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Ainsi, il ne reste plus qu'à examiner le cas p 3 et q 2, pour lequel de

simples considérations de congruences conduisent au résultat (cf. [48]).

Démontrons maintenant (iii). Si p divise x—1, alors (xn — ï)/(x — 1) n
(mod p), donc p divise n et on est ramené à (ii). Dans le cas contraire, soit
t > 1 le plus petit entier u > 1 tel que p divise xu — 1. Il est clair que t
divise p — 1. En outre, t divise n puisque xn — 1 0 (mod p). Ainsi, n est

multiple d'un des diviseurs premiers de p — 1 et on est également ramené
à (ii).

4. Un outil important : les formes linéaires de logarithmes

Après avoir détaillé quelques-unes parmi les nombreuses conséquences des

résultats de Baker, nous expliquons brièvement ce qu'est une forme linéaire
de logarithmes, puis donnons un exemple de raffinement, a priori modeste,
mais très riche de conséquences.

Soit n > 1 et, pour 1 < i < n, soient Xi/yt des nombres rationnels non
nuls et mi des entiers non nuls. Notons m > 2 un majorant des |mjj et

H, > 3 un majorant des quantités \xt\ et |y/|. On suppose que

A := 1

^yij V3V

est non nul. Alors, par une simple estimation du dénominateur de A, on
obtient

n n

log A > m, log |y, | >-m ^2 ,08
i= 1 i=ï

La dépendance en les Ht est très satisfaisante, au contraire de celle en m. Or,

pour résoudre de nombreux problèmes en théorie des nombres, on aimerait

disposer d'une meilleure estimation du point de vue de m, 'quitte à faire

quelques concessions relativement aux //;. Baker [1, 2] a, le premier, démontré

un tel résultat, et on sait maintenant (d'après Baker et Wüstholz [3]) que, sous

les hypothèses précédentes, on a

(5) log A > -(50 nfnlogHi log Hn log m,

et on conjecture que l'on peut remplacer le produit des log/// par leur

somme. Cela a été démontré par Shorey [43] (voir également les estimations
de Waldschmidt [51], qui incluent tous les raffinements connus en 1993) dans

le cas particulier où les rationnels xt/yt sont tous très proches de 1. Un

exemple spectaculaire d'application est donné par l'équation
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|(6 + 1 )V1,

qui conduit à estimer la quantité

1

bym
~

en inconnues b >2, x > 0, y > 0,

fi 4- 1

— 1

De (5) découle la minoration

-m log y > -108 log(fi + 1) log y log m,

mais, comme (fi + l)/fi et x/y sont très proches de 1 quand x, y et b

sont grands, on peut appliquer le raffinement et, par conséquent, obtenir (par

exemple en utilisant [26], où l'on observe cependant que le «logm» de (5)

est alors remplacé par « log2 m »)

-m log y > -108 log y log2 m,

soit une majoration de m indépendante de b, résultat dû originellement à

Mignotte [33], puis raffiné par Bennett et de Weger [5], qui ont démontré le

théorème suivant.

THÉORÈME 6. Soient a, b et n des entiers vérifiant a > b > 1 et n > 3.

Alors Véquation
| axn — byn | 1

admet au plus une solution en entiers positifs (x,y), sauf éventuellement si

a — 17+1, 2 < fi < min{0.3 n, 83} et 17 < n < 347.

Le Théorème 6 a été démontré indépendamment par Delone [22] et Nagell
[38] pour n — 3 et par Ljunggren [32] dans le cas n 4.

Tout d'abord, il convient de souligner que le cas (a, b) (2,1) du

Théorème 6 est une conséquence d'un résultat difficile de Darmon et Mérel

[21], qui ont prouvé que l'équation diophantienne Xn -f Yn 2Zn avec

n > 3 n'admet comme solutions entières que les solutions triviales. Leur
démonstration reprend des idées développées par Wiles afin de résoudre la

conjecture de Fermât.

A l'exception de ce cas particulier, le Théorème 6 fait appel à trois
techniques d'approximation diophantienne, que l'on présente brièvement sous

l'hypothèse additionnelle a b + 1, destinée uniquement à simplifier les

explications. La première, les formes linéaires en deux logarithmes, a été

évoquée plus haut: elle permet de majorer n indépendamment de fi. La
seconde repose sur l'observation suivante. Si |(fi + \)xn — byn\ 1, alors
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(6) 1 +
i ;
b y

1

<
bnyn

et donc le nombre algébrique {/\ + 1 jb admet une très bonne approximation
rationnelle, en l'occurrence xjy. Or, à l'aide de techniques basées sur la
construction explicite des approximants de Padé de la fonction z ^ \j1 — z,
il est possible, pour certaines valeurs de b et de n, de construire une suite de

rationnels (pm/qm)m qui contient toutes les bonnes approximations rationnelles

de {/l + 1 jb. En outre, on contrôle bien les différences {/1 + 1 jb — pm/qm >

et on peut ainsi en déduire qu'aucun rationnel xjy ne vérifie (6). Cette méthode

est efficace quand n et b ne sont pas trop petits, mais elle reste d'un emploi
délicat, et son succès n'est pas a priori assuré.

Le troisième outil utilisé par Bennett et de Weger est la théorie algorithmique

des nombres : à l'aide de calculs sur ordinateur, utilisant des algorithmes
astucieux, ils ont complètement résolu les équations appelées équations de Thue

\(b+l)xn-byn\ ±1, pour (M) {(2, 5), (2,7), (2,11), (2,13), (3,13)}.
Cela illustre bien les limites de ce que l'on savait faire vers 1996. A l'heure
actuelle, on peut imaginer pouvoir résoudre par cette méthode toutes les paires

(b,n) avec 17 < n < 21 et 2 < b < 0.3n.

Au prix de longs efforts, le Théorème 6 a été amélioré par Bennett [4],
qui a raffiné la seconde technique et prouvé le résultat remarquable suivant.

THÉORÈME 7. Soient a, b et n des entiers vérifiant a > b > 1 et n> 3.

Alors l'équation
| axn - byn | 1

admet au plus une solution en entiers positifs (x,y).

Il est alors facile d'en déduire un résultat démontré indépendamment par
Mignotte [34], mais par une autre méthode.

THÉORÈME 8. La seule solution (x,y,n,g) de l'équation (1) avec n= 1

(mod q) est (3,11,5,2).

Démonstration. Au vu du Théorème 1, on peut supposer que q est

un nombre premier impair. Posons n — vq + 1, l'équation (1) s'écrit alors

x(xv)q — (x — 1 )yq 1, et il suffit d'appliquer le Théorème 7 pour constater

qu'il n'y a alors pas de solution.



L'ÉQUATION DE NAGELL-LJUNGGREN 155

Le Théorème 8 se trouve énoncé dans [30], mais la démonstration qu'en

donne Le est erronée, ainsi d'ailleurs que les démonstrations de [52], comme

le remarque Ping-Zhi Yuan [53] (voir aussi [4]).

Le Théorème 7 permet également de retrouver un résultat de Le [28],

démontré par Inkeri [25] lorsque q 3.

1 THÉORÈME 9. L'équation (1) ne possède aucune solution (x,y,n,q) où

| x est une puissance q-ième.

Démonstration. Supposons qu'il existe z > 1, y > 1, q > 2 et n > 3

tels que zqn — l (zq — l)yq. D'après le Théorème 1 (i), on a q > 3 et il
; suffit d'appliquer le Théorème 7 à l'équation zq Zq — (zq — Y)Yq 1 pour

conclure.

Les Théorèmes 8 et 9 jouent un rôle très important dans les démonstrations

des résultats présentés dans les chapitres suivants.

5. Un exemple de résolution complète de l'équation (1)

Une question naturelle consiste à se demander si (1) admet une solution

(x,y, n, #), où x est une puissance pure. D'après le Théorème 9, on sait déjà

que x ne peut en aucun cas être une puissance g-ième. Le résultat suivant

montre que x n'est pas non plus un carré.

THÉORÈME 10. L'équation (1) n'admet aucune solution (x,y,n,q) où x
est un carré.

Le Théorème 10 a été obtenu indépendamment et au moyen de deux
méthodes différentes par Bennett [4] et Bugeaud, Mignotte, Roy et Shorey
[20], complétant des résultats antérieurs de Saradha et Shorey [42]. Nous
choisissons de détailler les étapes principales de la démonstration de [20], qui
ne fait appel ni au Théorème 7, ni au Théorème 8.

Le Théorème 1 (i) couvre le cas q 2 et un argument facile de factorisation
montre qu'il suffit de prouver le Théorème 10 quand n est impair. Supposons
donc que les entiers z > 2, n > 5, q> 3 et y > 2 avec n impair vérifient
l'équation
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