
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 48 (2002)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: L'ÉQUATION DE NAGELL-LJUNGGREN $\frac{x^n – 1}{x – 1} = y^q$

Autor: Bugeaud, Yann / MIGNOTTE, Maurice

Kapitel: 9. Autres résultats

DOI: https://doi.org/10.5169/seals-66071

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-66071
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


L'ÉQUATION DE NAGELL-LJUNGGREN 161

solutions des équations superelliptiques f(x) aym sont très élevées, et, sauf

dans certains cas bien particuliers ad hoc, l'ordinateur ne peut les résoudre

dès que, disons, m x deg(f) excède 20. Cependant, dans les deux exemples

qui nous intéressent, le polynôme / est cyclotomique et possède ainsi de

nombreuses propriétés que l'on peut exploiter, pourvu que p soit différent

de q et que q ne divise pas le nombre de classes relatif du p-ième corps

cyclotomique. Cette méthode, dont l'origine remonte à des travaux de Bilu
[6] et Bilu et Hanrot [7], et qui a également été utilisée avec succès dans le

cadre de l'équation de Catalan [13], permet de majorer x par une borne de

l'ordre de pq qpq, et il suffit alors d'une simple énumération pour achever la

résolution des équations (10).

Par ailleurs, un résultat classique de la théorie des équations diophantiennes

exponentielles affirme que, pour les équations (10), on sait majorer q en

fonction de p. Les bornes reposent entre autres sur des minorations de formes

linéaires en > 3 logarithmes, et sont de ce fait très élevées : supérieures à

(3p)l0p si l'on applique les meilleures estimations actuelles [8]. Or, grâce

aux propriétés des polynômes cyclotomiques, il s'avère en fait possible de ne
faire appel qu'à des formes linéaires en deux logarithmes pour borner q en
fonction de p dans les équations (10): on obtient alors par exemple q < 5521

pour p 5, et q < 9000p2 log4 p pour tout p premier. Il ne reste alors

plus qu'un nombre raisonnable de couples (5,#) à traiter, pour lesquels on
applique la méthode décrite dans le précédent paragraphe... si toutefois p
n'est pas égal à q Dans le cas contraire, on se voit contraint d'utiliser les

techniques développées par Bilu et Hanrot [7] et, malgré de multiples astuces
de programmation, les capacités actuelles des ordinateurs ne nous permettent
pas de résoudre (10) dès que p q > 17.

9. Autres résultats

On désigne par u(n) le nombre de facteurs premiers distincts de l'entier
rationnel n > 2. Shorey [44, 45] a démontré des versions plus faibles des
Théorèmes 8 et 9 (sa conclusion est la finitude du nombre de solutions et
non la résolution complète), desquelles il a déduit de nouvelles informations
relatives à (1). En examinant ses démonstrations, il s'avère que, grâce aux
Théorèmes 8 et 9, on peut maintenant démontrer le résultat suivant.
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THÉORÈME 15. Si l'équation (1) a une solution (x,yyn,q) avec n>5,
alors uj(n) < q — 2. Si, de plus, on suppose (n,Qn) 1, alors uj(n) 1 si

q 5 et'2"^ < q — 1 D'autre part, 57 g divise n, alors n est une

puissance de q.

On en déduit immédiatement que si (1) possède une solution vérifiant

q 3, alors n est une puissance d'un nombre premier au moins égal à 5.

Dans les parties 5 et 6, on a résolu l'équation (1) dans le cas où x est

un carré ou la puissance de certains entiers fixés. Hirata-Kohno et Shorey

[24] ont complété ces informations en s'intéressant à (1) sous l'hypothèse
additionnelle que x est une puissance /x-ième.

THÉORÈME 16. Soit p >3 un nombre premier. Alors l'équation (1) n'a
qu'un nombre fini de solutions (x,y,n,q) vérifiant

q> 2(p- l)(2p - 3)

et x pour un entier z> 1. En outre, pour de telles solutions, xn est

majoré par une constante effectivement calculable ne dépendant que de p.

Il découle du Théorème 16 et du Théorème 9 que (1) ne possède qu'un
nombre fini de solutions (x,y,n,q) telles que x est un cube et q fi {5,7,11},
et l'on est naturellement amené à poser le problème suivant.

Problème 2. Montrer que l'équation

n'admet qu'un nombre fini de solutions (z,y,w), où z, y et n sont des entiers

supérieurs ou égaux à 3.

i

Aussi étonnant que cela puisse paraître, aucune technique actuellement j

connue ne semble en mesure de résoudre le Problème 2.
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