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de Le [27]. Nous avons cependant utilisé le raffinement du Théorème 1

démontré dans [9] et avons obtenu le résultat suivant [19].

Théorème 12. Si l'équation (1) a une solution (x,y,n,q) avec n > 5,

alors il existe un nombre premier p tel que p divise x et q divise p — 1. En

particulier, on a x > 2q+l.

Le Théorème 12 contient en particulier l'énoncé suivant, obtenu dans [17],

qui résout une conjecture vieille d'une cinquantaine d'années.

COROLLAIRE 1. Un nombre entier supérieur à 1 ne s'écrivant qu'avec
le chiffre 1 en base dix n'est pas une puissance parfaite.

Comme toutes les solutions de (1) vérifiant q 2 sont connues, le

Théorème 12 résout complètement (1) quand x est un produit de nombres

premiers de la forme 2a + 1. En outre, comme l'on dispose (cf. Inkeri [25])
de quelques informations sur (1) avec q — 3, on connaît toutes les solutions
de (1) si x est une puissance quelconque d'un entier inférieur ou égal à 20

et différent de 11. On est ainsi conduit à formuler le problème suivant.

Problème 1. Montrer que l'équation

n'admet qu'un nombre fini de solutions (y,f,n), où t > 1, y >2 et n > 3

sont des entiers.

Pour être complet, il convient de mentionner que la théorie des formes
linéaires de logarithmes ultramétriques simultanées en plusieurs places,
développée dans [11], permet d'étendre sensiblement le Théorème 12.
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Au cours de la troisième étape de la démonstration présentée dans la
j partie 5, nous avons vu comment un raisonnement de congruences permet de

j montrer, en principe, que, si les entiers x et q sont fixés, et s'il existe n et
,j y vérifiant (xn - l)/(x - 1 y*, alors n est congru à 1 modulo q. Ceci ne
j nous permet cependant pas de résoudre le Problème 1 car la variable t peut
I
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prendre des valeurs arbitrairement grandes. Toutefois, une légère modification
de l'argument précédent nous a permis [16, 18] de résoudre (9) et plus
généralement de résoudre (1) pour tout x assez petit.

THÉORÈME 13. Si l'équation (1) possède une quatrième solution (z\y, n, q),
alors z > 10000 si t > 1, et z > 106 si t — 1.

Pour démontrer ce résultat, on commence par appliquer le Théorème 12,

et on se retrouve alors avec un petit nombre d'équations à traiter du type

ztn- 1

~— ty >

z — 1

où q divise <p(z), que l'on traite à l'aide de la méthode décrite dans [16].

8. Une extension du théorème de Nagell et Ljunggren

Le Théorème 5 affirme que (1) n'a qu'un nombre fini de solutions (x,y, n, q)

pour lesquelles n est divisible par un nombre premier p ; cependant, (1) n'est

complètement résolue que dans le cas p 3 (cf. Théorème 1). La méthode

que nous présentons maintenant et qui fait l'objet de [14] permet d'étendre
les résultats de Nagell et Ljunggren aux nombres premiers /? 5,7,11 et 13,

ainsi que de résoudre (1) pour certaines petites valeurs de p et q.

THÉORÈME 14. Si (x, y, n,g) est une éventuelle quatrième solution de (1)
et si p est un diviseur premier impair de n, alors ou bien p > 29,

ou bien (p,q) G {(17,17), (19,19), (23,23)}. En outre, on a (p,q) ^
{(29,5), (29,19), (29,23), (31,23), (37,5), (37,7), (37,11), (67,5)}, et si

q — 3, alors p > 101.

Nous indiquons maintenant les grandes lignes de la démonstration. Soient

p > 5 un nombre premier et n un multiple de p. Le Théorème 3 entraîne

que si l'équation (1) a une solution (x,y,rc,q), alors l'une des équations

XP - 1 jrP — 1

(10) r=/, v=pyqx — 1 x — 1

admet une solution vérifiant x >2. Il nous suffit donc de résoudre ces deux

équations pour les couples (p,q) figurant dans l'énoncé du Théorème 14. Au

premier abord, cela semble irréaliste car les bornes théoriques pour la taille des
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