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que x" + 1 = y?. On retrouve alors I’équation de Catalan, qui n’admet qu’un
nombre fini de solutions (cf. Tijdeman [50]), mais, méme si ’on dispose
d’informations trés précises relatives aux éventuelles solutions non triviales de
cette équation (cf. entre autres I’ouvrage de Ribenboim [40] et le survol de
Mignotte [35]), la résolution complete de (1) sous ’hypothese n pair demeure
un probléme ouvert.

Par applications successives du Théoréme 2 en prenant pour D la puissance
du plus grand facteur premier de n qui divise exactement n, on démontre la
premiere partie de 1’énoncé suivant, la seconde étant détaillée dans [40].

THEOREME 3. Si I’équation (1) posséde une solution (x,y,n,q) et si n
s’écrit comme produit de facteurs premiers n = 2°p{' .. .p,*, avec a € {0,1}
et u; > 0, alors, pour tout 1 < i </{, il existe un entier y; tel que

X — 1

x—1

En outre, il existe des entiers w; > 2 et z; > 2 tels que

wi' —1 .
1 T % ou piz;,

Ww; — 1
la deuxiéeme possibilité ne pouvant se produire que si q divise u;.

Il1 découle facilement de ce qui précede qu’afin de démontrer la Conjec-
ture B il suffit de prouver que (1) ne possede qu’un nombre fini de solutions
(x,y,p% g) ou p est premier et a > 1.

3. APPLICATION DES FORMES LINEAIRES DE LOGARITHMES :
RESULTATS DE FINITUDE .

La théorie des formes linéaires de logarithmes, initialement développée
par Baker [1, 2], s’est avérée, et continue a s’avérer, tres riche d’applications
dans le domaine des équations diophantiennes. A la différence des résultats
d’approximation diophantienne obtenus par Thue, Siegel et Roth, elle conduit
a des énoncés effectifs, en ce sens qu’elle permet non seulement d’affirmer
que certaines équations n’ont qu’un nombre fini de solutions, mais également
d’expliciter une borne numérique, certes souvent tres €levée, pour la taille
des éventuelles solutions. En outre, la théorie des formes linéaires de loga-
rithmes permet d’apporter de précieuses informations sur certaines €quations
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exponentielles, dont par exemple I’équation de Catalan, pour lesquelles les
méthodes antérieures se révélaient inopérantes. Avant d’expliquer en quelques
lignes dans la partie suivante de quoi il retourne, nous présentons deux énonces
issus de cette théorie et montrons comment ils s’appliquent a (1).

THEOREME 4. Soient a; et a, deux entiers non nuls premiers entre eux
tels que |ajay| > 2. Soit f(X) € Z[X] un polynéme irréductible de degré > 3
(resp. > 2) et soit b un entier non nul. Alors les équations

aj £ a5 =by? en inconnues n >0,y € Z\ {0} et g>2
et
fx) =by? en inconnues x € Z,y € Z\ {0} et g >2 (resp. q¢>3)

ne possedent qu’un nombre fini de solutions, dont on peut explicitement majorer
les valeurs absolues.

La démonstration du Théoreme 4 se trouve par exemple dans I’ouvrage
de Shorey et Tijdeman [48], ou figure également le résultat suivant, qui s’en
déduit relativement facilement.

THEOREME 5. L’équation (1) n’admet qu’un nombre fini de solutions
(x,y,n,q) si 'une au moins des conditions suivantes est vérifiée :

(1) X est fixé,

(11) n a un diviseur premier fixé p,

(1) y a un diviseur premier fixé p .

Démonstration. Pour prouver I’assertion (i), il suffit de remarquer que (1)
s’écrit x" —1 = (x—1)y? et donc que le Théoreme 4 s’applique, avec a; = x,
ap=letb=x—1.

Le cas p = 2 de (ii) ayant déja été considéré au cours de la partie
précédente, on peut supposer p impair. Un argument de factorisation montre
alors qu’il existe deux entiers positifs r et s, avec rs < p, et un entier y; > 0
divisant y tels que (x/7,y;,q) soit solution de I’équation

-1
z—1

4) r =sY9,

en inconnues z > 2, ¥ >1let g>2.Sip>5o0usip=3 et qg >3,
il découle du Théoréeme 4 que (4) n’admet qu’un nombre fini de solutions.
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Ainsi, il 'ne reste plus qu’a examiner le cas p =3 et g = 2, pour lequel de
simples considérations de congruences conduisent au résultat (cf. [48]).

Démontrons maintenant (iii). Si p divise x — 1, alors (x" — 1) /x—1)=n
(mod p), donc p divise n et on est ramené a (ii). Dans le cas contraire, soit
t > 1 le plus petit entier u > 1 tel que p divise x* — 1. Il est clair que ¢
divise p — 1. En outre, ¢ divise n puisque x* — 1 = 0 (mod p). Ainsi, n est
multiple d’un des diviseurs premiers de p — 1 et on est également ramené

a ). O

4. UN OUTIL IMPORTANT : LES FORMES LINEAIRES DE LOGARITHMES

Apres avoir détaillé quelques-unes parmi les nombreuses conséquences des
résultats de Baker, nous expliquons brievement ce qu’est une forme linéaire
de logarithmes, puis donnons un exemple de raffinement, a priori modeste,
mais tres riche de conséquences.

Soit n > 1 et, pour 1 <i < n, soient x;/y; des nombres rationnels non
nuls et m; des entiers non nuls. Notons m > 2 un majorant des |m;| et
H; > 3 un majorant des quantités |x;| et |y;|. On suppose que

el e
1 Yn

est non nul. Alors, par une simple estimation du dénominateur de A, on
obtient

n n
log A > —Zmi log |y;| > —m Z log H; .

i=1 i=1
La dépendance en les H; est trés satisfaisante, au contraire de celle en m. Or,
pour résoudre de nombreux problemes en théorie des nombres, on aimerait
disposer d’une meilleure estimation du point de vue de m, ‘quitte a faire
quelques concessions relativement aux H;. Baker [1, 2] a, le premier, démontré
un tel résultat, et on sait maintenant (d’apres Baker et Wiistholz [3]) que, sous
les hypotheses précédentes, on a

(5) log A > —(50n)*" logH, ...log H, logm,

et on conjecture que l’on peut remplacer le produit des logH; par leur
somme. Cela a ét€ démontré par Shorey [43] (voir également les estimations
de Waldschmidt [51], qui incluent tous les raffinements connus en 1993) dans
le cas particulier ou les rationnels x;/y; sont tous trés proches de 1. Un
exemple spectaculaire d’application est donné par 1’équation
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