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164 - Y. BUGEAUD ET M. MIGNOTTE
11. LEcCAS x<0

Les résultats de Nagell et Ljunggren mentionnés au paragraphe 2 sont plus
généraux que le Théoréme 1, car ils incluent la résolution de (1) pour x < 0.
Comme il est expliqué dans [18], ce probléme revient a résoudre 1’équation

X+ 1 : L
(12) P =y?, enentiers x> 1, y> 1, n >3 impair, g > 2,
qui possede la solution (x,y,n,q) = (19,7, 3,3). Il s’agit d’ailleurs de I’'unique
solution avec n = 3 ou 4 [36, 37, 31]. 1l est tentant de conjecturer qu’il
s’agit 12 de ’unique solution de (12), mais nous sommes loin de pouvoir le
démontrer. Cependant, nous avons plusieurs résultats partiels, qui vont dans
le sens de cette conjecture.

Les méthodes utilisées lors de 1’étude de I’équation (1) s’appliquent
également a (12), et permettent de démontrer les résultats suivants. En outre,
de nouvelles estimations [11] ont permis de considérablement réduire le temps
de calcul [18].

THEOREME 18. Si [’équation (12) a une solution (x,y,n,q) avec n > 5,
alors il existe un nombre premier p tel que p divise x et q divise p— 1. En
particulier, on a x > 2q + 1. L’équation (12) n’a pas de solution (x,y,n,q)
avec 2 < x < 10* et n > 5.

Le cas particulier x = 2 est trait€é dans [12], ’équation correspondante
intervenant dans la classification des groupes finis simples.

12. APPLICATIONS

La question suivante apparait en théorie des groupes finis et est fortement
liée a I’équation (1): trouver des nombres premiers P et Q et des entiers
rationnels n > 3 et a > 1 tels que

Q" —1

0-1

Plusieurs travaux y font référence, notamment [12, 23, 29, 49] et [40, page

121]. Observons que 1’équation (12) possede également des liens avec la
théorie des groupes finis [12].

Une autre application concerne lirrationalité de nombres réels dont le

développement décimal est de la forme suivante. Soient g > 2 et A > 2 des

= =,
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entiers. Pour tout entier m > 1, on définit (m), = a; . ..a, la suite des chiffres
de m dans son écriture en base h, ie. m =ah ' 4+ ... +a,, avec a; >0
et 0 <a; <h pour 1 < i <r. Pour une suite (n;);>1 d’entiers positifs ou
nuls, on pose

an(g) = 0.(¢" (g™ - - -

Il est établi que ay(g) est irrationnel si la suite (n;);>; est non bornée (voir
par exemple [41]), et Sander [41] a étudié le cas ou cette suite est bornée
et admet exactement deux éléments qui apparaissent une infinit€ de fois. Son
Theorem 3 repose sur une application incorrecte d’un résultat de [47] et n’est
a ce jour pas démontré. Cependant, comme il est expliqué par exemple dans
[19], les Théoremes 12 et 13 permettent de montrer I’irrationalité de nombres
an(g) sous les hypotheéses considérées par Sander.
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