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THE FANNING METHOD FOR CONSTRUCTING

EVEN UNIMODULAR LATTICES. I

by Katherine ROEGNER

Abstract. This paper provides a formal study of isofans and discusses their use

in the theory of even unimodular lattices. Examples are given that illustrate how isofans

simplify the construction of certain types of even unimodular lattices. A classification
of isofans concludes the paper.

Introduction

The history of even unimodular lattices dates back to the 19th century
when H. J. S. Smith [Sm] showed the existence of what is known today as the

Eg lattice. The even unimodular lattices have been classified for dimensions
8 [M], 16 [W2], and 24 [N]. The next dimension of interest is 32 due to
the fact that even unimodular lattices only occur in dimensions divisible by
8; see e.g. [Sch]. In dimension 32, there are millions of nonisometric even

unimodular lattices. Although no classification in this dimension is available,
there has been considerable progress. Conway and Pless [CP] determined the

doubly-even self-dual binary codes, the results of which can be transformed
into a classification statement for even unimodular lattices with complete root
systems of a particular type. Within their work, they noted that it is possible
to build some codes using known codes by making appropriate substitutions.
Kervaire [Ke] classified the remaining cases of complete even unimodular
lattices in dimension 32 using a lengthy elimination procedure and a lot of
machine testing. Venkov [V] has shown that, except for 15 cases, the even
unimodular lattices in dimension 32 can be generated by the roots and vectors
with scalar square 4. In that article, Venkov introduced an important operation
on lattices, which he called "fanning". It turns out that Venkov's fanning
method is comparable to Conway and Pless' substitution method.
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The purpose of this article is to provide an indepth study of the fanning
method. To do so, Venkov's fanning method is generalized to the isofan, a

special isomorphism between rational bilinear form modules associated to root
lattices. Some examples are given illustrating the construction of new complete
even unimodular lattices from already known ones using isofans. In particular,
an easy construction for a lattice that Conway and Pless found using "several

processes including divination" is given. A classification of isofans concludes
the paper.

The author is indebted to Helmut Koch for the hints and suggestions
he has provided. Special thanks are due to Boris Venkov for the many
helpful discussions concerning even unimodular lattices and to the referee

for suggesting many improvements to the original version of this paper.

1. Lattices

Let Rn be n -dimensional euclidean space equipped with the standard scalar

product
n

x •y ]T.v,v,. for all x (xu...(y1;... R"
i= 1

A free Z-module A C R" of rank k := dimRR A is called a lattice of
rank k. A basis of a rank k lattice A is a subset C A that

generates A over Z.
Let AcR" be a lattice. A is said to be integral if \t • Ay G Z for all

Aft Ay A. It is an even lattice if, in addition to being integral, A2 := A-A G 2Z
for all A G A. Let A# {x G Rn | x • A G Z for all A G A} denote the dual
lattice. Clearly, A is integral if and only if A Ç A#. A is called unimodular

if in fact A A#. Thus, an even unimodular lattice is a self-dual lattice such

that A2 G 2Z for all A G A.
Let A],..., Am be nontrivial sublattices of the integral lattice A whose

direct sum is equal to A. If x • y 0 for all xG A,-, y G Ay, i ^ y, then A
is called the orthogonal direct sum of the sublattices Ai,..., Am and denoted

by A Ai 0 • • • © Am. A is called decomposable if there exists such an

orthogonal direct sum with m > 1, otherwise A is said to be indecomposable.
The root system of an even lattice A is the set

Art := {A e A I A2 2}

the elements of which are called roots. A is called a root lattice if A is
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generated by its roots. Let en} denote the standard basis of Rn. The

root system of an even lattice is the orthogonal direct sum of root systems of
the following type, corresponding to the indecomposable root lattices [Wl] :

An := - ej) I 1 < i < j < n n> 1},

Dm := {±(et ±ej) \ 1 <i <j <m,m> 3},

^
8 8

Es := {E(ei ± ej), - | e* ±1, JJe* 1, 1 < i <j < 8},
k=\ k= i

E7 := {v e Es I (v,e7 - e8) 0}.

E6 := {t; G Es | (v, e7 - e8) 0 and (v, - *7) 0}.

The root system of an even lattice is said to be complete (in A) if the lattice

generated by Art has finite index in A. In this case, we will call A a complete

lattice.

In general, one wants to determine the finitely many isometry classes of
even unimodular lattices of a given rank. These isometry classes have been

determined for ranks up to 24. Since the rank of even unimodular lattices

is known to be divisible by 8, the next rank of interest is 32. There are

millions of isometry classes of rank 32 even unimodular lattices. Instead of
classifying all isometry classes, several authors have restricted their attention

to the isometry classes of complete even unimodular lattices of rank 32.

When dealing with complete even unimodular lattices, it is convenient to

classify the lattices according to their root systems. Beginning with a candidate

root system R, the goal is to construct all isometry classes of even unimodular
lattices A such that Art R. To do that, it is helpful to associate a code to
the lattice generated by Art, which can be achieved in the following manner.

Assume that A is a complete integral lattice in Rn. Let R Art and let
R denote the lattice generated by A. By definition, R Ç A is a sublattice
of finite index and RÇAÇA#ÇR#. Let tt: R# —» R#/R be the natural
projection of R# onto the discriminant group G(R) := R#/R, also known
as the word group. It is a finite abelian group that inherits a nondegenerate,
bilinear form

bR : R#/R x R#/R —* Q/Z ; bR{7t(£i), frfâ)) 6 • £2 mod Z

for £1, £2 G R#. Thus, the discriminant group is a bilinear form module, which
will be denoted by (G(R), bR) or simply G{R) if no confusion arises.

Next, define a norm

nR : G(R) -* Q; nR(p) min{£2 | £ 7r_1(#)} •

£ER#
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An admissible representative system {rl5..., rk} of G(R) is any representative

system of G(R) such that rf nR (7r(r;)), 1 < i < k. The following chart

gives the discriminant groups associated to the indecomposable root lattices

given earlier. It also provides an admissible representative system for each

and includes information on norms.

Table 1

R G(R)~ admissible representative system norm

IV

Z/{1 + 1)Z r — r
a£,r — 2_^i=o G"

+l-r
£+1 Z-//=.g-r+l ^

^ - r + 1)

<0+1

De

(e>3)
Z/2Z x Z/2Z

(£ even)

Z/4Z
(£ odd)

dtp 0

5 EL e
dtp — et
J l 1 ldi,3 2 2^i= i ~ 2^

0

£/4
1

£/4

Es 0 ^8,0 0 0

e7 Z/2Z £7,0 0

^7,1 + • ' * + ^6 — 3(^7 + ^8))

0

3/2

e6 Z/3Z ^6,0 0

^6,1 — 1 (^1 + * * ' + ^4 — 2(É?5 + ßö))

<?6,2 —^6,1

0

4/3

4/3

The nontriviàl bilinear forms are as follows :

j(£ _L- I — JA

bAe(a£J,a£p) EE — mod Z, 0<Lj <k<l\

bDi(dtj, d£jo) ee 0 mod Z, 0 < j < 3, bDl(dtp, dtp) ^ mod Z; k 1,3,
• i - 2

bDl(dtp,dip) EE 0 mod Z, bDi(dtp,dtp) —mod Z,

t
boMtp, dtp) - mod Z, & 1,3 ;

%(e7x/, e7,o) 0 mod Z, y 0,1, ^(*7,1, *7,1) ^ mod Z ;

bßß^6,o) Ö mod Z, j 0,1,2, bß6(e,6 ^, e^p) — mod Z, k 17 2,

2
^6 (*6,1^6,2) - modZ.
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Note that the index of each root system R in the chart indicates the

rank of the indecomposable root lattice R. (To simplify the terminology,

set rkR := rkR.) It is easy to verify that (G(D3),bD3) ~ (G(A3),bA3), so

that these two bilinear form modules can be identified with one another.

Note also that G(2Ai) 2- Z/2Z x Z/2Z s G{D2k)• The norms of the

elements in G(2Ai) are 0, |, 1, \. These would be the norms of the elements

of G(D2) if D2 existed as a root system. Let a\ x
denote the nontrivial

representative of the first copy of G(A\) and a\ x that of the second copy.
Set d2,1 := 01,1, d2j2 := a\ x + a\^ d2j3 := a\ x It is now easy to check that

the bilinear form b b2Al for 2Ai has the same values as a bilinear form
for D2 would under this identification. Thus, D2 will often be used to denote

2Ai when it is convenient.

If Ai, A2 C R" are mutually orthogonal, finitely generated Z-submodules

of Rn, then (Ai © A2)# Ax ® Af, where © denotes the orthogonal direct

sum. Thus, the discriminant groups are just orthogonal direct sums of the

discriminant groups described above. In particular, if we restrict ourselves to
the case of root systems of the form R a\A\ + Y^=i $2kE)2k + £iE7, resp.
R a2A2 + £ßEß, then G(R) is isomorphic to F£, resp. F".

Let A be a complete integral lattice, set H tr(A), H1- — 7r(A#). Note
that

H1- {x G G(An) I bAn(x, h) 0 for all h G H}
Because A is integral, H ç Thus, H is self-orthogonal with respect
to the bilinear form b of G := G(Art). Furthermore, H H1- if and only
if A A# (i.e., A is unimodular), and in this case H is referred to as an

isotropic subgroup of G with respect to b, otherwise known as a metabolizer.
A will be an even unimodular lattice if and only if H — H^ and n (g) is an
even integer for all g G G.

Beginning with the root system R, each isotropic subgroup H c G(R)
leads to the even unimodular lattice A 7It is not necessary that
Art R because an additional root arises if the norm of some element of H
is 2. Since the objective is to construct the even unimodular lattices with a

given root system, it is sufficient to consider only those isotropic subgroups
El for which n(h) is an even integer ^2 for all h G H. Such isotropic
subgroups will be called admissible isotropic subgroups.

An observation aids in determining the isometry classes of complete even
unimodular lattices. Let A be a complete even lattice in Rn and R Art its
root system. Let F(R) be the subgroup of AutG(R) induced by the isometry
group of R. There is a one-to-one correspondence between equivalence classes
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of even lattices in R" with root system R and T(R) -orbits of subgroups H
in G(R) with n(h) G 2Z\ {2} for all h G H. Unimodular lattices correspond
to isotropic subgroups.

2. ISOFOLDS AND ISOFANS

Given any root system R, we want to determine whether or not a complete
even unimodular lattice A exists such that Art R. This is equivalent to

determining whether or not (G(R),bR) has an admissible isotropic subgroup.
Suppose R' is another root system such that the bilinear form modules

(<G(R'),bR>), (G(R),bR) are isomorphic. Let <p denote such an isomorphism.
As ip is a bilinear form module isomorphism, b^(g[1g/2) bR(ip(g[), pig^))
for all g'^g'2 G G{R'). Recall that the bilinear forms have values in Q/Z, so

that

n(gf) n((p(g')) mod Z for all g' G Giß!).

If (G(R'),bR') has an isotropic subgroup Hf, it may be possible to use H' to

construct an admissible isotropic subgroup H for (G(R),bR).

Definition. In the notation above, let

<p: (G(Rf),bR,) -+ (G(R\bR)

be an isomorphism of bilinear form modules, where rk R' < rk R. The

isomorphism ip is called an isofan if

n(gf) n{ip{g')) mod 2Z

n(g') < n(<p(g'))

for all g' G G(R'). The inverse (p~l of the isofan ip is called an isofold.

Example 1. The simplest example of an isofan was given by Venkov [V].
Consider the root system Z)&, k > 2, where D2 is identified with 2Ai.
Recall that an admissible representative system for (G(D^), bok) can be given

by <4,o, 1, dkj2, dk,3, the norms of the representatives being 0, 1, |,
respectively. Thus, for any integer k\ satisfying k\ k mod 8, the norms of
dkui and dt^ differ by an integral multiple of 2 for 0 < i < 3.

Let (pok be the group isomorphism given by

<pDk : G(Dk) G(D^+g); d^i »—>• dt+(0 < i < 3).



THE FANNING METHOD 175

This isomorphism preserves the bilinear form in the prescribed manner

bDk(dkfhdkJ) bDk+i(ipDk(dkti), (pDk(dkj)) (0 < ij < 3),

so in fact it is an isomorphism of the bilinear form modules. It also preserves

norms modulo 2Z, as noted above. Moreover, n(dkfi) < n((fDk(dk,i)) - Thus

ipDk is an isofan and (p^ an isofold.

It is well known that R' := £>i6 is the root system of a complete even

unimodular lattice [W2]. An admissible isotropic subgroup for G(JD\$) is given

by H' {dfi6,0j^i6,i}. F°rm the subgroup H := (pDl6(Hf) {d24,o,d24,i}-
The map <p preserves the orthogonality relations and the norms modulo 2Z,
whereby the norms may not decrease under the mapping. Since the group
structures are also isomorphic, H is an admissible isotropic subgroup of
G(D24) • Consequently, D24 is the root system of a complete even unimodular
lattice. By induction, we get a family of complete even unimodular lattices;

namely, £>16+8/ is the root system of the complete even unimodular lattice

generated over Z by £>16+8/ and the vector di6+8i,i \ XXylî8' ej C R16+8i

for / G Z, i > 0.

Example 2. To find all isometry classes of even unimodular lattices for the

root system £7+D4 + 21Ai we will use an application of the fanning method.
This root system appears in work of Conway and Pless [CP]; however, they
provide no indication as to how an admissible isotropic subgroup, or self-dual
doubly-even code, was found for G(E7 + D4 + 21Ai).

Begin with the isofold

rj: G(Ej + D4) —> 3G(A\)

£7,1 1—> ^ & T c? ; d4p 1—> a* -T ; d4p 1—^ + cv*,

where a1 refers to a\p in the zth copy of G(Ai) in 3G(Ai). Next,
extend rj to all of G(E7 + D4 + 21Ai) by letting it act on 21G(Ai) as

r}{al) — ai+3, 0 < i < 21. Then 77: G(£7+D4+21Ai) 24G(Ai) is an isofold.
In order to construct an admissible isotropic subgroup for G(E7 ED4 + 21Ai),
we will apply isofans to isotropic subgroups of 24G(Ai).

It is well known that 24Ai is the root system of an even unimodular
lattice [N]. The only admissible isotropic subgroup, up to equivalence, for
its discriminant group can be identified with the self-dual doubly-even binary
code of length 24 known as the Golay code. Letting a1 a\ x, this isotropic
subgroup H' is generated (up to equivalence) by
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h\ —a 4d 4 <23 4 <24 hi] —cl^ 4 <22 4 cl 4 a

+ a5 4 a 4 a1 4 a 4 a 4 a4 4 ols 4 a22

h>2 —<2 -f- a -f- q -j- d h$ —d 4 <2 a 4 ü

I
9 I 10 Hi 12 9 15 19 23ffl "t"fl i"fl "Ffl -ffl -fß ~\~ (2 4 <2

=(2 -(- (2 4 (2 -f- (2 Hg =(2 Cl ~f- (2 4 <2

I
13 14 15 16 10 14 19 24

4<2 4<2 4<2 4<2 4 <2 4 <2 4 <7 4 <2

7f 1,2,3,4 j / 1,2,3,5A?4 d ~\~ d 4 d ~f~ d h\Q d -f d d d

I „17 I „18 I 19 20 11 15 20 22
4<2 4<7 4<2 4<7 4<2 4<2 4<2 4<2

h$ —d -f~ d 4 d 4 d hn —d 4 d 4 d 4 d
21 22 23 24 9 14 20 23

4<2 4<2 4<2 4<2 4<74<74<74<7
r / 1 I 2

1
3 I 5 T / 1

I 2 j 4 « 5
riß —d 4 <7 4 <7 4 <7 H\2 —<7 4 <7 4 <7 4 <7

9 13 17 21
1

9 15 18 244 <2 4 <7 4<7 4<7 4<74<74<74<7

(see, for example, [Ko]). Applying the isofan

V4: 24G(Ai) - G(E7 +D4 + 21AO,

obtained from the extended isofold defined above, to the generators of H'
yields generators for an admissible isotropic subgroup H :

h\ —d 4 <7 4 <7 4 <7 hj —<7 4 <2 4 <7 4 <7

4 <2 4 <2^ 4 <22 4 <2 4 4 ß 4<2 4 £7,1 4 <^4,2

if 1
1

2
1

3
1

4 if 1,2,3,7}l2 —<7 4 <7 4 <7 4 <7 —d 4 <7 4 <7 4 <7

4 <79 4 <710 4 <7n 4 <712 4 d9 4 <715 4 <719 4 ^7,1 4 <^4,3

1 ' 1,2,3,4 if 1,2,3,5/Z3 =d 4 <7 4 <7 4 <7 hg —d 4 <7 4 <7 4 <7

13 14 15 16 10 ,14 19
^ 14<74<74<74<7 4<7 4<7 4<7 4 £7,1 4 <*4,1

=<2* 4 <7 4 <7 4 <7 hiQ —d 4 <7 4 <7 4 <7

17 18 19 20
I

11 15
1

20
I 14<74<74<74<7 4<7 4<7 4<7 4 £7,1 4 <24,2

/15 4 a2 4 <73 4 <74 h\\ —d2 4 <23 4 <7 4 <75

4 <221 4 £7,1 4 <29 4 <714 4 <220 4 #7,1 4 <^4,3

hß — <7 4 <7 4 <7 4 <7 h\2 —<7 4 <7 4 <2 4 <7

4 <79 4 <713 4 <717 4 a21 4 <29 4 <715 4 <718 4 *7,1 4 ^,i.

r?4
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This isotropic subgroup represents the only r(21Ai-b £7+1)4)-orbit of

subgroups that correspond to even unimodular lattices. If there were another such

orbit, there would be an admissible isotropic subgroup K C G(21Ai + £7 + D4)

not in the orbit of H. This means that rj(K) is an isotropic subgroup of 24G(Ai)
in a different orbit than that of H'. Therefore, rj(K) is inadmissible, meaning

that new roots have been created. The resulting root system, however, must

still have at least 12 summands of A\, otherwise some roots of rj(K) must

come from roots in K. Also, the rank of the resulting root system must be

24. The only root system of an even unimodular lattice satisfying these two
conditions is 24Ai.

Example 3. This example demonstrates that inequivalent even unimodular
lattices can share the same root system ; in this case, 4Z)8. Consider the isofold

1 VG(4Ds) ' 4G(£>8) —> 2G(D4) + 2G(£>8)

d\j d\j + d\2, djj d\2 + dlj, d\j d\j9 d%j i-> djj, j G {1,3}.

There are no even unimodular lattices with root system 2D4 + 2£)8 [N].
If 4G(Dg) has an admissible isotropic subgroup H, rj(H) must then be an

isotropic subgroup of G(2D4 + 2Dg) containing at least one element r of
norm 2. Since 11(77"^r)) >4, the possibilities for r are

d\j dg 2 5 d\j + k G {1,2}, y, £ G {1,3}.
The root system has now been changed and must be determined. If a root of
the first type occurs, then D4 joins with Z)8 to give D\2. Since D\2+D4+£)8
is not the root system of a complete even unimodular lattice, we appropriately
introduce another root of the first type, resulting in 2D\2, which indeed is the
root system of a complete even unimodular lattice. If a root of the second

type is introduced, the two D4 combine to a D8, so that the new root system
is 3D8. Each of these root systems, 2Dn and 3Z)8, has a unique isometry
class of even unimodular lattices.

Assume first that two roots of the first type are present. Without loss
of generality, these roots may be taken to be d\x +^,2 and d\x + d\2.
There is only one orbit of admissible isotropic subgroups of 2G(Dn). One
representative of this orbit is generated by d\2 X+df2a, d{2}2+<%2 x. From this,
we will create an inadmissable isotropic subgroup of G(2D4 + 2D8). First,
rewrite the generators of the isotropic subgroup in terms of G(D4 + D8 +
D4 + Dg), making sure that orthogonality relations between all elements are
preserved: d\21+d2n2mayeither be 4,or43+^8,1+4,2> and
^12,2 + ^12,1 may be either 42+4,2+4,1 or 4,3+4,2 + 4,i- F°r example,
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using the first choices, generators for an inadmissible isotropic subgroup of
G(2D4 + 2D%) are

*4,2 + *4,1 + *4,2 *4,2 + *4,2 + *4,1 *4,1 + *4,2 > *4,1 + *4,2 •

Now fan these generators using r]~l to get an admissible isotropic subgroup
of G(4D8) :

*4,2 + *4,1 + *4,2 5 *4,2 + *4,2 + *4,1 *4,1 + *4,2 + *4,2 *4,2 + *4,1 + *4,2 •

Had we used any other choices given above, we would have obtained an

equivalent isotropic subgroup. Note that this isotropic subgroup has one word
of norm 8.

In a similar fashion, take the generators of a representative of the only
orbit of admissible isotropic subgroups of 3 G(Dg) :

*4,2 + + *4,3 5 *4,2 + *4,3 + *4,2 5 *4,3 + *4,2 + *4,2 •

We shall now break apart the third copy of G(Z)g) into 2G(D^) by introducing
the root d\x + d\Y. The next step is to rewrite d\ 2 and d\ 3 in terms of
2G(D4). Since the results will have to be orthogonal to the root, this narrows
down the choices considerably. Indeed, d\ 2 will have to be d\ x (which is

equivalent to d\ {), whereas, up to equivalence, d\ 3 can be either d\ 3 + d\ 3

or d\ 2 + d\ 3. Using the first choice, form the generators for an inadmissible

isotropic subgroup

*4,1 + *4,i *4,3 + *4,3 + *4,2 + *4,2 *4,1 + *4,2 + *4,3 5 *4,1 + *4,3+*4,2

for 2G(D4) + 2G(Dg) and fan using rj~l to yield generators for an admissible

metabolizer of 4G(Z)g) :

*4,3 + *4,3 5
*4,1 + *4,i + *4,2 + *4,2

*4,1 + *4,2 + *4,2 + *4,3
5 *4,i + *4,2 + *4,3 + *4,2 •.

This subgroup has two elements of norm 8, and as such is inequivalent to the

admissible isotropic subgroup obtained by breaking apart 2Dn.
On the other hand, if we rewrite d\ 3 as *4,2 + *4,3 ' an inadmissible

isotropic subgroup for 2G(D^) + 2G(Z)g) is generated by

<4i + d\x d\2 + ^4,3 + *4,2 + *4,2 5 *4,1 + *^8,2 + *4,3 5 *4,1 + *4,3 + *4,2 •

Apply T]_1 to these to obtain generators for an admissible isotropic subgroup

for 4G(Dg) :

*4,3 +*4,3 *4,3 +*4,2+*4,2 5
*4,1 +*4,2+*4,2+*4,3 *4,1 +*4,2 +*4,3 +*4,2 *
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Exchanging d\x for dlS3 and vice versa for i 3,4, we recover the

same isotropic subgroup as the first one obtained from 2G{D\2). Since

all possibilities up to equivalence have been exhausted, there are exactly
two distinct isometry classes of complete even unimodular lattices with root

system 4Dg.

Example 4. This example deals with a root system of nonzero deficiency ;

i.e., the maximum number of mutually orthogonal roots is less than the rank
of the root lattice. Kervaire [Ke] determined that there is exactly one isometry
class of complete even unimodular lattices with the root system 10A2 + 2Eß.
In his proof, he used results on conference matrices, a topic treated in coding
theory. Here, we offer a different proof based on the fanning method.

Define the isofold

rj: 10G(A2) + 2G(E6) ^ 12G(A2)

I al2J i-> al2J 1 < i < 10, j e {0,1,2}, el61 « a\ x + 4,d 4,1 H* a\ x + 4,2-

J Niemeier showed in [N] that there is exactly one isometry class of complete
j even unimodular lattices with root system 12A2. Thus, there is exactly one
j orbit of admissible isotropic subgroups in 12G(A2). A representative subgroup
I EL' of this orbit is generated by

1

j 4,i + a2X + 4,i + 4,i + a2X + a2X

j 4,1 + «2,1 + 4,2 + 4,2 + 4,1 + 4,1

\ 4,1 + 4,1 + 4,2 + 4,2 + 4,1 + 4°i
j 4,1 4" 4,1 + 4,2 3" 4,2 + a\]l 4" 4fl

4,1 4" <3-2,2 + 4,1 4" 4^2 "4 4)l + 4^2

The inverse of 77 acts as the identity on d2- for 1 < i < 10 and j'g {0,1,2},
j

while V~l(a2l,i) 4,i + 4,1 and V~l(<3^i) 4,1 4-4,2- APPlying V~l to
the generators of H' yields generators for an admissible isotropic subgroup

I H for 10G(A2) + 2G(E6) :

j 4,i + 4,1 4" 4,1 4- 4,14- 4,1 + 4,i
4,14- 4,1 + 4,2 4- 4,2 4" 4,1 + 4,1

a2,i +4,1 + 4,2 + 4,2 + 4,1 + 4°i
I 4,i +4,i + 4,2 + 4,2 + 4,2

4,1 + 4,2 + 4,1 + a2°2 + 4,2
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If there were an admissible isotropic subgroup J of 10G(A2) + 2G(Eß) not in
the orbit of H, it would have to fold to an isotropic subgroup J' of 12G(A2)
in an orbit different from H'. Necessarily, J' contains roots, and these will
have the form al2 lov2 + <4,ior2 + a2,ior2 distinct ij G {1,..., 10} and

k G {11,12}. These roots can then be seen as roots of Eß. The only root
system of a complete even unimodular lattice in dimension 24 with root
system containing a summand Eß is 42?6 But to transform 12A2 to 4Eß

would require roots as above in which k £ {11,12}. Applying rj~l to a

root of this kind yields an element of norm 2 in /. Thus, there can be no
admissible isotropic subgroup in an orbit different from the one containing H ;

hence, there is exactly one isometry class of even unimodular lattices with
root system 10A2 + 2E6.

3. Elementary isofans and isofolds

In the previous section, it was shown that pDk, k > 2, is an isofan, as

was noted by Venkov [V]. Conway and Pless [CP] found several other isofans

that aided them in obtaining some of their codes from already known codes.

The associated isofolds for these are:

V2e7 - G(2Ej) —> G(D6) ; exlx i-> £7,1 ^ ^6,3 ;

^d6+E7 : G(Dß + £7) —» G(Ai -f D4); ^75i I—> ait\ + d4^

dßj 1—» a\^\ + d^j j G {1, 3};

V2d6 • G(2Dß) G(4Ai); d\x 0^1+0^1 + a\x, d\3 1—>• a\x + a\x + a[x
dß X

1—>• (2\ x-\-c^x
x 4- axx dß 3 ax x + ax x +

There are, however, other isofolds. The purpose of this section is to determine

all possible isofolds.

Definition. Let R Ix H h // be the concatenation of indecomposable
root systems /;, 1 < i < /. Let rj: G(R) —> G(Rf) be an isofold for some root

system Rf. One says that the isofold rj is imprimitive if there exists an

i G {1,..., /} such that

v\Ga,)(.G(Ii))^ G{Ii)and n(x) n(77|G(/j)(x)) for all x S G(/,),

In effect, this means that Ii is a summand of R', and rj restricted to G(7/)

preserves norms, although it may not be the identity.
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If 77 is not imprimitive, then it is said to be primitive. A primitive isofold

is called an elementary isofold if and only if it is not the composition of two

or more primitive isofolds. Finally, two isofolds 771,772 : G(R) —» G(Rf) are said

to be equivalent if and only if there exists a norm preserving automorphism

773 of G{R') with the property 773 o rj2 Vi and inequivalent otherwise.

As an example, the isofold

1

77: G(D24) —» G(Dg); d24,i d%j 0 < i < 3

I is primitive since n(d&t\) > 'n(^8,i) - It is not elementary as it is the composition
\ of two elementary isofolds : 77 pf^ o pf^ (see the previous section for the
I definition of pDk)- The isofold

I 7/: G(Z)16) ^ G(A0
J ^16,0 ^8,0, d\e,\ •-> ^8,3, ^16,2 ^ ^8,2? <^16,3 ^ ^8,1

] is easily seen to be equivalent to pf^.
j Any primitive isofold that is not elementary is equivalent to the composition

of elementary isofolds by definition. The remainder of the section will be

devoted to proving the next theorem.

THEOREM 1. Let tjr: G(R) —» G(Rf) be an elementary isofold. Then tjr
is equivalent to one of the elementary isofolds listed in Table 2 (recall that

; D2 stands for 2A\).

Table 2

Elementary isofolds

R Rf Definition of 77^ (j E {1,3})
Dk+s(k > 2) Dk VDk+8 (dk+s j) dkj

Dk+4 + T>n+4 Dk + D{> VDk+4+Di+4(dl+4j) dlj + dlt2

(k, £> 2) VDk+4+D£+4(dj+4j) d\2 + djj
Dk+2 + Li Dk + A\ VDk+2+E7(dk+2j) dkj + fll,l

(k> 2) rjDk+2+Ei(ei,i) dk, 2 + a\,\

2E-] De 772^7 Gi, 1 de, 1

T72£70?7)i) - de,3

2E6 2Ä2 772£6(^6,l) a2,\ + a2,ii i — 15 2

:J



182 K. ROEGNER

The proof of the theorem requires several technical lemmata:

1. R has no summand of the form A;, i > 1, and R1 has no summand of
the form A,, i > 4 ;

2. has no summand of the form Eß, £7, Es ;

3. the maximal rank taken over all the indecomposable summands of R is

greater than the rank of any indecomposable summand of R' ;

4. if 77 is an elementary isofold, there exists an element g G G(R) such that

n{g) > 11(77(0».

The proofs of the lemmata will be deferred until after the proof of the theorem.

Proof. It is a routine exercise to verify that the above mappings are

isofolds. They are elementary since the change in rank is 8, whereas the

change in rank of the composition of two or more primitive isofolds is at

least 16.

Assume the lemmata above hold. By (4), there exists g G G(R) such that

n(g) > 11(77(0». Write g as an orthogonal sum g =* 01 _L * • • Egm, m > 1,

whereby the gt are elements of distinct word groups of indecomposable root

systems. If 11(0*) 11(77(0/)), 1 5 * £ m> then 77(01) + • • • + rj(gm) cannot
be an orthogonal sum, or the norm does not decrease under 77. Thus, either

n(0i) > 11(77(0/)), 1 < i < or 11(0/J_0» > 11(77(0/-L#/)), 1 <i<j <m.
Suppose first that n(0) > 11(77(0)) with g a representative of the word

group of an indecomposable root system. The smallest norm possible for a

representative of a word group is \. Consequently, n(g) >§ \ mod 2Z.
From this and (1), it follows that g — dkj G G(Dk), k > 10, j 1 or 3.

Suppose g d^i (the case g <4,3 is analogous). We show that rj is

equivalent to r\Dk.

Set 771 r]Dk, and extend 771 to all of G(R) by letting it act as the identity
on G(R\Dk). Set m\c(R\Dk)v\g(r\d„) and t]2(4-8 0,1,2,3.
Then jj 7?20»?i, and rj2:G(R\Dk+Dk^)—> G(R') is a group*isomorphism
which preserves norms modulo 2Z. To show 772 is an isofold, it remains

to check that n(h\) > 11(772(Äi)) for all h\ G G(R \ Dk + Dks). Let
/zi G G(/? \ + Ab-g) an(i ^ (^1) C G(R). By the definition of
771, either n(h) 11(771 (h)) or n(h) - 2 n(rji(h)). If n(h) > n(rj(h))9 then

n(hi) > n(h) - 2 > n(rj(h)) 11(772(hi)).

If 11(h) n(77(A)), then by construction n(/z) n(/zi) 11(772(/ii)). Therefore,

772 is an isofold. Since 77, 771 are both elementary, 772 must be imprimitive.
Therefore, 77 is equivalent to 77^.
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Next let g g\Eg2 be the orthogonal sum of representatives of word

groups of indecomposable root systems £1,^2 whereby n(g) > n(rj(g)) and

n(gi) n(rj(gd), i 1,2. There are four possibilities for g, hence rji : set

{VDk-\-Di

if g d-kji + dij2, j\, j*2 £ {1 2,3},
V2e7 if g 4,i + 4,1'

VDk+E7 if g dkj + ^7,15 j £ {1? 2,3};
V2E6 if g 4,±i + 4,±i-

Extend 771 to all of G(£) by letting it act as the identity on G(£\(£i + £2))-
As before, define

^721 G<i?\0Ri H-Äa» := ?71 G(*\(*i+**))> ^721771 (0(/?i+i?2)) •

Again, 77 772 ° 771 and 772 is an isofold, hence imprimitive.

LEMMA 2. Let rj: G(R) —> G(£') an elementary isofold. Then R

contains no summand of the form Ah i>1, and R' contains no summand of
the form A/, i > 4.

Proof Suppose first that £ has a summand At. Recall that for i > 1,

G(A/> ~ Z/(z -h 1)Z. Since n(a;}i) -^- < 1, it follows that 11(77(^1)) ^.
Moreover, the smallest norm of a representative of any word group is f Thus,

rj{a^ 1) must be a representative of the word group of an indecomposable root

system. The norms of representatives from G(Dk), k > 4, G(Eß), G(Ej) are

all at least 1. The norm n(a£j) > \ is an increasing function in I as well as

in j, 0 < j < [|J implies that 77(0/, 1) ±ß/;1. But then 77 is an equivalence,
hence not elementary.

The second statement of the lemma now easily follows. R has no summands

of type Aj for all je Z, whence G(£) ~ (Z/2Z)"1 x (Z/3Z)"2 x (Z/4Z)"3
for ni,«2,"3 E Z-°. Since G(£) cx G(£'), only those At with / G 1, 2, 3 are

possible summands of £'.

LEMMA 3. If 77: G(£) —> G(R/) is an elementary isofold for root systems
£, R', then R' has no summand of type Ei, i 6, 7, 8.

Proof E^ is obvious as it is the only indecomposable root system with
trivial word group.

Next, assume that £7 is a summand of £'. By Lemma 2, £ is the
orthogonal sum of root systems of type EjJ 6,7,8, and/or Dk, k > 4.
Due to norm considerations, at least one summand must be either £7 or
D/c, k 2 mod 4.
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Clearly, rj~l(e] x) e2
x or it would be imprimitive. If 77"1 (#7 x) e2 x±g

for some nontrivial g, then n(g) 0 mod 2Z. Since 77 is an isofold,
n{p{e2x)) Consequently, r](e(l,l)2) cannot contain the orthogonal
summand e){, forcing 77(g) e) x±h, for some h G G(R7), n(h) \ mod 2Z.
On the other hand,

4,i »7(»?_1(e7,i)) ?7(41) + v(g) »7(4,1) + 4,1 + Ä •

Since are of order 2, so is h. But then h p{e2x), and

n(h) m § mod 2Z, a contradiction.
We are now reduced to the case that r\~1 (£7,1) 4,i-Lg, where k 2

mod 4 and g may be trivial. Because 77 is an isofold,

1 - n(4)2) > 11(77(^,2)) > 0,

from which it follows that 11(77(4,2)) 1. Since £7,1 is of order 2, so is g,
so that

44,2) — 44,i + 4,3 + 9 + 9) — 44,1 + 4 + 44,3 + 4 ^7,1 + h,

whereby 77(4,3 +9) h. Since 11(27,1 +A) 1, ä ^75i_L/zo with
n(Äo) 1 ; in other words, n(/z) — | and n(4,âXg) \ mod2Z. On the

other hand, n(4,i-Lg) § m°d 2Z, which would mean that n(4,i) f1 44,3)?
a contradiction.

Finally, assume is a summand of Rf. G(Zs6) — Z/3Z, and the only
root system with word group of order divisible by 3 which can appear as a

summand of R is E6. Since 77 is primitive, r]~1(e16 l) 7^ 26,±1 • Thus, without

loss of generality, t7_1(4,i) e\\ + e\i ^ k> I.

»?(4,i + 4,i + • • • + 4*i+2) »?(4,1) + »?(4,1) + • • • + »?(4G2>= 4,i

means that there is some j G {2,..., 3k + 2} such that 772^ — e\ xl.h.
Norm requirements force h to be trivial, so that 77 must be imprimitive.

LEMMA 4. Let 77: G(R) —» G(R') be an elementary isofold, and let

k, k' denote the maximal ranks of indecomposable summands S, S17 of R, /?7,

respectively. Then k > k!.

Proof Assume that k<k!. From the previous lemmas, i? may not have

any summands of the form Ai, A2, A3, and /?7 may not have any of the form

Ai, i > 4, Ee, E1% E%. Consequently, is a summand of /?7 with kf > 4.

Let /? /1 + • • • + /m be the concatenation of indecomposable root

systems I^i G {1 ,...,m}. Since 77 is a group isomorphism, there exists
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some z G {1 such that for some gi G G(L), is an orthogonal

summand of rj(gi). gt 4,/, j G {1,3}, for any £(< k < k!) because then

either n(4,i) < n(4',i) or we get an equivalence. gt ^ 4,2, since then

k! — 4, which implies 0 4, and we have an equivalence. gt ^ 27,1, for then

k! > 7 and
3 7

11(27,1)
2

<
4 ~ D

Lemma 5. LéT 77: G(£) —* G(Rr) be an elementary isofold. There exists

g G G(R) such that 11(77(#)) < n(^)-

Proof. We produce a g G G(£) which satisfies the lemma. By definition,

n(T7(fi)) < n(/z) for all /z G G(R). Note that n(a^i) < 1 for all z, whereas

n(/z) > 1 for all h G GOR). Thus if At is a summand of R', then set

5 := 77-'(ûm).
Since £' has no summands of the form j 6,7,8, it suffices to

consider Rf := I\ + • • • + Im, where /;, i G {1,... ,ra} is a root system of
type ZV. GCO) is a group of order 4 implies that only summands of type
Dk and £7 are possible for £. Suppose first that £7 is a summand of £.
Since 11(27,1) |, it follows that 11(77(27,1)) |. The only elements in
G(Rf) of norm \ are de, \. de,3. Without loss of generality, 77(27,1) dey Let
h g~1 (dey), so that

V~\d6t2) î?_1(4,i) +V~l(d6t3)e7)i + A.

If h — 275i±/z0, then n(/z0) 0 mod 2Z, implying that the norm of dey 7^ 1
•

Thus, setting g := 27,1 + /z, we see that n(p) > 11(77(0)).

We are thus reduced to the case that £, R' contain only summands of type
Dj, j >4. Let k, respectively k! denote the maximal rank over all summands

Dj of R, respectively Rf.

7(4,0 yi-L • • • J-ymf yt £ G(/,-), z g {1,... ,m}.

There is at least one i G {l,...,m} such that g~l(yi) 4,i±./z or
V~l(ye) 4,3-LA. In any event,

n(y*) < n(4/,i) < n(<iM) < 11(77" ^J),
so that we may take g 7_1(y^).
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A simple corollary of the theorem is stated below.

COROLLARY 6. A root system of rank n whose word group is not the

domain of an isofold must have one of the following forms :

n

Oi\Ai + Ô4D4 -f Ô5D5 + öjDj + SßEß

i= 1

n

^ OiiAi + SßEß + £7^7 5

i= 1

where the coefficients £4, £5 <2re arbitrary nonnegative integers and

Sj, e6, £7 {0, 1} for j G {6, 7, 8, 9}.
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