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Le Théorème 8 se trouve énoncé dans [30], mais la démonstration qu'en

donne Le est erronée, ainsi d'ailleurs que les démonstrations de [52], comme

le remarque Ping-Zhi Yuan [53] (voir aussi [4]).

Le Théorème 7 permet également de retrouver un résultat de Le [28],

démontré par Inkeri [25] lorsque q 3.

1 THÉORÈME 9. L'équation (1) ne possède aucune solution (x,y,n,q) où

| x est une puissance q-ième.

Démonstration. Supposons qu'il existe z > 1, y > 1, q > 2 et n > 3

tels que zqn — l (zq — l)yq. D'après le Théorème 1 (i), on a q > 3 et il
; suffit d'appliquer le Théorème 7 à l'équation zq Zq — (zq — Y)Yq 1 pour

conclure.

Les Théorèmes 8 et 9 jouent un rôle très important dans les démonstrations

des résultats présentés dans les chapitres suivants.

5. Un exemple de résolution complète de l'équation (1)

Une question naturelle consiste à se demander si (1) admet une solution

(x,y, n, #), où x est une puissance pure. D'après le Théorème 9, on sait déjà

que x ne peut en aucun cas être une puissance g-ième. Le résultat suivant

montre que x n'est pas non plus un carré.

THÉORÈME 10. L'équation (1) n'admet aucune solution (x,y,n,q) où x
est un carré.

Le Théorème 10 a été obtenu indépendamment et au moyen de deux
méthodes différentes par Bennett [4] et Bugeaud, Mignotte, Roy et Shorey
[20], complétant des résultats antérieurs de Saradha et Shorey [42]. Nous
choisissons de détailler les étapes principales de la démonstration de [20], qui
ne fait appel ni au Théorème 7, ni au Théorème 8.

Le Théorème 1 (i) couvre le cas q 2 et un argument facile de factorisation
montre qu'il suffit de prouver le Théorème 10 quand n est impair. Supposons
donc que les entiers z > 2, n > 5, q> 3 et y > 2 avec n impair vérifient
l'équation
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Alors, il existe deux entiers y\ et y2 tels que

(7)

Première étape.

Eliminant zn du système (7), on obtient l'équation

(z+1 )y\ =2,
à laquelle on peut appliquer le raffinement des formes linéaires de logarithmes
mentionné plus haut. Ainsi, on borne q et on obtient que q est majoré par
200, indépendamment de z > 5, et par 132, indépendamment de z > 12.

Deuxième étape.

Avant toute chose, on observe que Saradha et Shorey [42] ont démontré

que l'on a nécessairement (z<p(z),q) 1, où p est l'indicateur d'Euler. Or
cette information supplémentaire nous permet d'appliquer un lemme de nature

hypergéométrique, démontré par Le [27] puis raffiné par Saradha et Shorey

[42]. On obtient ainsi une très bonne majoration de z en fonction de q, à

savoir z < 1.61 q1/2. En réalité, on démontre des estimations plus précises,

lesquelles, combinées au résultat de la première étape, entraînent z < 11. Par

conséquent, on est ramené à étudier un nombre fini de paires (z,q).

Troisième étape.

Pour chaque paire (z, q) restante, on vérifie que n est congru à 1 modulo q.
Pour cela, on regarde l'équation xn — 1 — {x — \)yq, avec x et q fixés. Si p est

un nombre premier de la forme kq + 1, alors (yq)k 1 (mod p), donc yq ne

prend qu'un petit nombre de valeurs modulo p. Ainsi n ne prend également

qu'un petit nombre de valeurs modulo p — 1, en particulier modulo q. Pour

obtenir le résultat souhaité, l'expérience montre qu'il suffit de considérer en

général deux ou trois tels nombres premiers p, en tout cas rarement plus
de six.

Quatrième étape.

Compte tenu des trois étapes précédentes, on est ramené à considérer un
nombre fini d'équations de la forme

xXq -(x - 1 )Yq ±1



L'ÉQUATION DE NAGELL-LJUNGGREN 157

Plus précisément, il ne reste à traiter que les équations

5Xq -4Yq 1, 17 < q < 71,

6Xq — 5Yq 1, 17 <q<67,
lXq - 8 Yq -1, 17 < # < 61.

Ce sont toutes des équations de Thue, dont on sait majorer explicitement la

taille des solutions, et par conséquent en principe, les déterminer toutes. Or
les meilleures bornes actuellement connues sont de l'ordre de 1010 donc

bien trop élevées pour envisager une résolution complète. Qu'à cela ne tienne

Comme, grâce à l'étape précédente, on sait que n est de la forme vq+ 1,

on cherche en fait à montrer que ces équations ne possèdent aucune solution

(X, Y) avec X ou Y une puissance i/-ième. On a donc une majoration de

i/, puis de n, de l'ordre de ÎO500. Pour conclure, on utilise à nouveau des

arguments modulaires afin de montrer que n est nécessairement congru à 1

modulo un entier M, suffisamment grand (i.e. > ÎO500).

6. OÙ APPARAISSENT LES FORMES LINÉAIRES DE LOGARITHMES p-ADIQUES

Comme on l'a vu dans la partie 4, les formes linéaires de logarithmes
permettent de minorer non trivialement la distance d'un produit de nombres

algébriques à 1. On travaille alors avec la valeur absolue archimédienne, et

on peut raisonnablement se demander si un énoncé du même style est valable

pour les valeurs absolues p-adiques. La réponse est oui (cf. les travaux de

Van der Poorten et de Kunrui Yu), et on déduit du résultat principal de [15]
la minoration suivante pour la distance /?-adique entre deux puissances de

nombres rationnels.

THÉORÈME 11. Soient p un nombre premier, X\/y\ et x2jy2 deux nombres
rationnels non nuls et multiplicativement indépendants, que Von suppose être
des unités p-adiques. Soient m\ et m2 deux entiers rationnels strictement
positifs. Notons m max{mi,ra2,2} et désignons par Ht, i 1,2, deux
nombres réels tels que Ht > max{|*/|, \yt\, 2}. Alors, la valuation p-adique
vp(A) de

est majorée par

vp(A) < 2000p logH\ log#2 log2m.
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