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THE COSET WEIGHT DISTRIBUTIONS OF CERTAIN BCH CODES
AND A FAMILY OF CURVES

by G. VAN DER GEER and M. VAN DER VLUGT

INTRODUCTION

Many problems in coding theory are related to the problem of determining
the distribution of the number of rational points in a family of algebraic
curves defined over a finite field. Usually, these problems are very hard and

a complete answer is often out of reach.

In the present paper we consider the problem of the weight distributions
of the cosets of certain BCH codes. This problem turns out to be equivalent
to the determination of the distribution of the number of points in a family
of curves with a large symmetry group. The symmetry allows us to analyze
closely the nature of these curves and in this way we are able to extend
considerably our control over the coset weight distribution compared with
earlier results.

For a binary linear code C of length n the weight distributions of the
cosets of C in K} are important invariants of the code. They determine for
example the probability of a decoding error when using C. However, the coset
weight distribution problem is solved for very few types of codes.

In [C-Z] Charpin and Zinoviev study the weight distributions of the cosets
of the binary 3-error-correcting BCH code of length n = 2™ — 1 with m odd.
We denote this code by BCH(3).

Let F, be a finite field of cardinality ¢ = 2™ and let o be a generator of
the multiplicative group F7. The matrix

1 o o ... o
H=|1 & o° ... 3D
1 o o9 ... =D

is a parity check matrix defined over F, of BCH(3). This means that
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BCH(3) = {c = (co, ..., cn1) € F2 : H' =0} .

It was shown in [C-Z] that the coset weight distribution problem for
BCH(3) comes down to the same problem for the extended code BCH(3)
with parity check matrix

1 1 1 1 1
7 1 a o? a1 0
Sl o ab a3
1 o ol S VI

A coset D of B@T?}) in F’;H i1s characterized by the syndrome
s(D) = Hx' € Fg, where x is a representative of D. The weight of D
1S the minimum weight of the vectors in D. Here the weight of a vector is
the number of its non-zero entries.

‘Charpin and Zmov1ev then show that the weight distribution problem for
the cosets of BCH(3) of length 2™ with m odd can be solved as soon
as the weight distributions of the cosets D, of weight 4 with syndrome
s(D4) = (0,1, A, B) are determined.

From [C-Z] we recall : The weight distribution of a coset Dy is determined
by the number N(A, B) of vectors of weight 4 in D.

Via the matrix H this leads to the system of equations in four variables
n quzm .

xp+x+x3+x=1,
(1) X400+ =A,
X +x%+ x5 +x =B,

and N(A,B) is the number of S4-orbits of solutions of (1) with distinct
x; € F,. In particular the number of values of N(A,B) > 0 equals the number
of different coset weight distributions of cosets of type D.. Note that since
the set of solutions of (1) is invariant under translation over (1,1,1,1) the
quantity N(A, B) is even.

In this paper we shall show that by analyzing carefully the curves defined
by (1) we can determine good upper and lower bounds for the pivotal quantity
N(A,B). The bounds are obtained by dissecting the Jacobian variety of the
curves in our family in isogeny factors of dimension 1 and 2. This yields
restrictions on the traces of Frobenius. The splitting of the Jacobian is a
corollary from a very effective description of the curves defined by (1) as
fibre products over P! of three elliptic curves.
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We show that for odd m the N(A,B) lie in an explicit interval of length
~ 1.57,/q, ctf. [C-Z], where the interval is ~ q/4. Moreover, we argue that
on statistical grounds one may expect that almost all N(A, B) lie in an explicit
interval of length ~ 0.9,/g. We then give numerical results that confirm
strongly these heuristics and extend the table of BCH(3) codes with known
coset weight distribution.

For an introduction to the theory of codes we refer to [vL] and for a
general introduction to curves over finite fields to [S]. The reader can find
basic facts about Jacobians in“the survey paper [Mi] and a general introduction -

N to curves and their Jacobians in [Mu].

§1. A FAMILY OF CURVES

We consider the algebraic curve C' = C} 5 in P* given by the equations

2) s1=x0, s =Ax, $5=Bx,
where s; is the j-th power sum Z?leé in the variables xi,...,xs. Let o

denote the j-th elementary symmetric function in xj,...,x4. If we apply
Newton’s formulas for power sums we find :

s1+x0o=01+x=0,
53 +Ax8:(A+1)xS+02xo+03 ={),
ss+ Bxg = x0 (B + A)xg + (A + 1opx2 + 04) = 0.

This implies that the curve C’ consists of the three lines in the hyperplane
xo = 0 given by

(3) Xi+x=x+x=0, with {ijk}={1,2,3,4},
and a curve C = Cy g given by

0-1:);07‘
4) 03 = (A+ Dxg + 02,
04 = B+ A)xg + (A + 1)opxd .

The symmetric group S; operates on C’ and on C by permuting the
coordinates xi,...,xs. Moreover, there is an involution 7 acting on C via

(xo:x1:...:x4)H(x0:x1+x0:...:x4+x0).
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This involution commutes with the elements of S, and this gives rise to a
group of 48 automorphisms of C.
We introduce the invariant

A=B+A*+A+1 (€F).

In the following lemma and the rest of this section we shall work over an
algebraic closure of F,.

(1.1) LEMMA.

1) If A #0 then C has six ordinary double points, namely the points of
the S4-orbit of (0:1:1:0:0) and no other singularities.

1) If A =0 the curve C consists of 12 lines.

Proof. The Jacobian matrix of (2) is

1 1 1 1 1

2 2 .2 .2 .2
Axg x7 x5 X5 Xj

Bxf)L x‘l1 x‘z1 x‘3” xj

If the rank of this matrix 1s < 2 for a point with coordinates (xp : ... : x4)
then there exist «, 8, with «, 8, v not all zero such that o+ Bx? +vxf = 0
for i = 1,...,4. Hence the coordinates x; with i = 1,...,4 of a singular
point of C can assume at most 2 different values and taking into account
the equation s; = x it follows that a singular point of C is in the Ss-orbit
of a point of the form (@a:1:1:1:a+4 1) or of the form (0:1:1:a:a)
for some value of a. In the latter case we get from (4) that a = 0 and we
find 6 singular points in the orbit of (0:1:1:0:0). In the former case it
follows from (4) that a satisfies

3 A+D+a*4+a=0, and B+Aa*+A+1Da®>+a+1=0.
Hence a # 0 and (5) is equivalent to
A+Da*+a+1=0,

(B+A)a*+ A+ a+A+1)=0.
The resultant of (6) equals (B +A? -+ A + 1)?, hence (6) has a solution if and
only if A = B+ A% + A + 1 vanishes. In that case the Jacobian matrix has
rank 2 for the solutions of (6).

So if A # 0 the curve C has six singular points, namely the S4-orbit of

(0:1:1:0:0). For the local structure near (0:1:1:0:0) we eliminate
xo from (2) and find that the curve C’ in P? is given by

(6)

s3 =Asy, s5=Bs;.
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Upon taking affine coordinates &; = (x1 +x2)/x1, & = x3 /x1, & = xa/x1 We
find the equations

Q+E+E+E+E =AG +6H+ &),
§1+§f’+§f+§§+f§=B(§1+§2+€3)5-

This shows that & lies in m?, with m the maximal ideal of (0,0,0) in A’
and defines the tangent plane at (0,0,0) to the cubic surface S given by the
cubic equation. Moreover, this is also the lowest order term of the quintic
equation. Therefore, locally near the origin C’ is given by

(7) =0, E+EESEFA+FDE+ED)=0.

which shows that C’ has a triple point and C has a node at this point.

If A\ =0 and a satisfies (A + 1)a’> +a+ 1 = 0 then a is a solution of
(6) and the S4-orbit of points of the form (a:x:x:1:a+ 1) with arbitrary
x is on C. So the equations

xi+x=0, (@+Dx+x=0 with {ij,k}={1,2,3,4}

define a line on C and this gives 12 lines on C. Since C has degree 12 the
curve C decomposes as the union of 12 lines. This proves ii).

REMARK. It follows from the preceding proof that for A # 0 points on
C for which xp,...,x4 are not all distinct lie on one of the lines (3).

(1.2) PROPOSITION. If A =£0 then C is irreducible.

Proof. Suppose that C = Zle C; 1s a sum of irreducible components
C; with ¢ > 2. Since C is connected at least one of the singular points
is an intersection point of two distinct components C;. By the S4-symmetry
then each of the six singular points is an intersection point of two different
components. This implies that the components C; are non-singular. Since the
permutation (34) interchanges the two branches of C in (0:1:1:0:0) (cf.
(7)) the group S, acts transitively on the branches through a singular point,
so S4 acts transitively on the set of components.

Let S be the smooth cubic surface in P* given by the equations
s1 = x0, 53 = Axy. On S the curve C is linearly equivalent to 4H with
H the hyperplane section of S. Now the intersection number HC; equals the
intersection number with the hyperplane xy = 0, i.e. the intersection number
of C; with the three lines (3), and since the intersection is transversal HC;
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equals the number of singular points of C on C;. Put r = 12/£. Then by the
symmetry we have HC; = r. On the other hand, the adjunction formula

C? + KsC; = C? —HC; = C? — r = 29(C) - 2,
where K is the canonical divisor of §, and the identity

4r =4HC; = CC; = C} + > CiCj=Cl+r
J#

imply C? = 3r and g(C;) = r+ 1. In particular, C; cannot be contained in a
hyperplane and spans P°. Clifford’s theorem applied to the hyperplane section
H|C; of C; says that h°(H|C;) < r/2+1, hence r > 6. Then £ =2 and we
have two components. Again, by Clifford, these curves must be hyperelliptic
and the linear system H|C; is 3g). But since 3g. is contained in the canonical
system |K¢,| this factors through the hyperelliptic involution, which contradicts
the fact that C; is embedded in P? as a non-rational curve. This proves that
C 1s irreducible.

(1.3) COROLLARY. If A\ # 0 the normalization C of C is an irreducible
smooth curve of genus 13.

Proof. On the cutlic surface S we have (C+ K5)C = (4 — 1)HC = 36.
This implies that for C we have 2¢g(C) —2 =36 —-12=24. []

§2. DISSECTING THE JACOBIAN

For the sake of convenience when we refer to a curve in the sequel we shall
always mean the normalization of (a completion of) that curve. In particular,
by the genus we mean the geometric genus of the curve and if we speak
of the number of rational points we mean the number of rational points of
the normalization. Note that an absolutely irreducible curve D has a unique
complete non-singular model D’ obtained by normalizing any completion of
the curve. Any automorphism of the curve D defines uniquely an automorphism
of the normalization D’.

We now analyze the absolutely irreducible curve C = C4p for A # 0 in
more detail in order to decompose its Jacobian.

Let H C Aut(C) be the subgroup generated by the two permutations (12)
and (34) and the involution 7. Then H is abelian of order 8 and isomorphic
to (Z/2Z)°. Consider the following diagram of degree 2 coverings of curves
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C
/ ! N
C/(12) R C/(12)(34) C/(34)
l N\ ! / l
C/((12),7) C/((12),(34)) C/((3H),T)

N | i
C/H

Let u = (x3 +x4)/(x1 +x2). This is a H -invariant rational function on C,
hence defines a rational function on C/H.

(2.1) PROPOSITION.
i) The function u gives an isomorphism C/H = PL.

ii) The curve C/{(12),(34)) is a curve of genus 1 given by
V4+y=du+ANu+@A+1).
iii) The curve C /{(12),7)) is a curve of genus 2 given by
o V4y=Mud+ .
iv) The curve C/{(34),T) is a curve of genus 2 given by
V+y=Xi +Mu.

Proof. The divisor of u on C is of the form H3,C — Hj2C, where Hj
is the hyperplane given by x; +x; = 0. Since both these hyperplanes contain
the line x; +x» = x3 + x4 = 0 which intersects C in a divisor of degree 4 it
follows that the divisor of u can be written as a difference of two divisors of
degree 12 — 4 = 8. Moreover, these divisors are invariant under the action of
H. This implies that on C/H the function u defines a non-constant function
with a single zero and a single pole. Therefore u defines an isomorphism
C/H = P'. This proves i).

We now prove i1). Working with the affine equations (set xy = 1)

opo=1, o3=A+1+4+0y, o4=B+A+ A+ 1oy,

we can write u = (x3 +x4)/(x1 +x2) =1+ 1/(x) + x), i.e.

x1—|—x2=1/(u+1) and x3+x4:u/(u+1).
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We put v := x;x; and w := x3x4. These functions are invariant under (12)
and (34), but not under 7. Using

02 = XX + X3%4 + (61 + x2) (03 + X2) = v+ w + u/(u+ 1)%,
03 = x1x2(x3 + x4) + (x1 + x2)x3x4 = (v + w)/(u + 1),

the equation o3 = A + 1 + o, implies

(8) A+ 1P+ @+ Dw+uw) +u> +u+1=0,
while the equation o4 = B+ A + (A + 1)o, yields
9) B+A+A+Dw+w+u/u+DH+vw=0.

Elimination of w from (8) and (9) yields the equation
@+ D% +u(+ Do =Xl + M+ A+ Du+ A+ D2 + A+ 1)%.

Dividing by u? and and replacing (u+ 1)v/u by 1 (ie. 1 = x1x/(x3 + x4))
gives

(10) " 4n=Xu+Nu+@+D/ut+ A+ 1)?/u*+ A+ 1)

and this is, via y=n+ A+ 1)/u+ (A + 1), clearly F,-isomorphic to
V4y= u+Nu+A+1.

Since 7 is invariant under (12) and (34), but not under 7, the equation (10)

describes the degree 2 cover C/((12),(34)) of C/H.

For iii) we remark that the function field extension of C/{(12), )
over C/H is generated by the function z = x3 + x1x/(x3 + x4). Then
72478 =x3 4 x4 = u/(u+ 1). Moreover,

772 = 3334 + 2130 + (01%2)° /(33 + x4)
=w—+v+ 772
=A@+ D/u+ 1+ 1 u+1)+n+7°,

where we used w = A(u+1)/u+1+1/u(u+ 1)+ v/u obtained from (8) and
v+ v/u=mn. By (10) this implies that z satisfies the equation

5 u A + 1) + (A% + A + NP +u) + A+ A2 + 1

z+u+1z= 2t 1) X

Dividing by (u/(u+ 1))* and replacing (u + 1)z/u by  gives the equation
CHC=du+ N +A*+A) + 1 u+1/u* +AJu* + A /u*

Via (+— (+A+1/u+(A+1)/u* we get the F,-isomorphic curve

= u+Nuw.
Part iv) is now obtained by applying the permutation (13)(24). This changes
u into u~! and proves the result.
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(2.2) THEOREM. The normalization of the curve C is the normalization
of the fibre product over P! with affine coordinate x of the three hyperelliptic
curves given by

Yy =M+ Mz,
V+y= M2+ A\x,
YV4+y=M+Ax+A+1.

Proof. This follows directly from the diagram and the preceding propo-
sition.

Note that equivalently, C is the fibre product of the three curves Cr of
genus 1 with affine equation y?> +y = f;, where f; for i =1,2,3 is given by
fi=M + M +A+1,
(11) h=MNx+Nx+A+1,
=X+ A/x+A+1,

since fi, f» and f; generate the same space of functions as the right hand
sides in the theorem. This description allows us to dissect the Jacobian of C.

(2.3) THEOREM. The Jacobian of Cup decomposes up to isogeny over
F, as a product of five supersingular elliptic curves, two ordinary elliptic

- curves and three 2-dimensional factors of 2-rank 1.

Proof. From the description of C = C4 p as a fibre product we see that

] ac(C) decomposes as a product of seven factors : three elliptic curves Jac(Cy),

two 2-dimensional factors Jac(Cy yz), Jac(Cpip), and two 3-dimensional

~ factors Jac(Cy,15) and Jac(Cy yp,44). The 2-rank of Jac(Cy) is O for i = 1,2

and 1 for i = 3. The 2-ranks of Jac(Cy 1) and Jac(Cy,yp) are 1 since these

~ hyperelliptic curves have two Weierstrass points.

The curve Cpip4p is a curve of genus 3 defined by y* +y =
A +1/x*) + A+ 1 with automorphisms

p: (,y) = (1/x,y), o: @y — (xy+1).

The quotient of Cy, s, s under p is the supersingular elliptic curve given by

¥ +y = M2 +2)+A+1 with z = x+1/x. Moreover, the curve Cf 45+ admits
a non-constant map to the ordinary elliptic curve y* +y = Mw+ 1 Jw)+A+1
via w = x°. So by Poincaré’s complete reducibility theorem the Jacobian
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Jac(Cy,45,+5) splits up to isogeny into a product of three elliptic curves and
has 2-rank 1 since it has 2 ramification points.

Similarly, the quotient of Cf, 1, by the automorphism p is the supersingular
elliptic curve y?> +y = \z>, while the quotient under po is a curve of genus
2 of 2-rank 1 defined by the equation y* +y = Az + 1/z. Collecting these
results we obtain the theorem.

For a smooth absolutely irreducible complete curve X defined over a field

F, we shall denote the trace of Frobenius by #X), i.e. t(X) =qg+1—=#XF,),

where #X(F,) is the number of F,-rational points of X.

(2.4) COROLLARY. For g = 2™ with m odd the trace of Frobenius of

Cap equals 20(Cr) + 26(Cy) + 26(Cyp5) + H(Cy, ), where Cg4, is the curve
given by y* +y = g\ with gy = > + 1/x.

Proof. The curves Cy and Cy, are isomorphic via x — 1/x, so have the
same trace of Frobenius. Since for ¢ = 2™ with m odd the map x — x> is a
bijection on F,, the curve Cj1p4s, given by y*+y = Ax*+1/x’)+A+1 and
the ordinary factor of its Jacobian given by y*+y = Mw+1/w)+A+1 have the

same trace of Frobenius, and this is #(Cr). Moreover, since Cpir and Cpyp

are isomorphic, we have #(Cy ) = #(Cpyp). Similarly,  the supersingular.

component of Jac(Cy4p) given by y* +y = AZ° has the same trace of
Frobenius as the rational curve y*> +y = Mz, i.e. 0. Therefore, the trace
1(C+p) equals the trace of the genus 2 quotient Cj g /po, and this is the
curve y* +y = gy.

We can interpret and augment the results obtained using the involution 7.
The involution 7 acts without fixed points on the normalization of C, hence
by the Hurwitz-Zeuthen formula the genus of the quotient curve C/7 is 7.
The Jacobian Jac(C) decomposes up to an isogeny

Jac(C) ~ Jac(C/T) x P,'

where P is the Prym variety of C — C/7, i.e. the identity component of the
norm map Nm: Jac(C) — Jac(C/7). Since the curves C/((12),7) = Cpyy,,
C/{(34),7) = Cp4p, and C/((12)(34),7) = Cj 45, are quotients of C/7 and
the fibre product Cy s Xp1 Cp4p, has genus 7 it follows readily that

C/m = Gty Xp G -

Note that the substitution x — x/X yields an isomorphism C, , & Gy, .




COSET WEIGHT DISTRIBUTIONS ~ 13

(2.5) PROPOSITION. Up to isogeny over F,—om we have the splitting
Jac(C/7) ~ Jac(Cy )" x Jac(Cy,) X E,

where Cgq, is as in (2.4) and E is the elliptic curve > +y = \z>. The Prym
variety P is isogenous to a product of six elliptic curves: ‘

P ~ Jac(Cy,)* x Jac(Cp)* x P/,

where P' is a supersingular abelian surface whose trace of Frobenius t(P')
over ¥, satisfies

) if mis odd,
t(P) = { .
—2(g — 1) + 2t(Cy,) if m is even.

Proof. The splitting of Jac(C/7) follows directly from the description
of C/7 as a fibre product and the splitting Jac(Cj4p) ~ Jac(Cy,) X E as
obtained in (2.4). Furthermore, using Theorem (2.3) we see that

P~ Jac(Cfl) X Jac(sz) X JaC(Cf3) X JaC(Cﬁ+f2+f3) .

We know Jac(Cy) = Jac(Cr,) and that Jac(Cp4p45) splits up to isogeny as
Jac(Cy) and a 2-dimensional factor P’ which is supersingular and up to
- isogeny a product of two elliptic curves. Using the map x — w = x> we see
that #Cp 44,4 (F,) = #C(F,) if m is odd which implies #(P") = 0, while for
m even

HCp, 1paps (Fp) — 2 = 3(HC, (F,) — 2) .
This implies
| HChipap,) — 1(Ch) = —2(q — 1) + 2(Cy,)
and hence #(P") = —2(q — 1) + 21(C,). This proves the assertion.

§3. BOUNDS FOR N(A, B)

Since the curve C = Cyp has genus 13 if A\=A2+A+1+B+#0 the
Hasse-Weil-Serre bound for the number of F,-rational points #Cy p(F,) says

(12) g+1—13[2,/g) < #Cap(F)) < g+ 1+ 1312,/3]

The number N(A,B) of S,-orbits of solutions of (1) with distinct x; € F,
satisfies

N(A, B) = (#C4 p(F,) — contribution of x =0,1,00)/24.
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If Tr(A 4 1) = 0 we have 12 rational points in the fibres above 0,1, 0,

~while there are none if Tr(A + 1) = 1. Then (12) implies for N(A,B) the
inequalities

(g — 11 — 13[2/q])/24 < N(A,B) < (g + 1+ 13[2,/q])/24 .

By employing the decomposition of the Jacobian, especially Corollary (2.4),
and taking into account that the possible values of the trace of Frobenius ¢
of supersingular elliptic curves are t = 0, +£/2qg for g = 2™ with m odd

we can refine these bounds and we obtain our main result on the numbers
N(A,B):

(3.1) THEOREM. For g = 2" with m odd the number N(A, B) satisfies
the following inequalities :

(13)  (g—11—21/29—8[2./q])/24 < N(A, B) < (q+142+/2q+8[2./q])/24 .

Proof. The curve Cy 18 a supersingular elliptic curve, which implies that
—2+/2q < 21(Cy) < 2+/2q. Since the curve Cy, has genus 1, Cy s has genus
2 and C4, has genus 2 we obtain from the Hasse-Weil-Serre bound

—8[2,/q] < 26(Cp,) + 2(Cj 15,) + 1(Cy,) < 8[20/4].

Then it follows from Corollary (2.4) that the trace of Frobenius of Cy4 p is in
the interval

[~2v/2q — 8[2y/41,2+/2q + 8[2,/4]]
which yields (13).

In the following table we illustrate this by listing the intervals in which
the numbers lie according to (13).

TABLE 1

q 32 128 512 2048 8192

interval [0,4] [0, 14] [4,38] [50, 120] [270,412]

For some further reflections on N(A,B) we restrict our attention to the
case g = 2™ with m odd. The practice of searching for curves with many
points tells us that is is highly improbable that in a fibre product of curves the
traces of Frobenius of the individual components simultaneously reach their
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maximal (or minimal) value. Hence it is very unlikely that the bounds given
in (13) will be reached.

We intend to design an interval which contains almost all values of N(A, B)
using the description of C as a fibre product of the curves C; for i =1,2,3
given in (11) and a probabilistic argument on the distribution of traces of
Frobenius.

The curves C; and Cy, are supersingular elliptic curves with the same
trace of Frobenius # = #(Cy) = 0, ++/2¢. The curve Cy,4s, has genus 3 which
implies

=3[2v/q) < 1(Cpi45) < 3[2/q].
So the trace of Frobenius for the normalization of the fibre product Cr, xp1 Cy,
satisfies

~3[2\/q] — 24/2q < 1 < 3[2/q] +21/2q.

We compute bounds for the number of x € P! — {0,1,00} above which we
have 4 points in the fibre of C xpi Cp, If Tr(A + 1) = 0 we find in total
8 points above x = 0, 1, co, while we find none if Tr(A+1) = 1. Subsequently
we take into account that completely splitting x € P! — {0,1,00} occur in
pairs (x,1/x) and we obtain the following proposition.

(3.2) PROPOSITION. If we let

1
M(f1,f) = 5#{x € P'(F,) — {0,1,00}: x splits completely in Cj, xp1 Cy, }
 then we have for Tr(A+1)=0
g—17-3[2\/4q] — 2v/2q

8
and for Tr(A+1) =1

q+1—3[2\/§]—2\/§§<M(ff)<q+1+3[2\/§]+2\/7q_
] = 1,J2) > 3 .

< M(flafZ) <

g —17+312/q) + 2v/24
8

We now consider the effect of the elliptic curve Cy, in the fibre product.
The j-invariant of Cp is A™* & Fj. This implies that #(C;) is odd. For
Tr(A + 1) = 0 we have #(Cy) = 1 (mod 4) and there are 4 rational points
- together above x = 0,1,00, while if Tr(A + 1) = 1 we have (Cy) =3
- (mod 4) and 2 rational points above 0,1, 00. Furthermore, each element of
F; occurs exactly once as j-invariant in the family of curves C, . That implies
that #(Cy,) assumes each odd integer value in the interval [-[2,/4], [2\/4]1].
So the number of completely splitting pairs assumes each integral value in
~ the intervals mentioned in the following proposition.
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(3.3) PROPOSITION. If we let
M) = E#{x € PI(F,) — {0,1,00} : x splits completely in Cp,}

then M(f3) assumes all integer values in the intervals

["_3'[2\@,"“3“2\/‘3] if TiA+1)=0,

4 4
~1-2ya g—1+12 |
= val 4 ; \@] if Tr(A+1)=1.

Finally, we combine the two preceding propositions via a heuristic
argument. Let

M(fl 7f27f3)
1
= S#{x e P'(F,) — {0,1,00} : x splits completely on C;, xp1 Cp, xp1 C,}

Since there are (q — 2)/2 pairs (x,1/x) (x #0,1,00) we expect

—3—-12 -7 -3[2 —24/2
24 4[\@])(1 [8@ V2,

/(g —2) < M(f1,12,/3)

g—1 +[2\/§])(q+1+3[2\/5]—|—2\/2—q)
4 8

If we work this out and neglect terms of order 1/,/g and lower we find

q—412\/q) - 2v2q + 4 +4V2
16

<2(

/(g —2).

(14)

< M(f1,12,/3)

L 4+ +2V2g+ 14+ 42
= 16 .

Each completely splitting pair yields 16 solutions of (1) so to estimate the
number of Sj-orbits of solutions N(A,B) we multiply the intetval by 16/24
to get an interval I. Since N(A,B) is even we adapt the endpoints of the
interval I just obtained slightly. Namely we consider the smallest interval
with endpoints the positive even integers which contains I and we denote this
interval by IV,

(3.4) HEURISTICS. The odds are that the values of N(A,B) are in the
interval

Ieven _ [q - 4[2\/‘5] - 2\/ 29 + 4\/§ + 4 q + 4[2\/5] + 2\/2q + 4\/5 + 14:|even
B 24 ! ) .

We illustrate this by a little table.
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TABLE 2

p 32 128 512 2048 8192
interval | [0,6] | [0,12] | [10,34] | [64,108] | [300,384]

§4. NUMERICAL RESULTS

In order to obtain numerical results on N(A, B) to test our heuristics the
first remark is that N(A;,B) = N(A,,B) if Tr(A;) = Tr(A;). So we have
to distinguish only between Tr(A) = 0 and Tr(A) = 1. We shall compute
the trace of Frobenius for the seven factors of our Jacobian. We shall write

- fa=hth. =0tk s =f+/f and f; = fi + 2 + ;. The Jacobians
- of the curves Cj given by y* +y=f for i = 1,...,7 constitute the seven
factors of Jac(Cy p). We write

n, = #{x € F, : Tr(f(x)) = 0} .

(4.1) PROPOSITION. The number of solutions N(A,B) over F,—o» with
m odd of the system (1) with A\ =A?>+A+1+B+#0 is given by
29 =2 — 2(ny, +ny, +np — ny, — ng — g+ np)
24

N(A, B) = if Tr(A) =0,

and
—~6g —24+2% ne

N(A,B) = 7

if Tr(A)=1.

Proof. As just explained we may take A = 0 or A = 1. Then
A=B+4+1+#0 and we set fi = B+ D> +x), L= B+ D /x® + 1/x)
and 3 = B+ D(x + 1/x). Then Cl,B — Cfl Xpl Cf2 Xp1 Cf3 and C()’B =
Cr 41 Xp1 Cpq1 Xpt Cp41 . As in Theorem (2.3) the curves Cr fori=4,...,7
give the remaining traces of Frobenius.

The trace of Frobenius #(Cy) is of the form

(Cr)=qg+1-2n; —a,

where g; is the contribution of x = 0,00, while the trace of Frobenius of
Cfi+1 is

I(Cﬁ): ~q+3—|—2nﬁ —bl‘,
where b; is the contribution of x = 0,00. By analyzing these contributions
from 0 and co one gets the proposition.
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We now give tables with the distribution of the numbers N(A, B) for g = 2™
with m odd and 5 < m < 13. These tables are obtained by computing the
numbers 7z and they solve the coset weight distribution problem for the
corresponding BCH(3) codes. The first unknown case up to now was g = 2°,

see [C-Z]. Moreover, the tables confirm our heuristics. We list the frequencies
divided by ¢/2.

TABLE 3
g=2:
NA,B) | 0| 2
frequency | 27 | 35
g=2":
NAB) (0|2 4|61} 810
frequency | 2 | 28 (98 {84 | 35| 7
g=12"":

NA,B) |12 (14| 16 | 18 | 20 | 22 | 24 26|28 {30 |32

frequency | 18 [ 21 | 117 | 180 | 148 [ 195|199 |81 |36 |18 | 9

g =2 ;

NA,B) | 66| 68|70 |72 74|76 | 78 | 80 | 82 | 84 | 86

frequency | 22 | 66 | 88 | 55 | 176 | 264 | 187 | 374 | 374 | 374 | 451
NA,B) | 88|90 | 92 | 94 | 96 | 98 | 100|102 | 104 | 106 | 108
frequency | 365 | 341 | 275 [ 341 | 154 | 44 | 55 | 33 | 11 | 22 | 22

g=12:

In this case we encounter a new phenomenon. The function N(A, B)
assumes even values in the interval [290,390], but not all even values are
taken. This contradicts the expectation of [C-Z] that the values form a sequence
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of even integers without gaps. The frequency divided by ¢/2 of the value

290 + 2¢ with 0 < £ < 50 is given by

1 if £ =11,
13+ < 1 if £ =37,
0 else,
where v = (vo,...,7s0) 1S the vector

v =(1,0,1,0,1,0,6,3,5,5,12,7,19, 15,22,25, 37, 40, 43, 37, 35, 60, 54,72, 72,

58,65, 61,57,57, 63,48, 35,44, 34,34,25,29,25,15,9,7,2,3,7,3,3,1,0,1,2).

In accordance with our heuristics less than 1% of the N(A, B) lie outside the

interval [300,384].

§5. THE COVERING RADIUS

A problem in coding theory that precedes the coset weight distribution

: problem is the determination of the covering radius. It is defined for a binary
- linear code C of length n as the smallest integer p such that the spheres of
- radius p around the codewords cover F7. Equivalently, it is the maximum
~ weight of a coset leader (by which we mean a vector of minimum weight

in a coset of C in F7). It is an interesting parameter of a code since it

- provides information on the performance of the code when used in data
- compression.

In a series of papers [H-B], [A-M] and [H], of which [H-B] and [H] treat

; the case m even and [A-M] the case m odd, it was proved that the BCH(3)

. code of length n = 2™ — 1 has covering radius

p(BCH(3)) =5 for m>4.

- The proofs for the various cases are very different. Using algebraic geometry
~ we can give a unified proof.

In order to prove that p(BCH(3)) = 5 we have to show that for every

(A,B,C) € F; the system of equations:

X{+...+x5=A,
(15) o+...+x=8B,
O+... +x5=C,

has a solution (xq,...,xs5) € Ffl. On replacing x; by x; + A we may assume
without loss of generality that A = 0 and (B,C) # (0,0). If we then
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homogenize (15) the system

5 5 5
(16) | in = i} Zx? = Bx}, Zx,s = Cxp
i=1 i=l1 i=1

defines a projective variety V of dimension 2 in the five dimensional projective |

space P°.
We intersect V' with the hyperplane xp + x5 = 0 and obtain a system
of equations of the form (2). By using the results of Section 1 (especially

Corollary (1.3)) one can easily show that p(BCH(3)) =5 for m > 10. We
leave the details to the reader.

As a final remark we would like to point out that we think that many
more problems on cyclic codes can be attacked succesfully using methods
from algebraic geometry as is done in this paper. We refer to [C] for a list
of such problems. . R
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