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Le Théoreme 8 se trouve énoncé dans [30], mais la démonstration qu’en
donne Le est erronée, ainsi d’ailleurs que les démonstrations de [52], comme
le remarque Ping-Zhi Yuan [53] (voir aussi [4]).

Le Théoréme 7 permet également de retrouver un résultat de Le [28],
démontré par Inkeri [25] lorsque g = 3. |

THEOREME 9. L’équation (1) ne posséde aucune solution (x,y,n,q) ou
X est une puissance q-ieme.

Démonstration. Supposons qu’il existe z > 1, y>1, g>2 et n >3
tels que z%" — 1 = (z7 — 1)y4. D’apres le Théoréme 1(i), on a g > 3 et il
suffit d’appliquer le Théoréme 7 a 1’équation z7Z% — (z7 — 1)Y% = 1 pour
conclure. [

Les Théorémes 8 et 9 jouent un role trés important dans les démonstrations
des résultats présentés dans les chapitres suivants.

5. UN EXEMPLE DE RESOLUTION COMPLETE DE L’EQUATION (1)

Une question naturelle consiste a se demander si (1) admet une solution
(x,y,n,q), o x est une puissance pure. D’apres le Théoreme 9, on sait déja
que x ne peut en aucun cas &tre une puissance g-ieme. Le résultat suivant
montre que x n’est pas non plus un carré.

THEOREME 10. L’équation (1) n’admet aucune solution (x,y,n,q) ou x
est un carré.

Le Théoreme 10 a été obtenu indépendamment et au moyen de deux
méthodes différentes par Bennett [4] et Bugeaud, Mignotte, Roy et Shorey
[20], complétant des résultats antérieurs de Saradha et Shorey [42]. Nous
choisissons de détailler les étapes principales de la démonstration de [20], qui
ne fait appel ni au Théoréme 7, ni au Théoréeme 8.

Le Théoréme 1 (i) couvre le cas ¢ = 2 et un argument facile de factorisation
montre qu’il suffit de prouver le Théoréme 10 quand n est impair. Supposons
donc que les entiers z > 2, n>5, g >3 et y > 2 avec n impair vérifient
I’équation
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Alors, il existe deux entiers y; et y, tels que

q

7'+ 1

X z+1

=y? et

PREMIERE ETAPE.

Eliminant z" du systeme (7), on obtient 1’équation
@+Dy;—@-1yl =2,

a laquelle on peut appliquer le raffinement des formes linéaires de logarithmes
mentionné plus haut. Ainsi, on borne g et on obtient que g est majoré par
200, indépendamment de z > 5, et par 132, indépendamment de z > 12.

DEUXIEME ETAPE.

Avant toute chose, on observe que Saradha et Shorey [42] ont démontré
que ’on a nécessairement (z(z),q) = 1, ol ¢ est I'indicateur d’Euler. Or
cette information supplémentaire nous permet d’appliquer un lemme de nature
hypergéométrique, démontré par Le [27] puis raffiné par Saradha et Shorey
[42]. On obtient ainsi une trés bonne majoration de z en fonction de ¢, a-
savoir z < 1.61 ql/ 2. En réalité, on démontre des estimations plus précises,
lesquelles, combinées au résultat de la premiere étape, entrainent z < 11. Par
conséquent, on est ramené a étudier un nombre fini de paires (z,q).

TROISIEME ETAPE.

Pour chaque paire (z,q) restante, on vérifie que n est congru a 1 modulo g.
Pour cela, on regarde 1’équation x"—1 = (x—1)y?, avec x et g fixés. Si p est
un nombre premier de la forme kg + 1, alors (y9)* = 1 (mod p), donc y? ne
prend qu’un petit nombre de valeurs modulo p. Ainsi n ne prend également
qu’un petit nombre de valeurs modulo p — 1, en particulier modulo g. Pour
obtenir le résultat souhaité, I’expérience montre qu’il suffit de considérer en
général deux ou trois tels nombres premiers p, en tout cas rarement plus
de six.

QUATRIEME ETAPE.

- Compte tenu des trois étapes précédentes, on est ramené a considérer un
nombre fini d’équations de la forme

xX? — (x— 1DY? = +1.
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Plus précisément, il ne reste a traiter que les €quations

5X4 —4y9 =1, 17 < g <171,
6X4 — 579 = 1, 17 < g <67,
7X9 —8Y1 =1, 17<qg<6l.

Ce sont toutes des équations de Thue, dont on sait majorer explicitement la
taille des solutions, et par conséquent en principe, les déterminer toutes. Or
les meilleures bornes actuellement connues sont de I'ordre de 10, donc
bien trop élevées pour envisager une résolution complete. Qu’a cela ne tienne !
Comme, griace a 1’étape précédente, on sait que n est de la forme vg + 1,
on cherche en fait a montrer que ces équations ne possedent aucune solution
(X,Y) avec X ou Y une puissance vr-ieme. On a donc une majoration de
v, puis de n, de I'ordre de 10°®. Pour conclure, on utilise & nouveau des
arguments modulaires afin de montrer que »n est nécessairement congru a 1
modulo un entier M, suffisamment grand (i.e. > 10°%).

6. OU APPARAISSENT LES FORMES LINEAIRES DE LOGARITHMES P -ADIQUES

Comme on I’a vu dans la partie 4, les formes linéaires de logarithmes
permettent de minorer non trivialement la distance d’un produit de nombres
algébriques a 1. On travaille alors avec la valeur absolue archimédienne, et
on peut raisonnablement se demander si un énoncé du méme style est valable
pour les valeurs absolues p-adiques. La réponse est oui (cf. les travaux de
Van der Poorten et de Kunrui Yu), et on déduit du résultat principal de [15]
la minoration suivante pour la distance p-adique entre deux puissances de
nombres rationnels.

THEOREME 11. Soient p un nombre premier, x,/y; et x,/y, deux nombres
rationnels non nuls et multiplicativement indépendants, que I’on suppose étre
des unités p-adiques. Soient m; et m, deux entiers rationnels strictement
positifs. Notons m = max{mi,my,2} et désignons par H;, i = 1,2, deux
nombres réels tels que H; > max{|x;|,|y;|,2}. Alors, la valuation p-adique

Up(A) de
A= (ﬂ)m _ (E)m
Y1 Y2

vp(A) < 2000 p log H; log H, log?m .

est majorée par
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