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THE FANNING METHOD FOR CONSTRUCTING

EVEN UNIMODULAR LATTICES. I

by Katherine ROEGNER

Abstract. This paper provides a formal study of isofans and discusses their use

in the theory of even unimodular lattices. Examples are given that illustrate how isofans

simplify the construction of certain types of even unimodular lattices. A classification
of isofans concludes the paper.

Introduction

The history of even unimodular lattices dates back to the 19th century
when H. J. S. Smith [Sm] showed the existence of what is known today as the

Eg lattice. The even unimodular lattices have been classified for dimensions
8 [M], 16 [W2], and 24 [N]. The next dimension of interest is 32 due to
the fact that even unimodular lattices only occur in dimensions divisible by
8; see e.g. [Sch]. In dimension 32, there are millions of nonisometric even

unimodular lattices. Although no classification in this dimension is available,
there has been considerable progress. Conway and Pless [CP] determined the

doubly-even self-dual binary codes, the results of which can be transformed
into a classification statement for even unimodular lattices with complete root
systems of a particular type. Within their work, they noted that it is possible
to build some codes using known codes by making appropriate substitutions.
Kervaire [Ke] classified the remaining cases of complete even unimodular
lattices in dimension 32 using a lengthy elimination procedure and a lot of
machine testing. Venkov [V] has shown that, except for 15 cases, the even
unimodular lattices in dimension 32 can be generated by the roots and vectors
with scalar square 4. In that article, Venkov introduced an important operation
on lattices, which he called "fanning". It turns out that Venkov's fanning
method is comparable to Conway and Pless' substitution method.
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The purpose of this article is to provide an indepth study of the fanning
method. To do so, Venkov's fanning method is generalized to the isofan, a

special isomorphism between rational bilinear form modules associated to root
lattices. Some examples are given illustrating the construction of new complete
even unimodular lattices from already known ones using isofans. In particular,
an easy construction for a lattice that Conway and Pless found using "several

processes including divination" is given. A classification of isofans concludes
the paper.

The author is indebted to Helmut Koch for the hints and suggestions
he has provided. Special thanks are due to Boris Venkov for the many
helpful discussions concerning even unimodular lattices and to the referee

for suggesting many improvements to the original version of this paper.

1. Lattices

Let Rn be n -dimensional euclidean space equipped with the standard scalar

product
n

x •y ]T.v,v,. for all x (xu...(y1;... R"
i= 1

A free Z-module A C R" of rank k := dimRR A is called a lattice of
rank k. A basis of a rank k lattice A is a subset C A that

generates A over Z.
Let AcR" be a lattice. A is said to be integral if \t • Ay G Z for all

Aft Ay A. It is an even lattice if, in addition to being integral, A2 := A-A G 2Z
for all A G A. Let A# {x G Rn | x • A G Z for all A G A} denote the dual
lattice. Clearly, A is integral if and only if A Ç A#. A is called unimodular

if in fact A A#. Thus, an even unimodular lattice is a self-dual lattice such

that A2 G 2Z for all A G A.
Let A],..., Am be nontrivial sublattices of the integral lattice A whose

direct sum is equal to A. If x • y 0 for all xG A,-, y G Ay, i ^ y, then A
is called the orthogonal direct sum of the sublattices Ai,..., Am and denoted

by A Ai 0 • • • © Am. A is called decomposable if there exists such an

orthogonal direct sum with m > 1, otherwise A is said to be indecomposable.
The root system of an even lattice A is the set

Art := {A e A I A2 2}

the elements of which are called roots. A is called a root lattice if A is
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