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entiers. Pour tout entier m > 1, on définit (m)h a\.. .ar la suite des chiffres

de m dans son écriture en base h, i.e. m a\hr~l + + ar, avec a\ > 0

et 0 < at < h pour 1 < i < r. Pour une suite («/);>i d'entiers positifs ou

nuls, on pose

ah(g) 0.(gn%(gn>)h...

Il est établi que ah(g) est irrationnel si la suite («;);>i est non bornée (voir

par exemple [41]), et Sander [41] a étudié le cas où cette suite est bornée

et admet exactement deux éléments qui apparaissent une infinité de fois. Son

Theorem 3 repose sur une application incorrecte d'un résultat de [47] et n'est
à ce jour pas démontré. Cependant, comme il est expliqué par exemple dans

[19], les Théorèmes 12 et 13 permettent de montrer l'irrationalité de nombres

cih(g) sous les hypothèses considérées par Sander.
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