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Plus précisément, il ne reste à traiter que les équations

5Xq -4Yq 1, 17 < q < 71,

6Xq — 5Yq 1, 17 <q<67,
lXq - 8 Yq -1, 17 < # < 61.

Ce sont toutes des équations de Thue, dont on sait majorer explicitement la

taille des solutions, et par conséquent en principe, les déterminer toutes. Or
les meilleures bornes actuellement connues sont de l'ordre de 1010 donc

bien trop élevées pour envisager une résolution complète. Qu'à cela ne tienne

Comme, grâce à l'étape précédente, on sait que n est de la forme vq+ 1,

on cherche en fait à montrer que ces équations ne possèdent aucune solution

(X, Y) avec X ou Y une puissance i/-ième. On a donc une majoration de

i/, puis de n, de l'ordre de ÎO500. Pour conclure, on utilise à nouveau des

arguments modulaires afin de montrer que n est nécessairement congru à 1

modulo un entier M, suffisamment grand (i.e. > ÎO500).

6. OÙ APPARAISSENT LES FORMES LINÉAIRES DE LOGARITHMES p-ADIQUES

Comme on l'a vu dans la partie 4, les formes linéaires de logarithmes
permettent de minorer non trivialement la distance d'un produit de nombres

algébriques à 1. On travaille alors avec la valeur absolue archimédienne, et

on peut raisonnablement se demander si un énoncé du même style est valable

pour les valeurs absolues p-adiques. La réponse est oui (cf. les travaux de

Van der Poorten et de Kunrui Yu), et on déduit du résultat principal de [15]
la minoration suivante pour la distance /?-adique entre deux puissances de

nombres rationnels.

THÉORÈME 11. Soient p un nombre premier, X\/y\ et x2jy2 deux nombres
rationnels non nuls et multiplicativement indépendants, que Von suppose être
des unités p-adiques. Soient m\ et m2 deux entiers rationnels strictement
positifs. Notons m max{mi,ra2,2} et désignons par Ht, i 1,2, deux
nombres réels tels que Ht > max{|*/|, \yt\, 2}. Alors, la valuation p-adique
vp(A) de

est majorée par

vp(A) < 2000p logH\ log#2 log2m.
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Il convient de ne pas attacher trop d'importance au fait que la dépendance

en m soit la même que dans [26], à savoir en log2 m et non en log m comme
dans (5). La raison principale est la suivante : comme les constantes numériques
jouent un rôle très important pour la résolution pratique des problèmes, on
s'attache tout particulièrement à les raffiner, même si cela se traduit par une

légère perte au niveau de la dépendance en m.

Par ailleurs, le facteur p qui apparaît dans le membre de droite réduit le

champ d'application du Théorème 11, qui, pour certaines questions, gagne à

être remplacé par l'étude d'une forme linéaire de logarithmes archimédienne.

Cependant, quand p est un nombre que l'on contrôle très bien, le Théorème
11 se révèle riche de conséquences, et il est en outre important de préciser que
le facteur p disparaît et la constante numérique diminue si les deux rationnels
sont -adiquement proches de 1. C'est par exemple le cas pour l'équation
diophantienne

\0nt - 1

(8) — — y en entiers q > 3, y >2, t > 1, n> 3

En effet, réécrivons (8) sous la forme

l V_. A

10'-1 * Vl-10') ' '

et appliquons le Théorème 11 avec p — 5. On obtient alors

nt < et log y log2 q

où c est une constante numérique, d'autant plus petite que t est grand. Or

il est clair que nt est de l'ordre de grandeur de q log};. Ainsi, à t fixé, on
obtient une bonne majoration de q, indépendante de n et de 3;. Par exemple,
dans le cas t 1, on obtient q < 2063.

Afin de traiter (8), il convient de majorer t et, à cet effet, de faire appel

(comme dans la partie 5) à un résultat de Le [27], qui majore, t en fonction
de q. On vient cependant d'obtenir, via les formes linéaires de logarithmes

5-adiques, une minoration de t en fonction de q. Les deux estimations se

croisent et conduisent, dans ce cas précis, à t < 11. D'après le Théorème 10, t
est nécessairement impair, donc il ne nous reste plus que six équations à traiter.

Pour cela, on montre à l'aide de congruences (cf. Troisième étape de la
démonstration du Théorème 10) que toute solution vérifie n m 1 (mod#),
puis on conclut en utilisant le Théorème 8, ou bien en procédant exactement

comme lors de la quatrième étape de la démonstration du Théorème 10.

A l'aide de longs calculs sur ordinateur, nous avons appliqué cette méthode

pour traiter les valeurs de x auxquelles s'applique le lemme hypergéométrique
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de Le [27]. Nous avons cependant utilisé le raffinement du Théorème 1

démontré dans [9] et avons obtenu le résultat suivant [19].

Théorème 12. Si l'équation (1) a une solution (x,y,n,q) avec n > 5,

alors il existe un nombre premier p tel que p divise x et q divise p — 1. En

particulier, on a x > 2q+l.

Le Théorème 12 contient en particulier l'énoncé suivant, obtenu dans [17],

qui résout une conjecture vieille d'une cinquantaine d'années.

COROLLAIRE 1. Un nombre entier supérieur à 1 ne s'écrivant qu'avec
le chiffre 1 en base dix n'est pas une puissance parfaite.

Comme toutes les solutions de (1) vérifiant q 2 sont connues, le

Théorème 12 résout complètement (1) quand x est un produit de nombres

premiers de la forme 2a + 1. En outre, comme l'on dispose (cf. Inkeri [25])
de quelques informations sur (1) avec q — 3, on connaît toutes les solutions
de (1) si x est une puissance quelconque d'un entier inférieur ou égal à 20

et différent de 11. On est ainsi conduit à formuler le problème suivant.

Problème 1. Montrer que l'équation

n'admet qu'un nombre fini de solutions (y,f,n), où t > 1, y >2 et n > 3

sont des entiers.

Pour être complet, il convient de mentionner que la théorie des formes
linéaires de logarithmes ultramétriques simultanées en plusieurs places,
développée dans [11], permet d'étendre sensiblement le Théorème 12.

i 7. A NOUVEAU LES CONGRUENCES

Au cours de la troisième étape de la démonstration présentée dans la
j partie 5, nous avons vu comment un raisonnement de congruences permet de

j montrer, en principe, que, si les entiers x et q sont fixés, et s'il existe n et
,j y vérifiant (xn - l)/(x - 1 y*, alors n est congru à 1 modulo q. Ceci ne
j nous permet cependant pas de résoudre le Problème 1 car la variable t peut
I
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