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points. We can blow them up and blow down the six conics in the faces by
embedding the pencil in P7 x P! with the linear system of cubics in P? with
as base points the 12 singular points. We set

Xi = ZiZkl

Vi = Zi(CZO'lz -+ bO'z) .

We obtain a symmetric tetrahedron with g = h = 0.

We get nonsingular Del Pezzo surfaces by taking all b; = —1, and
a; =a. Then f = —1, g = —a* and h = a* + 4. The points on the side of
the tetrahedron are given by

@ + azizj — 2)(—2 + azizj + 2) = (=2} + R + @) 7}z, — 2) -
J 7 J J J

In particular, we obtain different smoothings of the same tetrahedron, those
embedded in P’ and others where the general fibre is embeddable in P?.
They belong to different 19-dimensional hypersurfaces in the 20-dimensional
subspace of the versal deformation whose general fibre is a smooth K3 -surface.

3. DEFORMATION THEORY

3.1. Let X = |JX; be a normal crossings surface with normalisation
X =[] X;. The components of the double locus D are D; = X; N X;. The

divisor D; := |JDj; is a normal crossings divisor in X;. We set D = [[D;.
J
As X is locally a hypersurface in a 3-fold M, its cotangent cohomology

sheaves 7 vanish for i > 2 and

0 — 7Y — Oplx — Ny — Ty 0.

There is a canonical isomorphism 7{ = Op(X) and in particular, if X is
d-semistable, then 73! = Op [F2, Prop. 2.3].

3.2. LEMMA. There is an exact sequence

0— 7Y — n,0z(logD) — T — 0.

Proof.  This is a local computation. The sheaf ®y,(logX) of vector fields
on M which preserve zizpz3 = 0 is generated by the Zia%- Restricted to
a component X;: z; = 0 we get sections of Oy.(logD;). The restrictions to
different components satisfy the obvious compatibility condition. [
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Sections of 7 are given by vector fields on each component, which vanish
in the triple points. We study Oy, (logD;) with the exact sequence

0 — Ox,(logD;) — Oy, —> @jNDij/Xi — 0.
For a d-semistable K3-surface X in (—1)-form,
H°(Dy, Np, /x,) = H'(Dyj, Np,/x,) = 0.

Each component X; is P? blown up in k > 3 points and H*(@yx) = 0,
h°(Ox,) = max(0, 8 — 2k), h'(Ox) = max(0, 2k — 8).

So H%(®x,) # 0 only in the case that k = 3 and the double curve D; is a
hexagon. We then call X; a hexagonal component, or hexagon for short.

3.3. LEMMA [F1, Cor. 3.5]. For a d-semistable K3-surface X of type III
in (—1)-form, H (X, Z?) = 0.

Proof. We first describe the sections of HO(G)Xi) for a hexagonal com-
ponent. We blow up P? in the vertices of the coordinate triangle. As basis
for the linear system of cubics we take the monomials given by black dots
in the picture below.

P @ X3

‘1@ o e M

-

A vector field ¥ on X; comes from a vector field on P? which vanishes

in the points blown up. We can give it homogeneously by a;z; a% +0222% +

asz3 —5‘2—3, subject to the relation z; —3% +Zz;9% +Z3-3% = 0. In the x; coordinates
we get

(a1 + @ + a3) X0z + (a1 + a2) X1 - + a2 + A1) 12 5%
+ (2ay + as) x3 22 + (243 + a2) X4 o

+ (a3 + a1) Xs 2 + (2a1 + as) Xe - .
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We restrict to the line (xj—;:x;) and take as generator of 73 p; the vector
field ¥ = 305 —Xj-17,-)- On the (xg:x1)-line ¥ = (a2 — a3)¥; and on
the (x1:xp)-line 9 = (ay — a1)¥,. The remaining coefficients J = §9; are
found by cyclic permutation. They satisfy 8; = Bj—1 + Gj41. In pgrticular, two
adjacent coefficients determine all the others and opposite coefficients add up
to zero.

Let ¥ € H(X,7{) be a non-vanishing global section. As the dual graph
is a triangulation of S one has > (6 —e;) =12, where ¢; is the number of
components of the double curve D;. So there exist non-hexagonal components,
and ¥ vanishes on them. Suppose ¢} vanishes on X, and not on the adjacent
hexagon X;. We are going to look at the restriction of ¥} to other components,

as illustrated in Figure 3.1.

FIGURE 3.1

Coefficients of a vector field

Let T = XoNX; NX] be a triple point. We know that +J vanishes
on X; NXp. If it also vanishes on X; N X/, then it vanishes altogether,
contrary to the assumption. Therefore X{ is also hexagonal. Let 9 = 3y on
Dyyr = X, NX{ C X;. Considered on X| the restriction of ¥ is —[3 times
the generator. The other triple point on D;;, involves a hexagon X/, which
contains also the triple point X; N X, NX,. Considered on X, the coefficient
of the restriction of ¥ to X;NX{ is B, to X, NX; itis —B, so to X;NX,
it is —20. Therefore on X,, ¥ has adjacent coefficients 0, 2. Inductively
we find components X, , X, with the coefficient n3 occurring. As there are
only finitely many components, this is impossible.  []
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k
3.4. THEOREM. Let X = |J X; be a d-semistable K3-surface of type III
i=1
in (—1)-form, with k components. Then

dimH'(X, 7)) = k+ 18,
dimH'(X, 7)) = 1,
dmH' (X, T)) =k —1.

So dimT} =k+19, dimT2 =k — 1.

Proof. As the dual graph triangulates S*> we have V — E + F = 2,
where V = k, the number of components of X, E is the number of
double curves and F is the number of triple points. Each double curve
contains two triple points, so F = 2/3E, which makes E = 3k — 6.
A component X;, which is P? blown up in §; points, has ¢; = 9 — §;
double curves. Observe that ) .e; = 2E. The exact sequence above gives
dmH' (X, 7)) =>,2(5—e)) + E= 10V —3E =k + 18.

We have h°(X, T,}) = h%(D, Op) = 1 and h'(X, T{) = h'(D,Op) = 1—x =
1-(E-2F)=k—1. [

3.5. Locally trivial deformations of a d-semistable K3-surface X are
unobstructed and fill up a codimension one smooth subspace of the base of
the versal deformation with tangent space H'(X, 7). This means that every
equation of the base i1s divisible by the equation of this hypersurface. As
one obtains the base space as fibre of a map T' — T?, we look at the
map

Ob: HN(TY) x HY(TY) — HN(TY) .

Let £ be a global generator of 7. The existence of a second smooth
component (of dimension 20) follows, if one -can show that the lin-
ear map Ob( . ,&): HY(ZY) — HYZY) is surjective. To describe it we
start with the map Ob( . ,£): 70 — 7. Locally X is a hypersurface

given by an equation f = 0 and elements of 7y come from ambi-
ent vector fields satisfying 9(f) = cf. We can choose coordinates such
that & acts as f +— 1. Then Ob(3,£{) = —c&. In the normal cross-

ings situation the map Ob( . ,£) is surjective and we get an exact se-
quence
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The kernel of the map Ob( . ,&): H'(TY) — H'(7}) can be characterised
k
in a different way ([F-S]). If X = |J X; occurs as central fibre in a degeneration

i=1
X — S, we define k line bundles L; ;== Ox(X;)|x. On a d-semistable X they
can be defined by ‘

Li|x, = Ox,(=Dy),
Lix, = Ox,(X;NX), j#i,

with appropriate gluings, using the global section of Op(X). The bundle L;
defines a class &; in

H'(X,0%) = ker {H*(X,Z) — H*(Ox) = C},

which therefore lies in H'(Q'/7!), where Q!/7! are the Kéhler differentials
modulo torsion [F2, Sect. 1]. The condition that L; lifts to line bundles on a
locally trivial deformation with tangent vector ¥ € H'(7y) is that (9,&) =0
with (—,—) the perfect pairing H'(7Y) @ H'(Q!/t!) — H*(Ox) = C [F2,
(2.10)]. The surjectivity of the map Ob( . ,&) follows from the following
lemma.

3.6. LEMMA. The classes & span a (k — 1)-dimensional subspace of
H*(X,Z).

Proof. We compute HZ(X ,Z) as the kernel of the map
D H*X;,Z) — P H*D;;, 7).

Each &; gives rise to a divisor Zm amDy, on X;, [ =1, ..., k, with coefficients
satisfying a;, + am = 0 (and ap, # 0 only if i =1 or i = m). The relation
> & =0 holds.

Let now Y b = 0 € H*(X,Z). It gives rise to a divisor 3., BunDin
on X;. If the classes Dy, are independent in H*(X;,Z), then S, = 0 for
all m. This condition is not satisfied if X; is a hexagon. Then we can only
conclude that §;,,—1 + B mt1 = Bim. With the same argument as in the proof

of Theorem 3.3, illustrated by Figure 3.1, we infer that even in this case
Oy = 0 for all m.

Therefore b; = b; for all pairs (i,j) such that X; N X; # @ . This implies
that > b;§; is a multiple of >°&. [
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We summarise :

3.7. THEOREM [F2, (5.10)]. A d-semistable K3-surface X of type III
is smoothable. Its versal base space is the union Vi U V,, where Vi is
a smooth hypersurface corresponding to locally trivial deformations of X,
which meets transversally a 20-dimensional smooth subspace V,, with V,\V;
parametrising smooth K3-surfaces and V, N Vy locally trivial deformations

of X for which Op(X) remains trivial.

3.8. EMBEDDED DEFORMATIONS. We relate the above results to direct
computations with generators and relations for the cone over X, as for the
tetrahedron. The case of cones over non-singular varieties is treated in [S2].
We suppose that the affine cone C(X) over X is Cohen-Macaulay. The starting
point 1s the exact sequence

3.1) 0— Tg(X) — Ocnt1 |C(X) — Newy — Tflf(X) — 0,

which we shall relate to exact sequences of sheaves on X. We set U = C(X)\0;
then 7: U — X is a C*-bundle over X. For a reflexive sheaf 7 on C(X)
we have H°(C(X),F) = H°(U,F). All sheafs F considered here have a
natural C*-action, so m,F decomposes into the direct sum of eigenspaces. In
particular, the degree O part is the sheaf of C*-invariants. With homogeneous
coordinates x; the C*-invariant sections xja% of HY(U,®¢n+i lcex)) can be
considered as elements of H°(X, V* ®c Ox(1)), where V = H°(X, Ox(1)). We
get the degree zero part T¢,(0) as coker H(X, V*®c Ox(1)) — H(X, Nx/p).
We factorise this map corresponding to a splitting of the exact sequence (3.1):

(3.2) 0 — Ty — Ocrti|coy — G — 0,

(3.3) 0 — G — Negy — Ty — 0.

Denoting by Gx the sheaf of C* invariants associated to G we obtain
H(X, V* ®c Ox(1)) — H’(X,Gx) — H’(X, Nxp).

On X we have the exact sequence

0 — Gx — Ny/p» — Ty 0.
The short exact sequence (3.2) gives
0 — Diffy — V" ®c Ox(1) — Gx — 0

with Diffy the sheaf of differential operators on X, which is related to 7y
by the exact sequence

0 — Oy — Diffy — T, — 0.
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39, PROPOSITION. Let X be a d-semistable K3 of type Il in (—1)-form.
The space of infinitesimal locally trivial embedded deformations is H Y(X, Diffx),
of dimension k+ 17. It has codimension one in Té(X)(O).

Proof. From the computation of hi(’]})) in 3.4 and the exact sequence
for Diffy we conclude that hO(Diffy) = h°(Ox) = 1. As h(Ox) = 0 and
h2(Ox) =1 we get the exact sequence

0 — H'(Diff) — HY(TY) — H*(Ox) — H*(Diffx) — 0.

The line bundle O(1) determines a class k& € H'(Q'/7!), which lifts to a
deformation ¢ € H'(X, 7)) if and only if (¥,h) = 0 with (—,—) the perfect
pairing H'(T?) ® H'(Q'/') — H*(Ox) = C. This accounts for the non-
algebraic deformation direction. So dim H'(Diffx) = k+17 and H 2(Diffx) = 0.
We then obtain

H'(X, Diffx) = coker { H'(X, V* ®c Ox(1)) — H(X,Gx)}

and h'(Gx) = 0, as h(X,Ox(1)) =0 for i > 0. Finally we get H'(Nx/pr) =
H'(7}) and the exact sequence

0 — H(X,Gx) — H(X,Nyyp) — H'X, Tq) — 0. [

3.10. For T%(X)(O) we can argue as in the smooth case [S2, (1.25)] to
obtain the exact sequence

0 — T (0) — H' (X, Ny p) — D H' (X, Ox(d)))

with the d; the degrees of the generators of the ideal of C(X) (or of X). In
particular, in our situation Ty, (0) = H'(Nx/p) = H'(Ty).

3.11. THEOREM [F-S, (5.5)]. A d-semistable K3-surface X of type Il
in P" is smoothable by embedded deformations. They form a 19-dimensional
smooth component.

Proof. In the embedded case the base space is also the fibre of a map
between the relevant cotangent modules, and the locally trivial deformations are
unobstructed. The map Ob: H'(Diffy) x H(T{) — H(Zy) is the restriction
of the obstruction map in 3.5. We observe that H'(Diffx) is transversal to
ﬂker Ob( ., &), as the class h satisfies 4> > 0 and is therefore independent

of the classes of the &. [
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3.12. THE TOPOLOGY OF THE SPECIAL FIBRE. One can compute the
homology H.(X,Z) with a Mayer-Vietoris spectral sequence [P, Prop. 2.5.1]
with E'-term E) = H,(X'4,Z), where X% =[[X;, X! =[[D; and X?
the set of triple points Py = X; N X; N Xk.

k
3.13. PROPOSITION. Let X = |J X; be a d-semistable K3-surface of
i=1

type Il in (—1)-form, with k components. Then
dimHy(X,Z) =1,
dimH,(X,Z) =k + 19,
dmHy(X,7Z) = k.

Proof. The E'-term of the spectral sequence looks like :

D Ha(X;, Z)
0
D H2(X;, Z) D Ha(Dy;, Z)
0 0
D Ho(X;,Z) D Ho(Dy;, Z) D Ho(Ti, Z)

To prove that the map € Hy(Dyj,Z) — P Ho(X;,Z) is injective we observe
that @J. Hy(Dj;, Z) — H>(X;,Z) is injective unless X; is a hexagonal compo-
nent. We take care of those by arguing as in the proofs of Lemmas 3.3 and
3.6. If the component X; is obtained by blowing up P? in §; points, then
b,(X;) = 6; + 1 = 10 — ¢; with the notation of 3.3, so the cokernel of the
map P Hx(D;,Z) — @ H»(X;,Z) has dimension 10V — 3E = k + 18. The
dimension formulas now follow from the spectral sequence. [1°

3.14. We describe the non-algebraic homology class in more detail. Each
double curve contains two triple points, which are homologous, so the boundary
of an interval. On a component X; these intervals make up a closed polygon
(with e; edges), which itself is the boundary of a topological disc. For the case
of P? blown up in 4 points this is illustrated in Figure 5.1 : after blowing up we
have a pentagon, which is the boundary of the strict transform of the shaded
area. With the given coordinates this strict transform consists of all points on
the Del Pezzo surface with positive coordinates. Finally the discs glue together
to a real polyhedron with the same dual graph as the complex surface X.
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3.15. A nice construction for studying the homology of the general fibre is
given by [A’C]. Let 0;: Z; — X be the oriented real blow-up of X; C A'. This
is a manifold with boundary, whose boundary 0Z; = ai‘](X,-) is isomorphic
to the boundary of a tubular neighbourhood of X; in &'. The fibred product
o: Z — X of the o; is a manifold with corners. Its boundary N := 0.Z comes
with a map to X. It also fibres over S! : the composed map Z — X — S>30
extends to a map from Z to the real oriented blow-up of § in O (polar
coordinates !). A fibre of A/ — S! is then a topological model of the general
fibre.

This model is not sufficient to describe the monodromy. One has first
to replace X by the geometric realisation of the simplicial object X[!: one
replaces each double point by an interval, and each triple point by a 2-simplex.
A final fibred product then gives the new model. For details see [A’C, §2].

4. HODGE ALGEBRAS

4.1. STANLEY-REISNER RINGS. Let A be a simplicial complex with set
of vertices V = {v1,...,v,}. A monomial on V is an element of N". Each
subset of V determines a monomial on V by its characteristic function. The
support of a monomial M: V — N is the set suppM = {v € V | M(v) # 0}.
The set X5 of monomials whose support is not a face is an ideal, generated
by the monomials corresponding to minimal non-simplices.

Given a ring R and an injection ¢: V — R we can associate to each
monomial M on V the element ¢(M) =[], o, ()™ € R. We will usually
identify V and ¢(V) and write M € R for ¢(M). This applies in particular
to the polynomial ring K[V] over a field K. The ideal X, gives rise to the
Stanley-Reisner ideal In C K[V]. The Stanley-Reisner ring is Ax = K[V] /14,

Deformations of Stanley-Reisner rings are studied in [A-C].

4.2. EXAMPLE. Let A be an octahedron. We map the set of vertices to
Clx1,...,x6] such that opposite vertices correspond to variables with index
sum 7.

The Stanley-Reisner ring is minimally generated by the three monomials
xix7—;. The spaces smoothes to a K3-surface, the complete intersection of
three general quadrics. A general 1-parameter deformation is not semi-stable,

because the total space has singularities at the six quadruple points of the
special fibre.
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