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45. If R is graded and the elements of ¢(H) are homogeneous the
straightening relations give a presentation for R [D-E-P, p. 15].

We note that R is a deformation of the discrete Hodge algebra governed
by X, whose ideal is generated by the monomials M.

4.6. EXAMPLE. The equations of the tetrahedron of degree 12 of 2.2 are
straightening relations. We take X as Stanley-Reisner ideal X5, where A is
the stellation of the tetrahedron: in each top-dimensional face we take an
additional vertex, which is joined to all vertices on the face. The partial order
on the set of vertices is obtained by declaring the new vertices to be smaller.
The discrete Hodge algebra then has equations x;x;, x;y; and y;yiy;.

5. THE DODECAHEDRON

5.1. To get an icosahedron as dual graph we need the incidence relations
of a dodecahedron. Each side should be a rational surface and the intersection
with the other surfaces should have a pentagon as dual graph. A pentagon
occurs as hyperplane section of a Del Pezzo surface of degree 5. So we can
realise our dodecahedron by gluing together 12 Del Pezzo surfaces.

We first describe the Del Pezzo surfaces. Each of those is an extension of its
pentagonal hyperplane section. Its coordinate ring can be obtained as Stanley-
Reisner ring of a pentagon as 1-dimensional simplicial complex. Introducing
variables y;, we get the equations y;,_;y;+1. With an extra variable x the Del
Pezzo surface has equations

2
Yi—-1Yi41 — Xy, — X" .

These are the Pfaffians of the matrix
0 » X =X —Ys
—y1 O 2 X —x

x  —x —y3 0
ys. x —x —y4 O
We can check that this is indeed a smooth Del Pezzo of degree 5 by giving an
explicit birational map from P?, which blows up four points, see Figure 5.1.
To the variable x corresponds a new vertex at the centre of the pentagon.
By joining it to all other vertices we obtain a 2-dimensional simplicial complex,
and the homogeneous coordinate ring of the Del Pezzo surface is a graded
Hodge algebra governed by the Stanley-Reisner ideal of the complex: to
satisfy H-2 we take x to be less than all y;.
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0,1,0)
Y1 = v*u
vy = vw(v + w)
y3 = w(u + v+ w)
v4 = uw(u + w)

(07071) (100 )

~1,0,1) 0,0) ys=uwv

X = uvw

(0)_‘1>1)

FIGURE 5.1

Blowing up P? in 4 points

5.2. To construct a normal crossings dodecahedron of degree 60 we glue
twelve Del Pezzo surfaces. We get a simplicial complex A by stellating a
dodecahedron : we take in each face the centre of the pentagon as extra vertex.
A non-convex realisation of this complex is the great stellated dodecahedron.

5.3. PROPOSITION. The coordinate ring of the dodecahedron of degree 60
is a graded Hodge algebra governed by 2,.

We describe the equations for a dodecahedron X with icosahedral symmetry
in more detail. We have 20 variables y,, one for each dodecahedral vertex
and 12 variables x; from the extra vertices in the faces. We will denote the
vertices by « and i. As two face vertices are not connected by an edge we
have 66 equations x;x; = 0, i #j. If ia is not an edge, we have x;y, = 0;
there are 180 such equations. The non-edges a3 come in two types: in
100 cases the line a8 does not lie in a face of the original dodecahedron,
leading to y,yg = 0, if it lies in such a face we get a Del Pezzo equation
(@in 5 x 12 = 60 cases).

We summarise :
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Type Equation Conditions #
(1) XiXj i #j 66
(2) XiVa i not an edge 180
(3) Yays a3 not in face 100,
4) VoY — XiYg — X7 Del Pezzo 60

The relations follow from the relations between the generators of the
Stanley-Reisner ideal of the great stellated dodecahedron, which have a
particularly simple form: we get a relation for each pair of equations which
have one variable in common.

This gives the following list of relations, where we suppress the conditions
on the indices; they can be deduced from the list of equations.

Type Relation #
(1-1) (i) X — (ixx) Xj 440
2-1) (XiYa) Xj — (XiX))Y o, 1980
(2-2) (XiYa)yp — (Y)Y 1260
(3-2) ()’ozy,@)xi - (xiya)Yﬁ 1200
(3-3) ()/oz)’ﬁ)yw - ()’aY’y)yB 780
(4-2) oYy — XY — XD % — (XYa )y + (i) (xi + yp) 660
(4-3) Gody — %iY8 — X)¥s — (VaYs)yy + xiys)(xi + yp) 860
(4-3) oYy — Xi¥s — X)ys — (aYs — X¥3 — X )Yy

+ (ys)(xi + yg) — (5y4)(x; + yp) 40
(4-4) relations from matrices 60

We use the equations and relations to compute infinitesimal deformations.
The computations are similar to the case of the tetrahedron of degree 12. To
illustrate our methods we prove that the dodecahedron X has no nontrivial
extensions. This statement means that X is only a hyperplane section of the
projective cone over it. To prove this we have to show that the affine cone
C(X) has no deformations of negative degree.

5.4. PROPOSITION. T{x,(—v) =0 for v > 0.

Proof. As all quadratic equations occur in linear relations we cannot
perturb the equations with constants, so T'(—2) = 0.

Now we consider deformations of degree —1. We start with equations of
type (1), which we perturb as follows:

xl-xj + Z ag?xm + Z bgya .
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The relations (1-1) together with the equations give

X + Z biixkyo = dlkxj +_Z biyXiya -

ka edge Joo edge

This shows that a; = 0 for k ¢ {i,j}. For each o we can find a k ¢ {i,/}
such that ka is an edge, so b?-‘ = (0 and the deformation has the form

xlx]-l—a xl—l—a

We now perturb equations of type (2):

XiYo + Z azaxm + Z blayﬁ

and use the relations of type (2—-1):

x + Z blax]yg —aUnya
],8 edge

to conclude that af, = 0 for all Jj#£ I, b2, =0 for all G ;é o and b, ay

for all j such that jo is an edge. It follows that aij = a¥, for all j and k.
Using the coordinate transformation 0,, we may therefore assume that the
equations of type (1) are not perturbed at all, while those of type (2) have
the form x;y, + dlyx;

Perturbing equations of type (3) in a similar manner as y,yg+ Y an 5Xm+
Zbaﬁ)@ we find from the relations (3-2) that

afxﬂxiz -+ Z blﬁx,—)w — aéaxiyg .

iy edge

So a,; =0, bz =0 for v ¢ {a,3} and baﬁ = a,,. The coordinate
transformation Oy, can be used to eliminate the perturbation of the equations
of type (2). Then those of type (3) are not perturbed either.

Finally we look at the Del Pezzo equations (4). From the relations (4-2)
we conclude as before that the only possible perturbations have the form

YaYy = Xi¥g — X; -+ G Xi

Here ia, i and iy all are edges. This means that we can look at each Del
Pezzo separately. From the matrix of relations we obtain that afx,y =0. [

5.5. PROPOSITION. The dodecahedron X with icosahedral symmetry
is d-semistable. The space of locally trivial embedded deformations has
dimension 29.
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Proof. We describe a global section of the sheaf 7 , without proof To
formulate the result we use the alternative notation y;x for ye, if ia, joo and
ko are the edges involving .

The equations of type (1) are not deformed, unless ij is an edge, in
which case we have x;x; + dy;jpyiis- An equation of type (2) is perturbed to
Yo + d(xjyip + X;yiq +x7) if a = (jkI) is opposite the edge [pql; if ip, yq
and « = jgr are three consecutive vertices, as are o = jqr, ijq and igs, we get
XiYa +A(X;Yijq +XgYijq + y%jq) and in all other cases the equation is not deformed.

g

All perturbations of the equations (3) vanish except when o and ( are
nearest possible: one can reach [ from « by passing three edges. Suppose
that the vertices on this path are (8 = ipo, ijp, ijqg, jgqr = . Then we set
Yo Yp + d(Xiyijg + XjYijp + YijpYiiq)- The Del Pezzo equations are not deformed.

We compute locally near a triple point and look at the chart y, = 1. All
variables can be eliminated except yg, y, and ys such that EB, a~y and ad
are edges, and x;, x; and x;, where o, § and v lie on the face k, etc. We
have nine equations left, of three types: xyxj +dys, xxys +d(1 +x; +x;) and
the Del Pezzo equation ygy, — X — x,%. The last one shows that even x; can
be eliminated, as the double curve lies in x; = 0. By multiplying the Del
Pezzo equation with ys and using the other equations we get

YpY~yYs + d(l + X +Xj +xk) .

This shows that our d-deformation indeed represents the class [1] € H(Op) =
H(T). O
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Proposition 3.9 gives the dimension of the space of locally trivial defor-
mations, but it can also be computed directly. For each Del Pezzo we have 5
deformations by multiplying the x; in a given column of the defining matrix
with a unit of the form 1 4-¢;. These deformations are trivial and can also
be obtained by multiplying the y, by suitable factors. In total we have 60
such deformations, but globally we have only 31 diagonal coordinate trans-

formations (32 variables, but we have to subtract one for the Euler vector
field). ’

5.6. THEOREM. There exists a semistable degeneration of K3 -surfaces of
degree 60 with icosahedral symmetry, whose special fibre is our dodecahedron.

5.7. The rotation group Ggy = As of the icosahedron acts symplectically
on the general fibre X, and the quotient X;/Gey is again a K3-surface,
with 2 A4, 3 A, and 4 A; singularities [X]. The locus of such surfaces has
dimension two in moduli, so together with a polarisation there is only a curve
of such surfaces. It would be interesting to know this curve. A deformation
computation as above only gives a parametrisation with power series; anyway,
the computation is too complicated.

We can take the quotient of the special fibre, which is our dodecahedron.
Invariants for the icosahedral reflection group are

XZZ)Q, Y1:Z)’a7 Y, = Z Yadps s

af edge

and a skew invariant Z is obtained by taking the Ggo orbit of x;y,yg(ya —y3)-
After a coordinate transformation X — 1X, ¥, — Y,+1XY;+1X? the quotient
is given by the equation

0 = Z% + 5X%Y3(4Y, + 8X* + 12XY| — Y?)
+ (30Y; +20X)Y. X (X? 4+ XY; — Y2) + X°(BX + 4Y))(X* + XY, — YP)?.

This is a surface of degree 8 in the weighted projective space P(1,1,2,4).
These numbers are in Reid’s list of famous 95 and the general Xg C P(1,1,2,4)
is a K3-surface with 2 A; singularities. Our surface has a double line and
two A4 singularities, at Y, = X* + XY¥; — Y7 = 0.

5.8. Finite groups acting symplectically on K3-surfaces have been clas-
sified by Mukai [Mu], see also [X]. Mukai gives an example of a K3-surface
with even an action of the symmetric group Ss :
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X1 +x+x3+x+x5 =0,
XG4 X7 405+ 5+ x5 +x5 =0,
CHO+E+x +xa=0.

An element of S5 acts by permuting the coordinates xi, ..., x5 and multiplying
xo by its sign. By changing the last equations to £x3 +x3 +x3 +x3+x; +x2 = 0
we obtain a pencil of As-invariant surfaces. The semistable model of the
degeneration at t = oo is of type L

59. THE STANLEY-REISNER RING OF THE ICOSAHEDRON. A different
family of K3-surfaces with icosahedral symmetry is obtained by smoothing
the Stanley-Reisner ring of the icosahedron. The infinitesimal deformations
can be found from [A-C, Sect. 4] or computed directly with the methods
above. All deformations are unobstructed (T¢x, = 0). We have Ty, () =0
for v < 0 and dim Té(X)(O) — 30. Furthermore the dimension of H°(Oy)
equals 11, which fits with the fact that X deforms to smooth K3-surfaces
(30—11 =19).

We number the vertices as in Figure 5.2.

0

11

FIGURE 5.2

Icosahedron

We have two types of equations, depending on the distance between
vertices. On suitable representatives the infinitesimal deformations are

XoX6 + €06 X2X3 XoX11 -
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By taking all €; equal we get an icosahedral invariant deformation. The lift to
a one-parameter deformation seems to involve power series of the deformation
variable (I computed up to order 7). Anyway, equations for a K3 of degree
20 are not very illuminating.

As before, this deformation is not semistable, because the total space has
singularities. Each vertex of the icosahedron gives a singularity, which is the
cone over a pentagon. It is smoothed negatively, with total space the cone
over a Del Pezzo of degree 5. We resolve these singularities by blowing
up. We introduce 12 Del Pezzo surfaces. The sides are blown up in three
points, giving hexagons. The dual graph of the central fibre is now a stellated
dodecahedron. The object itself consists of pentagons and hexagons. It contains
a real homology class, as described in 3.14, which looks like a football, so
our special fibre is a complexified football.

5.10. A DEGENERATION OF DEGREE 12. The existence of the two type III
degenerations above with icosahedral symmetry follows from a deformation
argument, but it is too complicated to give explicit equations. In the football
case pentagons arise because of the singularities of the total space. This
suggests that one can get a degeneration of low degree by blowing down
components of the special fibre. Blowing down means removing vertices from
the dual graph.

V.

FIGURE 5.3
Dual graph and its realisation for X of degree 12

We start from the icosahedron (Figure 5.2) and remove non-adjacent
vertices, say those numbered 0, 7 and 10. This means breaking the symmetry.
The resulting dual graph is shown in Figure 5.3. Of the double curves on
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the components, six are triangles and four are rectangles. We realise them
on planes, resp. quadric surfaces. The picture also shows a realisation (as a
real polyhedron). We cannot take the Stanley-Reisner ideal, as the realisation
contains rectangles. For those we take an equation of the form xy — z¢. One
may think that a rectangle can be triangulated in two ways, each giving a
monomial, which are forced to be equal. The result is a surface X C P’ |
of degree 12. With the numbering in the figure we get the S;-invariant |
1deal

X0X7 ,

X0X4 , X0Xs5 , X0X6 ,

X1X6, XoXe¢, X3X4,

X1X7 — X4X5, X2X7 — X4Xg, X3X7 — X5X¢ ,

X1X2X3 .

The next thing to do is to compute the 7' and 72 for the affine cone
C(X) over X. This is conveniently done with a computer algebra program.
A computation with Macaulay [B-S] gives the following result:

5.11. LEMMA. As Oc)-module Tclj(X) is generated by eight elements,
represented by the following perturbations of the equations :

XoX7 ,
XoXq4 — C3X1X2,  XpX5 — C2X1X3, XoXg — C1X2X3
X1X6 + box7 + bi1xs + boxs + bsxg ,
XpXs + box7 + b1x6 + b2X5 - b3x6 ,
X3X4 + box7 + b1xs + byxs + baxg,
X1X7 — X4X5, X2X7 — X4X6, X3X7 — X5X¢ ,

X1X2x3 + axo + b1xax3 + byx1x3 + b3xix; ,

and dim T%(X) = 2, concentrated in degree —2.

The quadratic obstruction is given by a(c; —¢3) = alc; —c3) = 0. We
conclude that the degree zero deformations are unobstructed. The base space
for C(X) in non-positive degrees has two components. As we are mainly
interested in S3-invariant deformations we consider only the component with
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¢1 = ¢ = ¢3 (=: ¢). The component will be obtained by substituting
polynomials for the deformation variables a, b; and ¢. A computation gives
the equations

xox7 + ¢(box7 + b1xs + boxs + b3xe + ac),
XpX4 — CX1X2 , XpX5 — CX1X3, XpXg — CX2X3,
x1x6 + box7 + b1xg + byxs + bsxg + ac,
X2X5 + box7 + b1xg + byxs + bsxg + ac,
xX3X4 + box7 + b1xg + byxs + b3xg + ac,
X1X7 — X4X5, XpX7 — X4X6, X3X7 — X5X¢ ,
X1x2x3 + axg + bixoxs + baxixz + bsxyxy — bo(boxy + b1xe + baxs + byxg + ac).

For ¢ # 0 we derive the three equations xox; — cx;x7_;, which show that we
have a hypersurface in the cone over P! x P! x P!,

5.12. PROPOSITION. A general one-parameter deformation in degree 0
on the component described above has a minimal model in (—1)-form with
the icosahedron as dual graph for the central fibre. In particular, this holds

for
a = clxg +x0(0 + X2 +x3) + 27 + 25+ 1),
bo = cx7,
b1 = c(xz +x3 + x6 + x7),
by = c(x1 + x3 + x5 + x7) ,
bz = c(x1 + xp + x4 + x7) .

Proof. One first checks that the general fibre is a smooth K3-surface.
For this it suffices to look at the hypersurface in P! x P! x P!.

In the particular example the total space has at the origin of the affine
chart x; = 1 a singularity, which is isomorphic to the cone over the Del Pezzo
surface of degree 5, as it should be: the point to check is that we indeed have
a generic local deformation. Furthermore there are 18 singularities of type
Ar. On the (x1,x4)-line we have the point x; + x4 = 0. On the (xp,x1)-line
we have two points, given by x3 + xox; +x7, and on the (x7,x;7)-line the two
points x2 + xgx7 + x2. The other singular points are found by symmetry.

By blowing up the three singularities of multiplicity 5 and making a
small resolution of the A;-points we get a smooth total space. To obtain the
- (—1)-form one has to place one exceptional curve on either component in case
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the double line contains two singularities. If there is only one, the exceptional
curve should lie on the triangle component. [
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