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que yp1 + 1 y\. On retrouve alors l'équation de Catalan, qui n'admet qu'un
nombre fini de solutions (cf. Tijdeman [50]), mais, même si l'on dispose
d'informations très précises relatives aux éventuelles solutions non triviales de

cette équation (cf. entre autres l'ouvrage de Ribenboim [40] et le survol de

Mignotte [35]), la résolution complète de (1) sous l'hypothèse n pair demeure

un problème ouvert.

Par applications successives du Théorème 2 en prenant pour D la puissance
du plus grand facteur premier de n qui divise exactement n, on démontre la

première partie de l'énoncé suivant, la seconde étant détaillée dans [40].

THÉORÈME 3. Si Véquation (1) possède une solution (x,y, n, q) et si n

s'écrit comme produit de facteurs premiers n 2ap\l .pU£ avec a G {0,1}
et Ui > 0, alors, pour tout 1 < i < £, il existe un entier yi tel que

xP? - 1

yqi-
X — 1

En outre, il existe des entiers Wi >2 et zi > 2 tels que

Wf' -1
qzqi OU pi zf,

Wi — 1

la deuxième possibilité ne pouvant se produire que si q divise U[.

Il découle facilement de ce qui précède qu'afin de démontrer la Conjecture

B il suffit de prouver que (1) ne possède qu'un nombre fini de solutions

(x,y,pa,q) où p est premier et a > 1.

3. Application des formes linéaires de logarithmes :

RÉSULTATS DE FINITUDE

La théorie des formes linéaires de logarithmes, initialement développée

par Baker [1, 2], s'est avérée, et continue à s'avérer, très riche d'applications
dans le domaine des équations diophantiennes. A la différence des résultats

d'approximation diophantienne obtenus par Thue, Siegel et Roth, elle conduit
à des énoncés effectifs, en ce sens qu'elle permet non seulement d'affirmer

que certaines équations n'ont qu'un nombre fini de solutions, mais également

d'expliciter une borne numérique, certes souvent très élevée, pour la taille
des éventuelles solutions. En outre, la théorie des formes linéaires de

logarithmes permet d'apporter de précieuses informations sur certaines équations
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exponentielles, dont par exemple l'équation de Catalan, pour lesquelles les

méthodes antérieures se révélaient inopérantes. Avant d'expliquer en quelques

lignes dans la partie suivante de quoi il retourne, nous présentons deux énoncés

issus de cette théorie et montrons comment ils s'appliquent à (1).

THÉORÈME 4. Soient a\ et <22 deux entiers non nuls premiers entre eux

tels que \a\a2\ > 2. Soit f(X) G Z[X] un polynôme irréductible de degré > 3

(resp. >2) et soit b un entier non nul. Alors les équations

a" ± Û2 byq en inconnues n > 0, y G Z \ {0} et q >2

et

f(x) byq en inconnues x G Z, y G Z \ {0} et q >2 (resp. q > 3

ne possèdent qu'un nombre fini de solutions, dont on peut explicitement majorer
les valeurs absolues.

La démonstration du Théorème 4 se trouve par exemple dans l'ouvrage
de Shorey et Tijdeman [48], où figure également le résultat suivant, qui s'en
déduit relativement facilement.

THÉORÈME 5. L'équation (1) n'admet qu'un nombre fini de solutions
(x,y,n,q) si l'une au moins des conditions suivantes est vérifiée:

(i) x est fixé,

(ii) n a un diviseur premier fixé p
(iii) y a un diviseur premier fixé p

Démonstration. Pour prouver l'assertion (i), il suffit de remarquer que (1)
s'écrit xn - 1 (x - l)yq et donc que le Théorème 4 s'applique, avec a\ x,
Ü2 1 et b x — 1.

Le cas p 2 de (ii) ayant déjà été considéré au cours de la partie
précédente, on peut supposer p impair. Un argument de factorisation montre
alors qu'il existe deux entiers positifs r et s, avec rs < p, et un entier yi > 0
divisant y tels que (xn/p,yi,q) soit solution de l'équation

Vp — 1
(4) r -=sYq,

z — 1

en inconnues z > 2, Y > 1 et q > 2. Si p > 5 ou si p 3 et q > 3,
il découle du Théorème 4 que (4) n'admet qu'un nombre fini de solutions.
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Ainsi, il ne reste plus qu'à examiner le cas p 3 et q 2, pour lequel de

simples considérations de congruences conduisent au résultat (cf. [48]).

Démontrons maintenant (iii). Si p divise x—1, alors (xn — ï)/(x — 1) n
(mod p), donc p divise n et on est ramené à (ii). Dans le cas contraire, soit
t > 1 le plus petit entier u > 1 tel que p divise xu — 1. Il est clair que t
divise p — 1. En outre, t divise n puisque xn — 1 0 (mod p). Ainsi, n est

multiple d'un des diviseurs premiers de p — 1 et on est également ramené
à (ii).

4. Un outil important : les formes linéaires de logarithmes

Après avoir détaillé quelques-unes parmi les nombreuses conséquences des

résultats de Baker, nous expliquons brièvement ce qu'est une forme linéaire
de logarithmes, puis donnons un exemple de raffinement, a priori modeste,
mais très riche de conséquences.

Soit n > 1 et, pour 1 < i < n, soient Xi/yt des nombres rationnels non
nuls et mi des entiers non nuls. Notons m > 2 un majorant des |mjj et

H, > 3 un majorant des quantités \xt\ et |y/|. On suppose que

A := 1

^yij V3V

est non nul. Alors, par une simple estimation du dénominateur de A, on
obtient

n n

log A > m, log |y, | >-m ^2 ,08
i= 1 i=ï

La dépendance en les Ht est très satisfaisante, au contraire de celle en m. Or,

pour résoudre de nombreux problèmes en théorie des nombres, on aimerait

disposer d'une meilleure estimation du point de vue de m, 'quitte à faire

quelques concessions relativement aux //;. Baker [1, 2] a, le premier, démontré

un tel résultat, et on sait maintenant (d'après Baker et Wüstholz [3]) que, sous

les hypothèses précédentes, on a

(5) log A > -(50 nfnlogHi log Hn log m,

et on conjecture que l'on peut remplacer le produit des log/// par leur

somme. Cela a été démontré par Shorey [43] (voir également les estimations
de Waldschmidt [51], qui incluent tous les raffinements connus en 1993) dans

le cas particulier où les rationnels xt/yt sont tous très proches de 1. Un

exemple spectaculaire d'application est donné par l'équation
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