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is bounded in view of the estimate x~!(x*> + y?) < f(x,y) < k(x* +y?) for
some universal x > 0 and of the fact that f(x,y)=¢ on C.. []

4. CONSEQUENCES OF GROMOV HYPERBOLICITY
FOR THE SHAPE OF THE BOUNDARY

PROPOSITION 4.1. Let D be a bounded convex domain in R" and let h
be a Hilbert metric on D. If h is Gromov hyperbolic then the boundary 0D
is strictly convex, that is, it does not contain a line segment.

This can be proven following the proof of N. Ivanov [Iv97] of Masur-Wolf’s
theorem [MW95] that the Teichmiiller spaces (genus > 2) are not Gromov
hyperbolic. The proof makes use of Gromov’s exponential divergence criterion,
see [BH99, p.412]. For another proof of the above proposition, see [SMO00].

THEOREM 4.2. Let D be a bounded convex domain in R" and let h be
the Hilbert metric on D. If h is Gromov hyperbolic then the boundary 0D
is smooth of class C'.

Proof. 2-dimensional case: First, by the previous result, D is strictly
convex. Let y = f(x), x € (—a,a) be an equation of JD near some point.
Then f is strictly convex and hence the one-sided derivatives f’(x), fi(x)
exist and are strictly increasing on (g,¢), [RV73, §11].

We prove that f’ (0) = f1.(0). Suppose not, then by choosing appropriate
Cartesian coordinates we may assume that f’(0) < O and fi(0) > 0. For
each sufficiently small € construct an ideal triangle A = A(e) in D with one
vertex 0 and two other vertices corresponding to the intersection of the line
y = ¢ with OD. We assert that the slimness of A(g) tends to oo when &
tends to zero. Namely we show that the Hilbert distance between the point
P = (0,¢) and any point Q of the side [0, B] tends to co. Let f J’F(O) =tan o,
0 < a<m/2.Let x; < x, be the points such that f(x;) = ¢ and f1 (0)x, = €.
Then

PQ > ecosa = f(x;)cosc.

Let O,R be the intersection points of the line PQ with 0D. We have
therefore ,
fo) _ fa) =1 0)x
Ty =
J40) f1(0)

and hence, combining the last two inequalities,

QR < x; —x; =
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PQ _ fi(O)f(x)cosa
OR ~ f(x1) — f4(0) x:
fi(0)cosa

B EACE™

— 0o when x; — 0.

It follows that

PO PO .
h(P,Q) =In (1 + 5};) (1 e —Q_—Ii) — oo when x; — 0

and hence the slimness of A(e) tends to oo when € tends to zero.
(0]
P
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FIGURE 4
Hyperbolicity implies C!

It remains to show that f/ is continuous. By [RV73, §14] we have

im0 =fL ),

x_l_i)gol_'ffr @) = fL(x0)-

From this we conclude that f7 is continuous at xo since f7 (xo) = f” (xp). But
f'(x0) = f1.(xo) hence f’ is also continuous at xo.

n-dimensional case: Recall the known result that if f is a differentiable
convex function defined on an open convex set S in R"™!, then itis C! on S,
see for example [RV73]. Let D be a bounded convex domain in R n>2.
It is enough to prove that 9D is differentiable at any point. Given a point
p € 6D, we can choose the coordinate axis of R"! so that the origin O
of the coordinates is at p, all of D lies in the halfspace xp > 0 and in
a neighbourhood of p the surface 0D can be represented as the graph of

a nonpositive convex function xy = f(x1,x2,...,%n), X = (X1,X2,...,X,),
f(0) = 0. Considering the 2-dimensional sections in the planes xy, X;,
i = 1,...,n, we obtain that the partial derivatives of f at O exist and

f(0) =0, i=1,...,n. We have to prove that for each € > 0 there is a
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neighbourhood U. of O such that f(x) < €|x| in this neighbourhood. But
in view of £, (0) =0, i =1,...,n, we have f(0,...,0,x;,0,...,0) < g|x]
for sufficiently small x; and hence by convexity f(x) < ¢|x| for sufficiently
small |x|. [

REMARK 4.3. The following was announced in [BOO] : If a strictly convex
domain D is divisible, that is, if it admits a proper cocompact group of
isometries T, then D is Gromov hyperbolic if and only if 6D is C!. Our
Theorem 4.2 shows that in the implication (Gromov hyperbolicity + divisibility
= C!) the condition of divisibility is superfluous.

5. NON-STRICTLY CONVEX DOMAINS

This section owes much of its existence to [Be97] and [Be99]. Using a
different argument, we prove certain extensions to arbitrary convex bounded
domains of some of the results obtained in those papers.

LEMMA 5.1. Let D be a bounded convex domain in R". Let {x,},{y,}
be two sequences of points in D. Assume that x, — % € 0D, y, —y € D
and [x,y] € OD. Let x,, and y, denote the endpoints of the chord through x,
and y, as usual. Then x|, converges to X and Yy, converges to the endpoint

y of the chord defined by x and y different from X.

Proof. Compare with Lemma 5.3. in [Be97]. Every limit point of chord
endpoints must belong to the line through X and y. In addition, in the case of
x!, for example, any limit point must lie on the halfline from X not containing
y. At the same time each limit point must belong to the boundary of D, and
the statement follows since the line through X and y intersects OD only in X
and y/. [

THEOREM 5.2. Let D be a bounded convex domain. Let {x,} and {z,}
be two sequences of points in D. Assume that x, — % € 0D, z, — z € 0D
and [x,Z] € OD. Then there is a constant K = K(X,Z) such that for the
Gromov product (x, | z»)y in Hilbert distances relative to some fixed point y
in D we have

limsup (x, | z»)y < K.

n—oo
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