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2. LES RESULTATS DE NAGELL ET LJUNGGREN

[’énoncé suivant regroupe les résultats obtenus par Nagell [36, 37] puis
complétés par Ljunggren [31], qui traitent plusieurs cas particuliers de (1).

THEOREME 1. A [l’exception des solutions (S), I’équation (1) ne possede
aucune solution (x,y,n,q) si l'une des hypothéses suivantes est Vérifiée :

H g=2,

(1) 3 divise n,

(1) 4 divise n,

(iv) g=3 et n#5 (mod 6).

Les démonstrations sont élémentaires, en ce sens qu’elles ne font appel a
aucune autre théorie que I’arithmétique des anneaux Z[i] et Z[(1 + iv3) /2].
Elles sont cependant trop longues pour étre détaillées ici, et le lecteur intéressé
est invité a consulter 1’ouvrage de Ribenboim [40]. Pour (iii), nous mentionnons
simplement que si (x,y,n,q) est solution de (1) avec n = 2m, a > 1 et
m > 3 impair, alors il existe un entier y; divisant y tel que (x,y;,m,q) est
solution de (1). Les démonstrations de (i) et (i1) reposent sur un semblable
résultat de factorisation, qui s’avere d’ailleurs tres utile pour d’autres questions,
et dont nous reprenons ci-dessous un énoncé tres général obtenu par Shorey
[45]. Quant a (iv), sa démonstration fait appel a un résultat de Nagell [38].

NOTATIONS. On convient de noter (a,b) le plus grand diviseur commun
aux entiers a et b et de désigner par ¢ I’indicateur d’Euler. En outre, pour tout
entier n > 1, on note G(n) la partie sans facteur carré de n et Q, := ©(G(n))
le nombre d’entiers compris entre 1 et G(n) et premiers avec G(n).

THEOREME 2. Soit (x,y,n,q) une solution de (1) avec n impair. Si le
diviseur D de n vérifie (D,n/D) = (D, Q, /p) = 1, alors il existe des entiers
y1 et y, tels que yiy, =y et

Py —1 xP—1
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Soit (x,y,n,q) est une solution de (1) avec n pair, et posons n = 2m.
Le cas n multiple de 4 étant couvert par le Théordme 1, on peut supposer
m impair et il est facile de voir qu’il existe alors un entier y; divisant y tel
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que x" + 1 = y?. On retrouve alors I’équation de Catalan, qui n’admet qu’un
nombre fini de solutions (cf. Tijdeman [50]), mais, méme si ’on dispose
d’informations trés précises relatives aux éventuelles solutions non triviales de
cette équation (cf. entre autres I’ouvrage de Ribenboim [40] et le survol de
Mignotte [35]), la résolution complete de (1) sous ’hypothese n pair demeure
un probléme ouvert.

Par applications successives du Théoréme 2 en prenant pour D la puissance
du plus grand facteur premier de n qui divise exactement n, on démontre la
premiere partie de 1’énoncé suivant, la seconde étant détaillée dans [40].

THEOREME 3. Si I’équation (1) posséde une solution (x,y,n,q) et si n
s’écrit comme produit de facteurs premiers n = 2°p{' .. .p,*, avec a € {0,1}
et u; > 0, alors, pour tout 1 < i </{, il existe un entier y; tel que

X — 1

x—1

En outre, il existe des entiers w; > 2 et z; > 2 tels que

wi' —1 .
1 T % ou piz;,

Ww; — 1
la deuxiéeme possibilité ne pouvant se produire que si q divise u;.

Il1 découle facilement de ce qui précede qu’afin de démontrer la Conjec-
ture B il suffit de prouver que (1) ne possede qu’un nombre fini de solutions
(x,y,p% g) ou p est premier et a > 1.

3. APPLICATION DES FORMES LINEAIRES DE LOGARITHMES :
RESULTATS DE FINITUDE .

La théorie des formes linéaires de logarithmes, initialement développée
par Baker [1, 2], s’est avérée, et continue a s’avérer, tres riche d’applications
dans le domaine des équations diophantiennes. A la différence des résultats
d’approximation diophantienne obtenus par Thue, Siegel et Roth, elle conduit
a des énoncés effectifs, en ce sens qu’elle permet non seulement d’affirmer
que certaines équations n’ont qu’un nombre fini de solutions, mais également
d’expliciter une borne numérique, certes souvent tres €levée, pour la taille
des éventuelles solutions. En outre, la théorie des formes linéaires de loga-
rithmes permet d’apporter de précieuses informations sur certaines €quations
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