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THE FANNING METHOD FOR CONSTRUCTING
EVEN UNIMODULAR LATTICES. I

by Katherine ROEGNER

ABSTRACT. This paper provides a formal study of isofans and discusses their use
in the theory of even unimodular lattices. Examples are given that illustrate how isofans
simplify the construction of certain types of even unimodular lattices. A classification
of isofans concludes the paper.

INTRODUCTION

The history of even unimodular lattices dates back to the 19th century
when H.J.S. Smith [Sm] showed the existence of what is known today as the
Eg lattice. The even unimodular lattices have been classified for dimensions
8 [M], 16 [W2], and 24 [N]. The next dimension of interest is 32 due to
the fact that even unimodular lattices only occur in dimensions divisible by
8; see e.g. [Sch]. In dimension 32, there are millions of nonisometric even
unimodular lattices. Although no classification in this dimension is available,
there has been considerable progress. Conway and Pless [CP] determined the
doubly-even self-dual binary codes, the results of which can be transformed
into a classification statement for even unimodular lattices with complete root
systems of a particular type. Within their work, they noted that it is possible
to build some codes using known codes by making appropriate substitutions.
Kervaire [Ke] classified the remaining cases of complete even unimodular
lattices in dimension 32 using a lengthy elimination procedure and a lot of
machine testing. Venkov [V] has shown that, except for 15 cases, the even
unimodular lattices in dimension 32 can be generated by the roots and vectors
with scalar square 4. In that article, Venkov introduced an important operation
on lattices, which he called “fanning”. It turns out that Venkov’s fanning
method is comparable to Conway and Pless’ substitution method.
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The purpose of this article is to provide an indepth study of the fanning
method. To do so, Venkov’s fanning method is generalized to the isofan, a
special isomorphism between rational bilinear form modules associated to root
lattices. Some examples are given illustrating the construction of new complete
even unimodular lattices from already known ones using isofans. In particular,
an easy construction for a lattice that Conway and Pless found using “several
processes including divination” is given. A classification of isofans concludes
the paper.

The author is indebted to Helmut Koch for the hints and suggestions
he has provided. Special thanks are due to Boris Venkov for the many
helpful discussions concerning even unimodular lattices and to the referee
for suggesting many improvements to the original version of this paper.

1. LATTICES

Let R” be n-dimensional euclidean space equipped with the standard scalar
product

x-y:Zx,-yi for all x = (x1,...,%.), y=01,...,¥) € R".
i=1
A free Z-module A C R” of rank k := dimg R ®z A 1is called a lattice of
rank k. A basis of a rank k lattice A is a subset {Ay,..., A} C A that
generates A over Z.

Let A C R" be a lattice. A is said to be integral if \;- \; € Z for all
i, Aj € A. Itis an even lattice if, in addition to being integral, A=\ €2Z
forall A€ A. Let A*={x€R"|x- X €Z for all A € A} denote the dual
lattice. Clearly, A is integral if and only if A C A*. A is called unimodular
if in fact A = A*. Thus, an even unimodular lattice is a self-dual lattice such
that \?> € 2Z for all A\ € A.

Let Aq,...,A, be nontrivial sublattices of the integral lattice A whose
direct sum is equal to A. If x-y =0 for all x € A;, y € Aj,i # j, then A
is called the orthogonal direct sum of the sublattices Aj,...,A, and denoted
by A=A - B A,. A is called decomposable if there exists such an
orthogonal direct sum with m > 1, otherwise A 1is said to be indecomposable.

The root system of an even lattice A is the set

A= {AEA| N =2},

the elements of which are called roots. A is called a root lattice if A is
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generated by its roots. Let {ei,...,e,} denote the standard basis of R". The
root system of an even lattice is the orthogonal direct sum of root systems of
the following type, corresponding to the indecomposable root lattices [W1]:

A, ={F—¢)| 1<i<j<n+1,n>1},
Dpi={*(eite)| 1<i<j<m m>3},

8

8

1 .

Eg = {*(e; L ¢, EZekek e =1, [Ja=11<i<j<8},
k=1 k=1

E; :={v € Eg| (v,e; —es) =0},

Es :={veEs| (v,e7 —eg) =0 and (v,ec — e7) = 0}.

The root system of an even lattice is said to be complete (in A) if the lattice
generated by Ay has finite index in A. In this case, we will call A a complete
lattice.

In general, one wants to determine the finitely many isometry classes of
even unimodular lattices of a given rank. These isometry classes have been
determined for ranks up to 24. Since the rank of even unimodular lattices
is known to be divisible by 8, the next rank of interest is 32. There are
millions of isometry classes of rank 32 even unimodular lattices. Instead of
classifying all isometry classes, several authors have restricted their attention
to the isometry classes of complete even unimodular lattices of rank 32.

When dealing with complete even unimodular lattices, it is convenient to
classify the lattices according to their root systems. Beginning with a candidate
root system R, the goal is to construct all isometry classes of even unimodular
lattices A such that Ay = R. To do that, it is helpful to associate a code to
the lattice generated by A, which can be achieved in the following manner.

Assume that A is a complete integral lattice in R”. Let R = A, and let
R denote the lattice generated by R. By definition, R C A is a sublattice
of finite index and R C A C A* C R*. Let 7: R* — R*/R be the natural
projection of R* onto the discriminant group G(R) := R#/ R, also known
as the word group. It is a finite abelian group that inherits a nondegenerate,
bilinear form

br: R*/R x R*/R — Q/Z; br(n(£)), (&) = & - & mod Z

for &, & € R*. Thus, the discriminant group 1s a bilinear form module, which
will be denoted by (G(R),bg) or simply G(R) if no confusion arises.
Next, define a norm

ng: GR) — Q;  ngr(g) = min{€? | & =n"Y(g)}.
£er?
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| An admissible representative system {ry,...,r} of G(R) is any representative
system of G(R) such that rl-2 = nr(n(r;)), 1 < i < k. The following chart
gives the discriminant groups associated to the indecomposable root lattices
given earlier. It also provides an admissible representative system for each
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and includes information on norms.

TABLE 1
R G(R) ~ admissible representative system norm
Ag Z/(+ 1)Z arr = 7 Zf:_or e W—r+1)
€>1) | S el D 0+1
Dy | Z)2Z X ZJ2Z | dyo=0 0
£ >3) (£ even) | diy = % Zle e 2/4
Z/47 dor = ep 1
(€ odd) | des =131 e~ Ley /4
Eg 0 es,0 =0 0
Eq Z/27Z e70=0 0
er1 = z(e1 + -+ +es — 3(er + e3) 3/2
E¢ Z/3Z es,0 =0 0
es,1 = 5 (e1+ -+ es — 2(es + e6)) 4/3
€62 = —€61 4/3

‘T he nontrivial bilinear forms are as follows:

ng(d£J7d£,O) = 0 mod Z, 0 S] < 3,

bg,(e7j,e70) =0mod Z, j =0, 1,

bEG(e6J7 66’0) = 0 mod Z, ] = 0, 1, 2,

ba,(agj, a0 1) =

¢

bDe(dg,k,d&k) = Z— mod Z,k = 1, 3;

1

[OV)

brg(es,1,€6,2) = g'mod Z

J_(_f___'"l_—_k_)mOdZ7 0<j<k<{;
£+1
1
bp,(dek,de2) = 5 mod Z; k =1, 3,
=2
bp,(dpp,de2) =0mod Z, bp,(dp1,de3) = 0 mod 7Z,

1
bp,(e71,€71) = 7 mod Z;

be(esk e6x) = z mod Z, k= 1,2,
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Note that the index of each root system R in the chart indicates the
rank of the indecomposable root lattice R. (To simplify the terminology,
set Tk R := 1tk R.) It is easy to verify that (G(Ds3),bp,) =~ (G(A3),bs,), sO
that these two bilinear form modules can be identified with one another.
Note also that G(QA{) ~ Z/2Z x Z/2Z ~ G(Dy). The norms of the
elements in G(2A,) are O, ;, 1, ; These would be the norms of the elements
of G(D,) if D, existed as a root system. Let a}’l denote the nontrivial
representative of the first copy of G(A;) and a%,l that of the second copy.
Set dy1 :=aj,, dyy = a},l + ail, dy3 = ail It is now easy to check that
the bilinear form b = byy, for 2A; has the same values as a bilinear form
for D, would under this identification. Thus, D, will often be used to denote
2A; when it iS convenient.

If Ay, A, C R" are mutually orthogonal, finitely generated Z-submodules
of R", then (A ® Ay)* = A¥ @ A%, where @ denotes the orthogonal direct
sum. Thus, the discriminant groups are just orthogonal direct sums of the
discriminant groups described above. In particular, if we restrict ourselves to
the case of root systems of the form R = oAy + Zle 0ok Dy + €7E7, resp.
R = apAj + €6Eg, then G(R) 1s isomorphic to K5, resp. F5.

Let A be a complete integral lattice, set H = w(A), H- = m(A¥). Note
that

L = {x € G(Ay) | ba,(x,h) =0 forall he HY.

Because A is integral, H C H+. Thus, H is self-orthogonal with respect
to the bilinear form b of G := G(Ay). Furthermore, H = H-+ if and only
if A =A* (ie, A is unimodular), and in this case H is referred to as an
isotropic subgroup of G with respect to b, otherwise known as a metabolizer.
A will be an even unimodular lattice if and only if H = H" and n(g) is an
even integer for all g € G.

Beginning with the root system R, each isotropic subgroup H C G(R)
leads to the even unimodular lattice A = 7w~ !(H). It is not necessary that
A = R because an additional root arises if the norm of some element of H
is 2. Since the objective is to construct the even unimodular lattices with a
given root system, it is sufficient to consider only those isotropic subgroups
H for which n(#) is an even integer # 2 for all h € H. Such isotropic
subgroups will be called admissible isotropic subgroups.

An observation aids in determining the isometry classes of complete even
unimodular lattices. Let A be a complete even lattice in R” and R = A, its
root system. Let I'(R) be the subgroup of AutG(R) induced by the isometry
group of R. There is a one-to-one correspondence between equivalence classes
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of even lattices in R” with root system R and I'(R)-orbits of subgroups H
in G(R) with n(h) € 2Z\ {2} for all h € H. Unimodular lattices correspond
to isotropic subgroups.

2. ISOFOLDS AND ISOFANS

Given any root system R, we want to determine whether or not a complete
even unimodular lattice A exists such that Ay = R. This is equivalent to
determining whether or not (G(R),bg) has an admissible isotropic subgroup.
Suppose R’ is another root system such that the bilinear form modules
(G(R"), br'), (G(R), bg) are isomorphic. Let ¢ denote such an isomorphism.
As ¢ is a bilinear form module isomorphism, b (g1, 95) = br(v(g7), ¥(g5))
for all g1, g5 € G(R'). Recall that the bilinear forms have values in Q/Z, so
that

n(¢’) = n(e(g")) mod Z for all ¢’ € G(R)).

If (G(R), bg/) has an isotropic subgroup H’, it may be possible to use H' to

construct an admissible isotropic subgroup H for (G(R), bg).

DEFINITION. In the notation above, let
¢: (G(R"),bgr) — (G(R), bg)

be an isomorphism of bilinear form modules, where rk R" < rk R. The
isomorphism ¢ 1is called an isofan if

n(g") = n(p(g")) mod 2Z,
n(g") < n(p(g")

1

.

for all ¢’ € G(R'). The inverse ' of the isofan ¢ is called an isofold.

EXAMPLE 1. The simplest example of an isofan was given by Venkov [V].
Consider the root system Dy, k& > 2, where D, is identified with 2A;.
Recall that an admissible representative system for (G(Dy),bp,) can be given
by dio, di,1, di2, dr3, the norms of the representatives being O, ﬁ-, 1, 4—’;,
respectively. Thus, for any integer k; satisfying k; = k mod 8, the norms of
dy,,; and dy; differ by an integral multiple of 2 for 0 <i < 3.

Let ¢p, be the group isomorphism given by

©p, . G(Dr) — G(Di+3); dii— drys; (0 <i<3).
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This isomorphism preserves the bilinear form in the prescribed manner

bp, Ak i, dij) = bp,, (0D, (k) oD (dry)) (0 <1i,j<3),

so in fact it is an isomorphism of the bilinear form modules. It also preserves
norms modulo 2Z, as noted above. Moreover, n(dx ;) < n(¢p,(dk,)). Thus
©p, 18 an isofan and cpgkl an isofold.

It is well known that R’ := D¢ is the root system of a complete even
unimodular lattice [W2]. An admissible isotropic subgroup for G(D1s) is given
by H' = {dis0,di6,1}. Form the subgroup H := ¢p,(H') = {doa0,d24,1}
The map ¢ preserves the orthogonality relations and the norms modulo 2Z,
whereby the norms may not decrease under the mapping. Since the group
structures are also isomorphic, H is an admissible isotropic subgroup of
G(Dy4). Consequently, D,y is the root system of a complete even unimodular
lattice. By induction, we get a family of complete even unimodular lattices;
namely, Digyg; 1S the root system of the complete even unimodular lattice
generated over Z by Digyg and the vector digisi1 = 3 ;S{Si ej € RIOTS
for ieZ,i>0.

EXAMPLE 2. To find all isometry classes of even unimodular lattices for the
root system E7+D4s+21A;, we will use an application of the fanning method.
This root system appears in work of Conway and Pless [CP]; however, they
provide no indication as to how an admissible isotropic subgroup, or self-dual
doubly-even code, was found for G(E; + D4 + 21A7).

Begin with the isofold

n: G(E7 + D4) — 3G(A))

1, 2, 3
e71—a +a +a; d4,1l—>a1+a2; d4,3Ha2+a3,

where @ refers to a;; in the ith copy of G(A;) in 3G(A;). Next,
extend n to all of G(E; + D4 + 21A;) by letting it act on 21G(A,) as
n(a) = a3, 0 <i<21.Then n: G(E;+D4+21A,) — 24G(A;) is an isofold.
In order to construct an admissible isotropic subgroup for G(E; + D4 +214,),
we will apply isofans to isotropic subgroups of 24G(A;).

It is well known that 24A; is the root system of an even unimodular
lattice [N]. The only admissible isotropic subgroup, up to equivalence, for
its discriminant group can be identified with the self-dual doubly-even binary
code of length 24 known as the Golay code. Letting o' = aﬁ,l, this isotropic
subgroup H’ is generated (up to equivalence) by
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hj =d' +d* +d +d* hQ:a1+a2+a3—|—a6

td+d+d +d U E RN | B
Wy =da'+d*+a +d* Wy=a'+d+da +d

R L | B RPN E SR L%
Wy =d'+d +a+d* hy=a'+d* +a +a

+a®+a%+a%+a® RS O COTRn Carap 2
Wy =a'+a*+d +a Wo=da'+ad+da+d

1 a7 1 a® g g Ll g0 g2
B =a' +d* +d’ +d* hi —d*+d+a+a

R R S R | R RTI E g X
he=d'+d+d+d W,=d+d+d +d

R R L T raSra®

(see, for example, [Ko]). Applying the isofan
o =n"":24G(A;) — G(E7 + D4y + 214)),

obtained from the extended isofold defined above, to the generators of H’
yields generators for an admissible isotropic subgroup H :

h'1:a1+a2+a3+a4 h§:a1+a2—}—a3+a6

+d +ad°+d +d° +ad +ad* +a"® +er +dip
h£=a1+a2+a3—|—a4 h§=a1+a2+a3+a7

+d +d%+d" +a" +a +a®+d’+ e +dip
h§:a1+a2+a3—f—a4 h§:a1+a2+a3+a5 )

ES O LI R +a10+a14+a19+e7,1+d4,1
hy —a'+ad*+a +d hio =a' +-a2 +ad+a

IS (R L B U +a11—{—a15+a20+e7,1—|—d4,2
W=d +d+a+d Wo=d+d+d+ad

+a! + e +d +ad* +d® + e +das
hg =d'+d+d +a  hy A:—a1.+ a* + a* + a

+a +d’ +ad’ +d" +a +a®+a® +er +di.
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This isotropic subgroup represents the only ['(21A; 4 E7+D4)-orbit of sub-
groups that correspond to even unimodular lattices. If there were another such
orbit, there would be an admissible isotropic subgroup K C G(21A; + E;7 + Dy)
not in the orbit of H. This means that n(K) is an isotropic subgroup of 24G(A1)
in a different orbit than that of H’. Therefore, n(K) is inadmissible, meaning
that new roots have been created. The resulting root system, however, must
still have at least 12 summands of A;, otherwise some roots of 7(K) must
come from roots in K. Also, the rank of the resulting root system must be
24. The only root system of an even unimodular lattice satisfying these two
conditions 1s 24A;.

EXAMPLE 3. This example demonstrates that inequivalent even unimodular
lattices can share the same root system; in this case, 4Dg. Consider the isofold

1 := N@py) - 4G(Dg) — 2G(Dy4) + 2G(Dg)
dy; = dy;+diy, &3y dig+diy, d3;—dyy, dyyedgg o je{1,3)

There are no even unimodular lattices with root system 2D4 + 2Dg [N].
If 4G(Dg) has an admissible isotropic subgroup H, m(H) must then be an
isotropic subgroup of G(2D4 + 2Dg) containing at least one element r of
norm 2. Since n(n~!(r)) > 4, the possibilities for r are

2J+d]8<,2’ d‘llJ—l_dl%,E? i,k€{1,2}, ]766{173}

The root system has now been changed and must be determined. If a root of
the first type occurs, then D4 joins with Dg to give D1y. Since Dyy + D4+ Dy
is not the root system of a complete even unimodular lattice, we appropriately
introduce another root of the first type, resulting in 2D1,, which indeed is the
root system of a complete even unimodular lattice. If a root of the second
type is introduced, the two D, combine to a Dg, so that the new root system
is 3Dg. Each of these root systems, 2D, and 3Dg, has a unique isometry
class of even unimodular lattices.

Assume first that two roots of the first type are present. Without loss
of generality, these roots may be taken to be dj; +dg, and df | + dZ,.
There is only one orbit of admissible isotropic subgroups of 2G(D;,). One
representative of this orbit is generated by dy, ,+df, ,, di,,+d3, | . From this,
we will create an inadmissable isotropic subgroup of G(2D, + 2Dy). First,
rewrite the generators of the isotropic subgroup in terms of G(D4 + Dg +
D4 + Dg), making sure that orthogonality relations between all elements are
preserved: dj, | +di, , may either be dj ,+d} | +d2, or df y+dg | +d ,, and
dl, +di,, may be either dj , +dy,+dg, or di+d}, +dg . For example,
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using the first choices, generators for an inadmissible isotropic subgroup of
G(2D4 + 2Dg) are

d411,2 + dé,l + d%,za dz{,z + dé,z + di%,l ; d}u + dé,za dﬁ,l + dz%,z -

Now fan these generators using n~! to get an admissible isotropic subgroup
of G(4Ds) :

dsls,z +di3;,1 “‘dg,z ; dé,z +d§,2 +d§,1 ; dé,l “‘d%,z + dg,z ; dé,z + dg,l +dg,2 :

Had we used any other choices given above, we would have obtained an
equivalent isotropic subgroup. Note that this isotropic subgroup has one word
of norm 8.

In a similar fashion, take the generators of a representative of the only
orbit of admissible isotropic subgroups of 3G(Dsg) :

dé,z + dé,z + dg,s ; dé,z + d%,s + dg,z : dé,3 + d%,z + dg,z :

We shall now break apart the third copy of G(Dg) into 2G(D4) by introducing
the root dj, + dj ;. The next step is to rewrite d3, and dj, in terms of
2G(Dy). Since the results will have to be orthogonal to the root, this narrows
down the choices considerably. Indeed, dg,z will have to be di,l (which is
equivalent to d3 |), whereas, up to equivalence, d3 ; can be either dj ; + dj 5
or d}m +dj 5. Using the first choice, form the generators for an inadmissible
isotropic subgroup

d}u + dil : d}t,3 + dz%,3 + dé,z + dg,z ; di,l + dé,z + d§,3 ; di,l + dé,3 + dz%,z

for 2G(D4)+2G(Dyg) and fan using n~! to yield generators for an admissible
metabolizer of 4G(Dsg) :

dé,3 + d§,3 ; déll,l + d?m + dg,z + dg,z ;
dé,l + d%,z r dg,z + dg,s ; d%,l + d%,z + dg,s + dg,z .-

This subgroup has two elements of norm 8, and as such is inequivalent to the
admissible isotropic subgroup obtained by breaking apart 2Dy, .

On the other hand, if we rewrite d3, as dj, + dj,, an inadmissible
isotropic subgroup for 2G(D4) + 2G(Ds) is generated by

d}l,l + dézl,l ; d}t,z + dzzm +d§’2 + d%,z ; d}l,l + dé,z + d§,3 ; di,l +dé,3 + d%,z :

Apply 17! to these to obtain generators for an admissible isotropic subgroup
for 4G(Ds) :

d§73—|—d§,3, d§,3+d§,2+d§1,27 dé,1+d§,2+d§’,2+d§,3, dé,1+d§,2+d3,3‘|‘dg,2-
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Exchanging dy, for dy, and vice versa for i = 3,4, we recover the
same isotropic subgroup as the first one obtained from 2G(Diz). Since
all possibilities up to equivalence have been exhausted, there are exactly
two distinct isometry classes of complete even unimodular lattices with root
system 4Dy . '

EXAMPLE 4. This example deals with a root system of nonzero deficiency;
1.e., the maximum number of mutually orthogonal roots is less than the rank
of the root lattice. Kervaire [Ke] determined that there is exactly one isometry
class of complete even unimodular lattices with the root system 104, + 2F.
In his proof, he used results on conference matrices, a topic treated in coding
theory. Here, we offer a different proof based on the fanning method.

Define the isofold

n: 10G(Ay) + 2G(Eg) — 12G(A3)
aéJ = aéga 1 <i<10,je{0,1,2}, eé,l = aé,l +a%’1, @%,1 = aé,l + a%,z-
Niemeier showed in [N] that there is exactly one isometry class of complete
even unimodular lattices with root system 12A4,. Thus, there is exactly one

orbit of admissible isotropic subgroups in 12G(A;). A representative subgroup
H' of this orbit is generated by

aé,l + a%,l + a%,l + ag,l + ag,l + ag,l

aé,l + a%,1 + ag,z + ag,z + 43,1 + ag,l

aé,l + a%,l + ag,z + ag,z + 03,1 + a%?l

aé,l + a%,l + 43,2 + ag,z + aé,ll + a%,zl

a1+ a3, a3y +ayy + ayy + ay
The inverse of 7 acts as the identity on @) ; for 1 <i <10 and j € {0,1,2},
while 7™} (a)))) = 5, + ¢, and n~'(a}?) = ¢} | + ez, Applying n~! to
the generators of H’ yields generators for an admissible isotropic subgroup
H for 10G(Ay) + 2G(Ey) :

aé,l +a%’1 +a§,] —|—a‘2*’1 +a§71 + ag,l

G+ @, +a,td3,+a, +db

a%,l + a%,l + ag,z + ag,z + ag,l + 45?1

aé,l + a%,l + ag,z + ag,z + eé,z

7 8 9 10 , 2
G t+thytay;+a,+e,
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If there were an admissible isotropic subgroup J of 10G(Az)+ 2G(Es) not in
~ the orbit of H, it would have to fold to an isotropic subgroup J' of 12G(A)
in an orbit different from H’. Necessarily, J' contains roots, and these will
have the form aj ., + aé,mrz + a5 | o, With distinct i,j € {1,...,10} and
k € {11,12}. These roots can then be seen as roots of Eg. The only root
system of a complete even unimodular lattice in dimension 24 with root
system containing a summand Eg is 4Fg. But to transform 124, to 4Fg
would require roots as above in which k ¢ {11,12}. Applying ! to a
root of this kind yields an element of norm 2 in J. Thus, there can be no
admissible isotropic subgroup in an orbit different from the one containing H ;
hence, there is exactly one isometry class of even unimodular lattices with
root system 104, + 2E¢.

3. ELEMENTARY ISOFANS AND ISOFOLDS

In the previous section, it was shown that ¢p,, k > 2, is an isofan, as
was noted by Venkov [V]. Conway and Pless [CP] found several other isofans
- that aided them in obtaining some of their codes from already known codes.
The associated i1sofolds for these are:

Mg, : GRE;) — G(Dg); e, —ds1, €51 — dg3;
Npe+E, - G(De + E7) — G(A1 + Dy4); €71 ary +dap,
dejr— a1 +daj, je {1, 3}
mps - G(2Dg) — G(4A1); dé,1 = ai,1+ai1 + azl’,l ; dé,.% = a},l + a%,l + 0411,1 ;
g, aj +a; +ai, dgy—ai +ai +dj ;.

There are, however, other isofolds. The purpose of this section is to determine
all possible isofolds.

DEFINITION. Let R = I;+---+1; be the concatenation of indecomposable
root systems I;, 1 <i<1[. Let n: G(R) — G(R') be an isofold for some root
system R’. One says that the isofold n is imprimitive if there exists an
i €{l,...,1} such that

» nIG(Iz)(G(Ii)) ~ G(I,) . and . n(x) = ll(?’]'(;([i)(x)) for all x € G(Il) :

In effect, this means that ; is a summand of R’, and 7 restricted to G(I;)
preserves norms, although it may not be the identity.
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If 1 is not imprimitive, then it is said to be primitive. A primitive isofold
is called an elementary isofold if and only if it is not the composition of two
or more primitive isofolds. Finally, two isofolds 7;,m2: G(R) — G(R") are said
to be equivalent if and only if there exists a norm preserving automorphism
ny of G(R') with the property 713 o1, = 1 and inequivalent otherwise.

As an example, the isofold
n: G(Dy) — G(Dg); dpsjt—dg;, 0<i<3

is primitive since n(d4,1) > n(ds,1). It is not elementary as it is the composition
of two elementary isofolds: 7 = <p581 o @511 (see the previous section for the
definition of ¢p, ). The isofold

n': G(D1g) — G(Ds)

die,0 — dg,0, dis,1 = dg 3, dig2 > dg 2, di3 — dg 1

1s easily seen to be equivalent to gpggl.

Any primitive 1sofold that is not elementary is equivalent to the composition
of elementary isofolds by definition. The remainder of the section will be
devoted to proving the next theorem.

THEOREM 1. Let ng: G(R) — G(R') be an elementary isofold. Then ng

is equivalent to one of the elementary isofolds listed in Table 2 (recall that
D, stands for 2A;).

TABLE 2
Elementary isofolds

R R’ Definition of nz (j € {1, 3})
Dyys(k > 2) Dy NDiy s (dict8,7) = dij
Diva+ Dea | Di+De | Moy s40pys(dipa)) = diy +ds,
(k, £ > 2) MDyra+Dg 4 (d%+4J) = d/l,z + d%,j
Diy2 + E7 D+ Ar | Nppyy+E,(dit2ay) = dij+ ain
(k> 2) NMDyyr+E,(€7,1) = dr2 + ai
2E; Ds e, (e71) = ds,1
T, (€7,1) = do 3
2Fs 245 M€ ) =ay, +a3;, i=1,2
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The proof of the theorem requires several technical lemmata:

1. R has no summand of the form A;, i > 1, and R’ has no summand of
the form A;, i > 4;

2. R’ has no summand of the form Eg, E7, Eg ;

3. the maximal rank taken over all the indecomposable summands of R is
greater than the rank of any indecomposable summand of R’;

4. if n 1s an elementary isofold, there exists an element g € G(R) such that
n(g) > n(n(g)).

The proofs of the lemmata will be deferred until after the proof of the theorem.

Proof. 1t is a routine exercise to verify that the above mappings are
1sofolds. They are elementary since the change in rank is 8, whereas the
change in rank of the composition of two or more primitive isofolds is at
least 16.

Assume the lemmata above hold. By (4), there exists g € G(R) such that
n(g) > n(n(g)). Write g as an orthogonal sum g = g;.L---Llg,, m > 1,
whereby the g; are elements of distinct word groups of indecomposable root
systems. If n(g;)) = n(n(g;), 1 < i < m, then 7n(g;) + --- + n(gn) cannot
be an orthogonal sum, or the norm does not decrease under 7. Thus, either
n(g;) > n(n(g:)), 1 <i<m, or n(g;Lg;) >n(n(gily)), 1 <i<j<m.

Suppose first that n(g) > n(n(g)) with g a representative of the word
group of an indecomposable root system. The smallest norm possible for a
representative of a word group is 3. Consequently, n(g) > 2 = 1 mod 2Z.
From this and (1), it follows that g = diy; € G(Dy), k > 10,j = 1 or 3.
Suppose g = di; (the case g = di3 is analogous). We show that 7 is
equivalent to 7p, .

Set n1 = np,, and extend 7; to all of G(R) by letting it act as the identity
on G(R\Dy). Set m|cw\py = Now\py and m(di—s;) = n(de;), j =0,1,2,3.
Then 1 = mon;, and 72: G(R\ Dy + Dy—g) — G(R') is a group*isomorphism
which preserves norms modulo 2Z. To show 7, is an isofold, it remains
to check that n(h;) > n(mp(hy)) for all hy € GR \ Dy + Dy_g). Let
hi € GR\ Dy + Dy_g) and h = 0y (k1) € G(R). By the definition of
m, either m(k) = n(ny(h)) or n(h) — 2 =n(n(h)). If n(h) > n(n(h)), then

n(h1) > n(h) —2 = n(nh) = n(n(h)) .

If n(h) = n(n(h)), then by construction n(h) = n(hy) = n(12(hy)). Therefore,
n, is an isofold. Since 7, m; are both elementary, 7, must be imprimitive.
Therefore, 1 is equivalent to 7p, .
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Next let ¢ = g1 Lg, be the orthogonal sum of representatives of word
groups of indecomposable root systems Ri, R whereby n(g) > n(n(g)) and
n(g;)) = n(n(g;)), i = 1,2. There are four possibilities for g, hence 7 : set

TDy+De if g=dij, +dej, 1, )2 €{1,2,3}

Y = TRE; if g=ej+e7 3
b NDy+E; if g=dpj+er1,j€{1,2,3};
ThEs if g=ef )+

Extend n; to all of G(R) by letting it act as the identity on G(R \ (R +Ry)).
As before, define

Ml 6®R\® +R) = NGR\®R+R2)» T2m(GRI+Ry)) -

Again, n =m on and 7, is an isofold, hence imprimitive.  []

LEMMA 2. Let 1n: G(R) — G(R') be an elementary isofold. Then R
contains no summand of the form A;, i > 1, and R’ contains no summand of
the form A;, i > 4.

Proof. Suppose first that R has a summand A;. Recall that for i > 1,
G(A;) ~Z/(i+ 1)Z. Since n(a; ) = h+1 < 1, it follows that n(n(a; 1)) = h+1
Moreover, the smallest norm of a representative of any word group is % . Thus,
n(a;,1) must be a representative of the word group of an indecomposable root
system. The norms of representatives from G(Dy), k > 4, G(E¢), G(E7) are
all at least 1. The norm n(ay ;) > % is an increasing function in £ as well as
in j, 0 <j<|%] implies that n(a;1) = +a;;. But then 7 is an equivalence,
hence not elementary.

The second statement of the lemma now easily follows. R has no summands
of type A; for all j € Z, whence G(R) ~ (Z/2Z)" x (Z/3Z)" x (Z./4Z)™
for ny,no,n3 € Z2°. Since G(R) ~ G(R'), only those A; with i € 1, 2, 3 are
possible summands of R'. [

LEMMA 3. If n: G(R) — G(R') is an elementary isofold for root systems
R, R, then R’ has no summand of type E;, i =6, 7, 8.

Proof.  Eg is obvious as it is the only indecomposable root system with
trivial word group.

Next, assume that E7; is a summand of R’. By Lemma 2, R is the
orthogonal sum of root systems of type E;, j = 6,7,8, and/or Dy, k > 4.

Due to norm considerations, at least one summand must be either E; or
Dy, k=2 mod 4.
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Clearly, 7~'(ej ) # €5 | or it would be imprimitive. If ~'(e] ) = €3, L g
for some nontrivial ¢, then n(g) = Omod 2Z. Since 7 is an isofold,
n(n(e7 D)) = —32— Consequently, n(e(7,1)?) cannot contain the orthogonal
summand e7 1» forcing n(g) = e7 LA, for some h € G(R'), n(h) = mod 27.

On the other hand,

er1 =nn""(er1)) =n(e3 ) +1(g) =n(eF )+ ey +h.

Since e%l,e%l are of order 2, so is h. But then h = 7(ej;), an

nh) = mod 27., a contradiction.
We are now reduced to the case that ?7_1(67’1) = dy11Lg, where k = 2
mod 4 and ¢ may be trivial. Because 7 is an isofold,

1 =n(dy2) > n(n(dr2)) >0,

from which it follows that n(n(dx2)) = 1. Since e;; is of order 2, so is g,
so that

n(di2) = n(dr1 +di s + g+ g) = nlde1 + g) + 77(dk,3 +9)=e71+h,

whereby n(di3 + g) = h. Since n(e;; + h) = h = e71lhy with
n(hy) = 1; in other words nh) = § and n(dy, 3J_g) 5 mod 2Z.. On the
other hand, n(d; 1 1lg) = mod 27, Wthh would mean that n(dy,1) 7# n(dy3),
a contradiction.

Finally, assume Eg is a summand of R'. G(E¢) ~ Z/3Z, and the only
root system with word group of order divisible by 3 which can appear as a
summand of R is Eg. Since 7 is primitive, 77_1(66 1) # ec +1. Thus, without
loss of generality, 7™ '(eg ) =g +eg; + -+ e3k+2 k>1.

ek, +eay + et =mnled ) +nleg) + -+ e = e,

means that there is some j € {2,...,3k + 2} such that nej, = e}, Lh.
Norm requirements force 4 to be trivial, so that  must be imprimitive. [

LEMMA 4. Let n: G(R) — G(R') be an elehzentary isofold, and let
k, k' denote the maximal ranks of indecomposable summands S, S’ of R, R,
respectively. Then k > k.

Proof. Assume that k < k’. From the previous lemmas, R may not have
any summands of the form A;, Ay, A3, and R’ may not have any of the form
A;, i > 4, Eg, E7, Eg. Consequently, Dy is a summand of R’ with k' > 4.

Let R = I; + --- + I, be the concatenation of indecomposable root
systems I;, i € {1,...,m}. Since n is a group isomorphism, there exists
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some i € {1,...,m} such that for some g; € G(I;), dp 1 18 an orthogonal
summand of 7(g;). g; # dej, j € {1,3}, for any £(< k < k') because then
either n(d; 1) < n(dy,1) or we get an equivalence. g; # dy o, since then
k' = 4, which implies £ = 4, and we have an equivalence. g; # e7, 1 for then
k' > 7 and

nle; ) == <-<n(dp;). [

b W
B

LEMMA 5. Let n: G(R) — G(R') be an elementary isofold. There exists
g € G(R) such that n(n(g)) < n(g).

Proof. We produce a g € G(R) which satisfies the lemma. By definition,
n(n(h)) < n(h) for all &~ € G(R). Note that n(aq;;) < 1 for all i, whereas
nh) > 1 for all & € G(R). Thus if A; is a summand of R’, then set
g:=n""(ai).

Since R’ has no summands of the form E;, j = 6,7,8, it suffices to
consider R' := I, + --- + I, where I;, i € {1,...,m} is a root system of
type Dip. G(I;) 1s a group of order 4 implies that only summands of type
Dy and E; are possible for R. Suppose first that £7 is a summand of R.
Since n(e7;) = %, it follows that n(n(e7)) = % The only elements in
G(R") of norm % are dg 1, ds3. Without loss of generality, n(e; 1) = dg 1. Let
h=n"1(ds3), so that

n dsp) =n""(de1) + 1 (dss) =er1 +h.

If h=e71Lho, then n(hy) = 0 mod 2Z, implying that the norm of ds, # 1.
Thus, setting g := e71 + h, we see that n(g) > n(n(g)).

We are thus reduced to the case that R, R’ contain only summands of type
Dj, j> 4. Let k, respectively k' denote the maximal rank over all summands
D; of R, respectively R’.

nlde1) =y1L-- Lyn, yi € GU), i € {1,...,m}.

There is at least one £ € {1,...,m} such that 5~ '(y,) = d,Lh or
n~'(ye) = dr3Lh. In any event,

n(y) < n(dy 1) < n(dy1) < 0~ (),

so that we may take g :=n"'(y,). []
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A simple corollary of the theorem is stated below.

COROLLARY 6. A root system of rank n whose word group is not the
domain of an isofold must have one of the following forms:

Z 01A; + 04D4 + 05D5 + 5ij + e6Eg

i=1

z a;A; + eEe + e7E7

i=1

where the coefficients «;, 04, 05 are arbitrary nonnegative integers and
d;, €6, €7 € {0, 1} for j€ {6, 7, 8, 9}.
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