Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 48 (2002)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: L'EQUATION DE NAGELL-LJUNGGREN $\frac{x*n — 1{x — 1} = y*q$
Autor: Bugeaud, Yann / MIGNOTTE, Maurice

Kapitel: 4. Un outil important : les formes linéaires de logarithmes

DOI: https://doi.org/10.5169/seals-66071

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-66071
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en
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Ainsi, il 'ne reste plus qu’a examiner le cas p =3 et g = 2, pour lequel de
simples considérations de congruences conduisent au résultat (cf. [48]).

Démontrons maintenant (iii). Si p divise x — 1, alors (x" — 1) /x—1)=n
(mod p), donc p divise n et on est ramené a (ii). Dans le cas contraire, soit
t > 1 le plus petit entier u > 1 tel que p divise x* — 1. Il est clair que ¢
divise p — 1. En outre, ¢ divise n puisque x* — 1 = 0 (mod p). Ainsi, n est
multiple d’un des diviseurs premiers de p — 1 et on est également ramené

a ). O

4. UN OUTIL IMPORTANT : LES FORMES LINEAIRES DE LOGARITHMES

Apres avoir détaillé quelques-unes parmi les nombreuses conséquences des
résultats de Baker, nous expliquons brievement ce qu’est une forme linéaire
de logarithmes, puis donnons un exemple de raffinement, a priori modeste,
mais tres riche de conséquences.

Soit n > 1 et, pour 1 <i < n, soient x;/y; des nombres rationnels non
nuls et m; des entiers non nuls. Notons m > 2 un majorant des |m;| et
H; > 3 un majorant des quantités |x;| et |y;|. On suppose que

el e
1 Yn

est non nul. Alors, par une simple estimation du dénominateur de A, on
obtient

n n
log A > —Zmi log |y;| > —m Z log H; .

i=1 i=1
La dépendance en les H; est trés satisfaisante, au contraire de celle en m. Or,
pour résoudre de nombreux problemes en théorie des nombres, on aimerait
disposer d’une meilleure estimation du point de vue de m, ‘quitte a faire
quelques concessions relativement aux H;. Baker [1, 2] a, le premier, démontré
un tel résultat, et on sait maintenant (d’apres Baker et Wiistholz [3]) que, sous
les hypotheses précédentes, on a

(5) log A > —(50n)*" logH, ...log H, logm,

et on conjecture que l’on peut remplacer le produit des logH; par leur
somme. Cela a ét€ démontré par Shorey [43] (voir également les estimations
de Waldschmidt [51], qui incluent tous les raffinements connus en 1993) dans
le cas particulier ou les rationnels x;/y; sont tous trés proches de 1. Un
exemple spectaculaire d’application est donné par 1’équation
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(b + 1)x™ —by"| =1, en inconnues b >2,x>0,y> 0,

qui conduit & estimer la quantité

1 b+1<)_c>m_1‘
by | b \y '

De (5) découle la minoration

—m logy > —10% log(b + 1) logy logm,

mais, comme (b + 1)/b et x/y sont trés proches de 1 quand x, y et b
sont grands, on peut appliquer le raffinement et, par conséquent, obtenir (par
exemple en utilisant [26], ou ’on observe cependant que le «logm » de (5)
est alors remplacé par « log® m »)

—m logy > —10° logy log®m,

soit une majoration de m indépendante de b, résultat dii originellement a
Mignotte [33], puis raffiné par Bennett et de Weger [5], qui ont démontré le
théoreme suivant.

THEOREME 6. Soient a, b et n des entiers vérifiant a > b > 1 et n > 3.
Alors I’équation
lax® — by"| =1

admet au plus une solution en entiers positifs (x,y), sauf éventuellement si
a=b+1, 2<b<min{0.3n,83} er 17 <n < 347.

Le Théoreme 6 a été démontré indépendamment par Delone [22] et Nagell
[38] pour n =3 et par Ljunggren [32] dans le cas n = 4.

Tout d’abord, il convient de souligner que le cas (a,b) = (2,1) du
Théoreme 6 est une conséquence d’un résultat difficile de Darmon et Mérel
[21], qui ont prouvé que I’équation diophantienne X" 4 Y" = 2Z" avec
n > 3 n’admet comme solutions enticres que les solutions triviales. Leur
démonstration reprend des idées développées par Wiles afin de résoudre la
conjecture de Fermat.

A Vexception de ce cas particulier, le Théoréme 6 fait appel a trois
techniques d’approximation diophantienne, que 1’on présente brievement sous
I’hypotheése additionnelle a = b + 1, destinée uniquement a simplifier les
explications. La premiere, les formes linéaires en deux logarithmes, a été
évoquée plus haut: elle permet de majorer n indépendamment de b. La
seconde repose sur 1’observation suivante. Si |(b + 1)x" — by"| = 1, alors
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1
bny"

W1
14— =

(6) 5y

<

et donc le nombre algébrique /1 + 1/b admet une trés bonne approximation
rationnelle, en ’occurrence x/y. Or, a I’aide de techniques basées sur la
construction explicite des approximants de Padé de la fonction z — /1 —z,
il est possible, pour certaines valeurs de b et de n, de construire une suite de
rationnels (p,,/qn)m qui contient toutes les bonnes approximations rationnelles

de +/1+ 1/b. En outre, on contrdle bien les différences l{’/ 1+1/b—pu/ qml :

et on peut ainsi en déduire qu’aucun rationnel x/y ne vérifie (6). Cette méthode
est efficace quand n et b ne sont pas trop petits, mais elle reste d’un emploi
délicat, et son succes n’est pas a priori assuré.

Le troisieme outil utilisé par Bennett et de Weger est la théorie algorith-
mique des nombres : a I’aide de calculs sur ordinateur, utilisant des algorithmes
astucieux, ils ont completement résolu les équations appelées équations de Thue
(b + Dx* — by*| = £1, pour (b,n) € {(2,5),(2,7),(2,11),(2,13),(3,13)}.
Cela illustre bien les limites de ce que 1’on savait faire vers 1996. A I’heure
actuelle, on peut imaginer pouvoir résoudre par cette méthode toutes les paires
(b,n) avec 17 <n<21 et 2<b<0.3n.

Au prix de longs efforts, le Théoreme 6 a été amélioré par Bennett [4],
qui a raffiné la seconde technique et prouvé le résultat remarquable suivant.

THEOREME 7. Soient a, b et n des entiers vérifiant a > b > 1 et n > 3.
Alors [’équation

lax" — by"| =1

admet au plus une solution en entiers positifs (x,y).

Il est alors facile d’en déduire un résultat démontré indépendamment par
Mignotte [34], mais par une autre méthode.

THEOREME 8. La seule solution (x,y,n,q) de I’équation (1) avec n=1
(mod ¢q) est (3,11,5,2).

Démonstration. Au vu du Théoreme 1, on peut supposer que g est
un nombre premier impair. Posons n = vg + 1, I’équation (1) s’écrit alors
x(x") — (x — 1)y? = 1, et il suffit d’appliquer le Théoreme 7 pour constater
qu’il n’y a alors pas de solution. [
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Le Théoreme 8 se trouve énoncé dans [30], mais la démonstration qu’en
donne Le est erronée, ainsi d’ailleurs que les démonstrations de [52], comme
le remarque Ping-Zhi Yuan [53] (voir aussi [4]).

Le Théoréme 7 permet également de retrouver un résultat de Le [28],
démontré par Inkeri [25] lorsque g = 3. |

THEOREME 9. L’équation (1) ne posséde aucune solution (x,y,n,q) ou
X est une puissance q-ieme.

Démonstration. Supposons qu’il existe z > 1, y>1, g>2 et n >3
tels que z%" — 1 = (z7 — 1)y4. D’apres le Théoréme 1(i), on a g > 3 et il
suffit d’appliquer le Théoréme 7 a 1’équation z7Z% — (z7 — 1)Y% = 1 pour
conclure. [

Les Théorémes 8 et 9 jouent un role trés important dans les démonstrations
des résultats présentés dans les chapitres suivants.

5. UN EXEMPLE DE RESOLUTION COMPLETE DE L’EQUATION (1)

Une question naturelle consiste a se demander si (1) admet une solution
(x,y,n,q), o x est une puissance pure. D’apres le Théoreme 9, on sait déja
que x ne peut en aucun cas &tre une puissance g-ieme. Le résultat suivant
montre que x n’est pas non plus un carré.

THEOREME 10. L’équation (1) n’admet aucune solution (x,y,n,q) ou x
est un carré.

Le Théoreme 10 a été obtenu indépendamment et au moyen de deux
méthodes différentes par Bennett [4] et Bugeaud, Mignotte, Roy et Shorey
[20], complétant des résultats antérieurs de Saradha et Shorey [42]. Nous
choisissons de détailler les étapes principales de la démonstration de [20], qui
ne fait appel ni au Théoréme 7, ni au Théoréeme 8.

Le Théoréme 1 (i) couvre le cas ¢ = 2 et un argument facile de factorisation
montre qu’il suffit de prouver le Théoréme 10 quand n est impair. Supposons
donc que les entiers z > 2, n>5, g >3 et y > 2 avec n impair vérifient
I’équation
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