6,1}$. Let $h=\eta^{-1}\left(d_{6,3}\right)$, so that

$$
\eta^{-1}\left(d_{6,2}\right)=\eta^{-1}\left(d_{6,1}\right)+\eta^{-1}\left(d_{6,3}\right)=e_{7,1}+h .
$$

If $h=e_{7,1} \perp h_{0}$, then $\mathbf{n}\left(h_{0}\right) \equiv 0 \bmod 2 \mathbf{Z}$, implying that the norm of $d_{6,2} \neq 1$. Thus, setting $g:=e_{7,1}+h$, we see that $\mathbf{n}(g)>\mathbf{n}(\eta(g))$.

We are thus reduced to the case that R, R^{\prime} contain only summands of type $D_{j}, j \geq 4$. Let k, respectively k^{\prime} denote the maximal rank over all summands D_{j} of R, respectively R^{\prime}.

$$
\eta\left(d_{k, 1}\right)=y_{1} \perp \cdots \perp y_{m}, y_{i} \in G\left(I_{i}\right), i \in\{1, \ldots, m\} .
$$

There is at least one $\ell \in\{1, \ldots, m\}$ such that $\eta^{-1}\left(y_{\ell}\right)=d_{k, 1} \perp h$ or $\eta^{-1}\left(y_{\ell}\right)=d_{k, 3} \perp h$. In any event,

$$
\mathbf{n}\left(y_{\ell}\right) \leq \mathbf{n}\left(d_{k^{\prime}, 1}\right)<\mathbf{n}\left(d_{k, 1}\right) \leq \mathbf{n}\left(\eta^{-1}\left(y_{\ell}\right)\right),
$$

so that we may take $g:=\eta^{-1}\left(y_{\ell}\right)$.

A simple corollary of the theorem is stated below.

COROLLARY 6. A root system of rank n whose word group is not the domain of an isofold must have one of the following forms:

$$
\begin{gathered}
\sum_{i=1}^{n} \alpha_{1} A_{i}+\delta_{4} D_{4}+\delta_{5} D_{5}+\delta_{j} D_{j}+\varepsilon_{6} E_{6} \\
\sum_{i=1}^{n} \alpha_{i} A_{i}+\varepsilon_{6} E_{6}+\varepsilon_{7} E_{7}
\end{gathered}
$$

where the coefficients $\alpha_{i}, \delta_{4}, \delta_{5}$ are arbitrary nonnegative integers and $\delta_{j}, \varepsilon_{6}, \varepsilon_{7} \in\{0,1\}$ for $j \in\{6,7,8,9\}$.

REFERENCES

[CP] Conway, J.H. and V. Pless. On the enumeration of self-dual codes. J. Combin. Theory Ser. A 28 (1980), 26-53.
[CPS] Conway, J. H., V. Pless and N. J. A. Sloane. The binary self-dual codes of length up to 32: a revised enumeration. J. Combin. Theory Ser. A 60 (1992), 183-195.
[Ke] Kervaire, M. Unimodular lattices with a complete root system. L'Enseign. Math. (2) 40 (1994), 59-104.
[Ko] Косн, H. The completeness principle for the Golay codes and some related codes. In : Arslanov et al. (eds.), Algebra and Analysis. De Gruyter and Co., Berlin (1996), 75-80.
[M] Mordell, L. J. The definite quadratic forms in eight variables with determinant unity. J. Math. Pures Appl. (9) 17 (1938), 41-46.
[N] Niemeier, H.-V. Definite quadratische Formen der Dimension 24 und Diskriminante 1. J. Number Theory 5 (1973), 142-178.
[R] Roegner, K. Folding and fanning even unimodular lattices with complete root systems. Thesis, Technische Universität Berlin (1999).
[Sch] Scharlau, W. Quadratic and Hermitian Forms. Grundlehren der mathematischen Wissenschaften 270. Springer-Verlag, Berlin (1985).
[Sm] Smith, H. J. S. On the orders and genera of quadratic forms containing more than three indeterminates. Proc. Roy. Soc. 16 (1867), 197-208.
[V] Venkov, B. B. Even unimodular Euclidean lattices of dimension 32. II. J. Sov. Math. 36, 21-38 (1987); translation from Zap. Nauchn. Sem. LOMI 134 (1984), 34-58.

