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Plus précisément, il ne reste a traiter que les €quations

5X4 —4y9 =1, 17 < g <171,
6X4 — 579 = 1, 17 < g <67,
7X9 —8Y1 =1, 17<qg<6l.

Ce sont toutes des équations de Thue, dont on sait majorer explicitement la
taille des solutions, et par conséquent en principe, les déterminer toutes. Or
les meilleures bornes actuellement connues sont de I'ordre de 10, donc
bien trop élevées pour envisager une résolution complete. Qu’a cela ne tienne !
Comme, griace a 1’étape précédente, on sait que n est de la forme vg + 1,
on cherche en fait a montrer que ces équations ne possedent aucune solution
(X,Y) avec X ou Y une puissance vr-ieme. On a donc une majoration de
v, puis de n, de I'ordre de 10°®. Pour conclure, on utilise & nouveau des
arguments modulaires afin de montrer que »n est nécessairement congru a 1
modulo un entier M, suffisamment grand (i.e. > 10°%).

6. OU APPARAISSENT LES FORMES LINEAIRES DE LOGARITHMES P -ADIQUES

Comme on I’a vu dans la partie 4, les formes linéaires de logarithmes
permettent de minorer non trivialement la distance d’un produit de nombres
algébriques a 1. On travaille alors avec la valeur absolue archimédienne, et
on peut raisonnablement se demander si un énoncé du méme style est valable
pour les valeurs absolues p-adiques. La réponse est oui (cf. les travaux de
Van der Poorten et de Kunrui Yu), et on déduit du résultat principal de [15]
la minoration suivante pour la distance p-adique entre deux puissances de
nombres rationnels.

THEOREME 11. Soient p un nombre premier, x,/y; et x,/y, deux nombres
rationnels non nuls et multiplicativement indépendants, que I’on suppose étre
des unités p-adiques. Soient m; et m, deux entiers rationnels strictement
positifs. Notons m = max{mi,my,2} et désignons par H;, i = 1,2, deux
nombres réels tels que H; > max{|x;|,|y;|,2}. Alors, la valuation p-adique

Up(A) de
A= (ﬂ)m _ (E)m
Y1 Y2

vp(A) < 2000 p log H; log H, log?m .

est majorée par




I
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Il convient de ne pas attacher trop d’importance au fait que la dépendance
en m soit la méme que dans [26], & savoir en log®m et non en logm comme
dans (5). La raison principale est la suivante : comme les constantes numériques
jouent un ro6le trés important pour la résolution pratique des problémes, on
s’attache tout particulierement a les raffiner, méme si cela se traduit par une
légere perte au niveau de la dépendance en m.

Par ailleurs, le facteur p qui apparait dans le membre de droite réduit le
champ d’application du Théoréme 11, qui, pour certaines questions, gagne a
étre remplacé par I’étude d’une forme linéaire de logarithmes archimédienne.
Cependant, quand p est un nombre que 1’on contrdle trés bien, le Théoreme
11 se révele riche de conséquences, et il est en outre important de préciser que
le facteur p disparait et la constante numérique diminue si les deux rationnels
sont p-adiquement proches de 1. C’est par exemple le cas pour 1’équation
diophantienne
10" — 1
®) 10" —1

En effet, réécrivons (8) sous la forme
10 1 1
=y7 — = A
10 —1 ° <1—10r) !
et appliquons le Théoreme 11 avec p = 5. On obtient alors

=7, en entiers ¢ >3, y>2,t>1,n>3.

nt < ctlogylog®q,

ol ¢ est une constante numérique, d’autant plus petite que ¢ est grand. Or
il est clair que nt est de I’ordre de grandeur de g logy. Ainsi, a ¢t fixé, on
obtient une bonne majoration de ¢, indépendante de n et de y. Par exemple,
dans le cas t =1, on obtient g < 2063.

Afin de traiter (8), il convient de majorer ¢ et, a cet effet, de faire appel
(comme dans la partie 5) a un résultat de Le [27], qui majore, ¢t en fonction
de ¢g. On vient cependant d’obtenir, via les formes linéaires de logarithmes
5-adiques, une minoration de ¢ en fonction de g. Les deux estimations se
croisent et conduisent, dans ce cas précis, a t < 11. D’apres le Théoreme 10, ¢
est nécessairement impair, donc il ne nous reste plus que six équations a traiter.

Pour cela, on montre a ’aide de congruences (cf. Troisieme étape de la
démonstration du Théoréme 10) que toute solution vérifie n = 1 (mod g),
puis on conclut en utilisant le Théoréme 8, ou bien en procédant exactement
comme lors de la quatriéme étape de la démonstration du Théoreme 10.

A T’aide de longs calculs sur ordinateur, nous avons appliqué cette méthode
pour traiter les valeurs de x auxquelles s’applique le lemme hypergéométrique
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de Le [27]. Nous avons cependant utilisé le raffinement du Théoreme 1
démontré dans [9] et avons obtenu le résultat suivant [19].

THEOREME 12. Si I’équation (1) a une solution (x,y,n,q) avec n = 5,
alors il existe un nombre premier p tel que p divise x et q divise p—1. En
particulier;, on a x > 2q + 1.

Le Théoréme 12 contient en particulier I’énoncé suivant, obtenu dans [17],
qui résout une conjecture vieille d’une cinquantaine d’années.

COROLLAIRE 1. Un nombre entier supérieur a 1 ne s’écrivant qu’avec
le chiffre 1 en base dix n’est pas une puissance parfaite.

Comme toutes les solutions de (1) vérifiant ¢ = 2 sont connues, le
Théoreme 12 résout completement (1) quand x est un produit de nombres
premiers de la forme 2% 4 1. En outre, comme 1’on dispose (cf. Inkeri [25])
de quelques informations sur (1) avec g = 3, on connait toutes les solutions
de (1) st x est une puissance quelconque d’un entier inférieur ou égal a 20
et différent de 11. On est ainsi conduit a formuler le probléme suivant.

PROBLEME 1. Montrer que 1’équation

117 — 1
9 Ty

n’admet qu’un nombre fini de solutions (y,t,n), ou t>1, y>2 et n > 3
sont des entiers.

Pour étre complet, il convient de mentionner que la théorie des formes
linaires de logarithmes ultramétriques simultanées en plusieurs places,
développée dans [11], permet d’étendre sensiblement le Théoréeme 12.

7. A NOUVEAU LES CONGRUENCES

Au cours de la troisicme étape de la démonstration présentée dans la
partie 5, nous avons vu comment un raisonnement de congruences permet de
montrer, en principe, que, si les entiers x et g sont fixés, et s’il existe n et
y vérifiant (x" —1)/(x — 1) =7, alors n est congru a 1 modulo ¢. Ceci ne
nous permet cependant pas de résoudre le Probléme 1 car la variable ? peut




	6. OÙ APPARAISSENT LES FORMES LINÉAIRES DE LOGARITHMES p-ADIQUES

