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84 A. KARLSSON AND G. A. NOSKOV

is bounded in view of the estimate k l(x2 + y2) < f(x,y) < k(x2 + y2) for
some universal k > 0 and of the fact that /(x, y) — e on C£.

4. Consequences of Gromov hyperbolicity
FOR THE SHAPE OF THE BOUNDARY

PROPOSITION 4.1. Let D be a bounded convex domain in Rn and let h

be a Hilbert metric on D. If h is Gromov hyperbolic then the boundary dD
is strictly convex, that is, it does not contain a line segment.

This can be proven following the proof of N. Ivanov [Iv97] of Masur-Wolf's
theorem [MW95] that the Teichmüller spaces (genus > 2) are not Gromov

hyperbolic. The proof makes use of Gromov's exponential divergence criterion,
see [BH99, p. 412]. For another proof of the above proposition, see [SMOO].

THEOREM 4.2. Let D be a bounded convex domain in R" and let h be

the Hilbert metric on D. If h is Gromov hyperbolic then the boundary dD
is smooth of class C1.

Proof 2-dimensional case : First, by the previous result, D is strictly
convex. Let y /(x), x G (—a, a) be an equation of dD near some point.
Then / is strictly convex and hence the one-sided derivatives f'_(x), f'+{x)
exist and are strictly increasing on (e, e), [RV73, §11].

We prove that f!_(0) /+(0). Suppose not, then by choosing appropriate
Cartesian coordinates we may assume that 0) < 0 and /+(0) > 0. For
each sufficiently small e construct an ideal triangle A A(e) in D with one

vertex 0 and two other vertices corresponding to the intersection of the line

y s with dD. We assert that the slimness of A(e) tends to po when s

tends to zero. Namely we show that the Hilbert distance between the point
p (0, e) and any point Q of the side [0,#] tends to oo. Let jCJ_(0) tana,
0 < a < 7t/2. Let x\ < X2 be the points such that f(x\) — e and /^(0)x2 e.
Then

PQ > s cos a =/(xi) cos a

Let 0,R be the intersection points of the line PQ with dD. We have

therefore
/Ol)

ÖT*= m
and hence, combining the last two inequalities,
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PQ y/+(0)/(YI)COSQ
QR - fixi)-/;(0)X!

/|(0)coso!+ oo when x\ —> 0.
1 -/i(°)7§0

It follows that

h(P,Q)1" (i + (i + - o° when * -> 0

and hence the slimness of A(e) tends to oo when e tends to zero.

Figure 4

Hyperbolicity implies C1

It remains to show that f is continuous. By [RV73, § 14] we have

hm /|(x) /j(x0),
x—^xo+

Mm f'+(x)o)-
X >Xq

From this we conclude that /| is continuous at xo since (xo) f!_(xo). But
ff(pco) =/+(xo) hence /x is also continuous at xo.

n -dimensional case : Recall the known result that if / is a differentiate
convex function defined on an open convex set S in Rn+1, then it is C1 on S,

see for example [RV73]. Let D be a bounded convex domain in R"+1,rc > 2.

It is enough to prove that dD is differentiate at any point. Given a point

p e dD, we can choose the coordinate axis of Rn+1 so that the origin O

of the coordinates is at p, all of D lies in the halfspace xo > 0 and in
a neighbourhood of p the surface dD can be represented as the graph of
a nonpositive convex function xo =/(xi,X2,... ,xw), x (xi,X2,... ,xn),
/(0) — 0. Considering the 2-dimensional sections in the planes xo,
i — 1,..., n, we obtain that the partial derivatives of / at 0 exist and

/x/(0) 0, i 1,... ,n. We have to prove that for each e > 0 there is a
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neighbourhood U£ of 0 such that f(x) < e\x\ in this neighbourhood. But
in view of fx.(0) 0, i 1,..., n, we have /(0,..., 0,*/, 0,..., 0) < e\xi\
for sufficiently small xt and hence by convexity fix) < e|x| for sufficiently
small \x\.

REMARK 4.3. The following was announced in [B00] : If a strictly convex
domain D is divisible, that is, if it admits a proper cocompact group of
isometries T, then D is Gromov hyperbolic if and only if dD is C1. Our
Theorem 4.2 shows that in the implication (Gromov hyperbolicity + divisibility
=> C1 the condition of divisibility is superfluous.

5. Non-strictly convex domains

This section owes much of its existence to [Be97] and [Be99]. Using a

different argument, we prove certain extensions to arbitrary convex bounded

domains of some of the results obtained in those papers.

LEMMA 5.1. Let D be a bounded convex domain in Rn. Let {xn},{yn}
be two sequences of points in D. Assume that xn —» x G dD, yn —> y G D
and [x,y] ^ dD. Let x!n and y'n denote the endpoints of the chord through xn

and yn as usual. Then xfn converges to x and y'n converges to the endpoint
y' of the chord defined by x and y different from x.

Proof. Compare with Lemma 5.3. in [Be97]. Every limit point of chord

endpoints must belong to the line through x and y. In addition, in the case of
x'n for example, any limit point must lie on the halfline from x not containing

y. At the same time each limit point must belong to the boundary of D, and

the statement follows since the line through x and y intersects dD only in x
and y'.

THEOREM 5.2. Let D be a bounded convex domain. Let {.xn} and {z„}
be two sequences of points in D. Assume that xn —* x G dD, zn z G dD
and [x,z] £ dD. Then there is a constant K K(x,z) such that for the

Gromov product (xn | zn)y in Hilbert distances relative to some fixed point y
in D we have

lim sup (xn I Zn)y < K.
n-+ oo
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